Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пересыщение на дисперсность

    Пересыщения дисперсности, т. е. избыточная энергия, отличающая 1 моль вещества в данной степени дробления от того же количества вещества в бесконечно большом куске. [c.211]

    Следует отметить, что в процессе исследования была обнаружена склонность растворов ацетилена в жидком кислороде к пересыщению. Например, при температуре 90° К концентрация молекулярно-дисперсного ацетилена [c.88]


    Нами были рассмотрены малоэффективные системы выделения целевых продуктов из парогазовых смесей и их санитарной очистки. ПГС, содержащие иногда и дисперсную фазу, образуются в процессах жидкофазного или парофазного окисления углеводородов кислородом воздуха. Характерной особенностью для них является необходимость выделения незначительных количеств, как правило, конденсирующихся или сублимирующихся соединений из большого объема неконденсирующегося газа. Относительно малые концентрации примесей обусловливают образование жидкой и твердой дисперсной фазы в объеме ПГС. Конденсация пара из инертного газа на охлаждаемой поверхности происходит при одновременных процессах тепло- и массообмена. Соотношением скоростей переноса тепла и массы определяется конденсация пара на поверхности или в объеме, или одновременно на поверхности и в объеме. При малых концентрациях тепло может отводится быстрее, чем подводятся конденсирующиеся компоненты к поверхности, поэтому за счет интенсивного охлаждения ПГС становится насыщенной и даже пересыщенной паром, который в этом состоянии конденсируется в объеме с образованием тумана. По этой причине даже при более низких температурах хладоагента в конденсаторах содержание примесей в отходящих газах не уменьшается. Улавливание же тумана является трудоемкой операцией. [c.7]

    Как и все дисперсные системы, иены иолучают методами диспергирования и конденсации. Методом диспергирования пены получают посредством перемешивания нли барботирования газов в жидкость. Конденсационный метод основан на изменении физического состояния раствора (при повышении температуры раствора или уменьшении внешнего давления), приводящем к пересыщению его газом. [c.174]

    С точки зрения возможности появления твердой макрофазы важно не только количество образующейся дисперсной фазы, но и особенно размеры образующихся частиц. При кристаллизации размеры кристаллов определяются прежде всего скоростью образования центров кристаллизации. Статистическая вероятность возникновения центров кристаллизации, представляющих собой достаточно крупные группировки молекул, вблизи температуры насыщения очень мала. Кристаллические зародыши начинают появляться лишь по достижению в результате переохлаждения определенного пересыщения раствора. Связь между скоростью образования центров кристаллизации и переохлаждением системы выражается зависимостью /31/ [c.50]


    В этом случае снижается влияние теплового движения на изменение структуры и состояния нефтяной дисперсной системы. Важную роль в этих системах играют межмолекулярные взаимодействия, которые ответственны за структуру структурированных нефтяных дисперсных систем. Следует отметить важные особенности поведения нефтяных дисперсных систем при пониженных температурах. При понижении температуры нефтяной фракции уменьшается тепловое движение молекул жидкости, замедляется перемещение и конфигурационное изменение макромолекул в пачках и пакетах, начинаются процессы достройки пакетов и пачек углеводородами, кроме того может происходить создание новых пачек и пакетов из-за пересыщения раствора при понижении температуры. На поверхности частиц дисперсной фазы, состоящей в том числе из асфальтенов, смол, других включений, может происходить достройка отдельных их участков, с образованием усов , которые вырастают из мицеллярных структур. Происходит смыкание мицеллярных структур с созданием крупных агрегатов или глобул. Это приводит к снижению агрегативной и кинетической устойчивости нефтяных дисперсных систем. Указанные процессы можно описать аналитически с применением математического аппарата. [c.62]

    Конденсационный путь образования дисперсных систем связан с выделением новой фазы из гомогенной системы, находящейся в ме-тастабильном состоянии, например,кристаллизация из пересыщенного раствора, конденсация пересыщенного пара и т. п. Этот процесс протекает в том случае, если химический потенциал вещества в новой (стабильной) фазе меньше, чем в старой, метастабильной. Однако этот выгодный в конечном счете процесс проходит через стадию, требующую затраты работы, - стадию образования зародышей новой фазы, отделенных от старой фазы поверхностью раздела. Условия для возникновения зародышей новой фазы возникают в метастабильной системе в местах, где образуются местные пересыщения - флуктуации плотности (концентрации) достаточной величины. Радиус равновесного зародыша новой фазы связан со степенью пересыщения. [c.39]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]

    Из изложенного следует, что ценность формулы (VHI, I) весьма ограниченна. Тем не менее она указывает путь регулирования дисперсности при образовании коллоидной системы. Для повышения степени дисперсности, согласно этой формуле, необходимо увеличить относительное пересыщение, т. е. увеличить значение Сп или уменьшить Са, или, наконец, одновременно увеличить Сд и понизить g.,  [c.226]

    Один из возможных механизмов заключается в том, что вначале образуется кристаллический зародыш, затем линейные размеры кристалла увеличиваются. Для образования кристаллов малых размеров скорость образования кристаллических зародышей должна быть высокой, а скорость линейного роста кристаллов — малой. Скорость образования кристаллических зародышей тем больше, чем больше степень пересыщения раствора или переохлаждения конденсирующейся газообразной фазы. Скорость линейного роста кристаллов тем больше, чем больше концентрация вещества, которое кристаллизуется, и чем выше температура. Отсюда следует, что для образования кристаллов коллоидной степени дисперсности необходима большая степень пересыщения растворов. Для практически нерастворимых веществ этого достигнуть нетрудно. [c.386]

    Методы конденсации. 1. Метод замены растворителя заключается в том, что истинный раствор вещества добавляется к жидкости, смешивающейся с растворителем, но в которой само вещество мало растворимо и выделяется в виде высокодисперсной фазы. 2. Метод конденсации из паров основан на одновременной конденсации паров диспергируемого вещества и растворителя на холодной поверхности. 3. Химические методы конденсации основаны на переводе растворенных веществ в нерастворимое состояние при помощи различных химических реакций (восстановление, гидролиз, двойной обмен и др.) с последующей агрегацией и рекристаллизацией нерастворимых частиц, образующих дисперсную фазу. Образование новой фазы происходит из пересыщенного раствора в результате роста частиц на центрах или зародышах кристаллизации. Стабилизаторами являются растворимые вещества, возникающие в результате химической реакции. [c.262]


    Конденсация может протекать как химический и как физический процесс, И в том и в другом случае метод конденсации основан на образовании в гомогенной среде новой фазы, имеющей коллоидную дисперсность. Общим условием образования новой фазы является состояние пересыщения раствора или пара. При возникновении местных пересыщений в каких-то участках раствора образуются агрегаты из нескольких молекул, которые и становятся зародышами новой фазы. Роль зародышей могут выполнять имеющиеся или вносимые в систему центры кристаллизации — пылинки, небольшие добавки готового золя и др. Чем больше число центров кристаллизации и меньше скорость роста кристаллов, тем выше дисперсность получаемых золей. [c.410]

    Аэрозоли. Аэрозолями называют свободно-дисперсные системы с газообразной дисперсионной средой и дисперсной фазой, состоящей из твердых или жидких частиц. Аэрозоли образуются при взрывах, дроблении и распылении веществ, а также в процессах конденсации при охлаждении пересыщенных паров воды и органических жидкостей. Аэрозоли можно получить и с помощью химических реакций, протекающих в газовой фазе. [c.447]

    Конденсационные методы позволяют получать дисперсные системы из гомогенных сред. Появление новой фазы происходит при пересыщении среды. Пересыщение, т. е. создание концентраций, превышающих равновесные, можно вызвать проведением химической реакции или физического процесса. В зависимости от этого различают физические и химические конденсационные методы. [c.14]

    Типичный пример формирования конденсационно-кристаллизационной структуры — структура затвердевших минеральных вяжущих веществ. Растворение безводных вяжущих и последующее вы-кристаллизовывание из пересыщенных растворов гидратных новообразований является главным условием образования конденсационно-кристаллизационных структур. Регулирование такой структуры достигается изменением степени пересыщения и длительности существования периода пересыщения, дисперсностью исходного вяжущего, введением в твердеющую систему электролитов и поверхностно-активных веществ. [c.169]

    Конденсационная структура может быть получена и при нон-денсагтии дисперсной фазы из пересыщенных паров, растворов или расплавов. При обра.човании и росте зародышей новой фазы из концентрированных пересыщенных систем может возникнуть непрерывный сетчатый каркас путем срастания и переплетения растущих частиц дисперсной фазы. Если эти частины представляют собой кристаллы, возникающие структуры называют кристаллизационно-конденсационными структурами тБсрдепия. [c.340]

    Конденсация. Все методы конденсации, или конденсационные методы, сводятся к тому, что частицы предельно раздробленного вещсства, т. е. вещества, находящегося в растворенном состоянии или в виде пара, когда его молекулы разобижены, подвергаются укрупнению, соединяясь друг с другом и образуя более крупные агрегаты. Процесс коггденсации вещества в состоянии отдельных молекул (или нонов) может произойти только в том случае, если это вещество пересыщает раствор или газовую смесь. Таким образом, кондеисациоиный процесс образования гетерогенной дисперсной системы происходит в две стадии 1) образование пересыщенного раствора или пара и 2) собственно конденсация из пересыщенного раствора или пара. Конденсационные методы отличаются от дисперсионных тем, что раз начавшийся процесс конденсации идет далее самопроизвольно и сопровождается отдачей энергии. Все усилия при искусственном иолучении гетерогенных дисперсных систем иосредством метода конденсации сводятся к получению пересыщенного раствора или пара, что может быть достигнуто двумя способами 1) понижением растворимости или давления пара путем охлаждения или замены растворителя или 2) образованием [c.189]

    Как будет показано ниже, в вихревой трубе происходит организованное течение газа в высоконапряженном поле центробежных сил со сложной структурой при непрерывном изменении всех характеризующих газ параметров. Безусловно, при влажном газе, при наличии конденсирующих компонентов, а также жидкой или твердой дисперсной фаз процессы, протекающие в вихревой трубе, должны еще больше усложняться. При этом следует ожидать значительной интенсификации процессов конденсации и сепарации. При движении парогазовых смесей в каналах сопловых вводов (пар одного компонента) условием конденсации является пересыщение пара и, чем быстрее идет расширение смеси, тем к большему пересыщению приходит система, что приводит к конденсации. Как следует из данных А. Стодола, исследовавшего конденсацию водяного пара в сопле, в этих условиях возможна и гомогенная конденсация даже при наличии некоторой доли дисперсной фазы (данные представлены в монографии Л. Е. Стернина [6]). При медленном расширении пара в сопле пересыщение может и не происходить, так как пар успевает конденсироваться на посторонних частицах. Из этого следует, что для начала конденсации важную роль играет промежуток времени, в течение которого создается пересыщение. В монографии отмечается и такой факт, что при наличии в потоке газа даже небольшого количества другого вещества с более высокой температурой и давлением насыщения в первую очередь происходит гомогенная конденсация этого вещества с образованием большого количества зародышей, на которых в дальнейшем конденсируется основной компонент. Пересыщение пара при этом может и отсутствовать. О том, что конденсация в соплах возможна, можно сделать вывод, если сопоставить уравнение Клаузиуса-Клайперона (1.2) и уравнение изменения давления при адиабатическом расширении в сопле совершенного газа  [c.10]

    Как известно, при кристаллизации в системе сначала возникают мельчайшие частицы новой твердой фазы — зародыши, затем происходит рост кристаллов. Согласно современной термодинамической теории образования кристаллических зародышей изолированная система абсолютно устойчива (стабильна), если любое конечное изменение ее состояния (при постоянстве энергии) оставляет неизменной (или уменьшает) ее энтропию. Система относительно устойчива (метастабильна), если при некоторых конечных изменениях ее состояния энтропия возрастает. Примером метастабильной системы является пересыщенный раствор, энтропия которого возрастает на конечное значение при кристаллизации. В лабильной (резко пересыщенной) области происходит спонтанное зародыщеобразование. В тур-бидиметрии необходима агрегативная устойчивость дисперсной системы. Под устойчивостью дисперсной системы понимают постоянство ее свойств во времени, в первую очередь дисперсности и распределения частиц по объему, устойчивости к отделению раствора от осадка, к межчастичному взаимодействию. [c.88]

    Необходимость пересыщения для образования гетерогенной дисперсной системы из гомогенной следует и из того факта, что появление избыточной поверхностной энергии при конденсации должно быть предварительно скомпеисировано избытком энергии Гиббса системы, что и обеспечивается пересыщением. [c.99]

    Аэрозоли — дисперсные системы с газообразной дисперсионной средой. По методам получения они подразделяются на дис-пергациоииые, образующиеся при измельчении и распылении веществ, и на конденсационные, получаемые конденсацией из пересыщенных паров и в результате реакций, протекающих в газовой фазе. По агрегатному состоянию и размерам частиц дисперсной фазы аэрозоли делят на туманы — системы с жидкой дисперсной фазой (размер частиц 10—0,1 мкм), пыли — системы с твердыми частицами размером больше 10 мкм и дымы, размеры твердых частиц которых находятся в пределах 10—0,001 мкм. Туманы имеют частицы правильной сферической формы (результат самопроизвольного уменьшения поверхности жидкости), тогда как пыли и дымы содержат твердые частицы самой разнообразной формы. К типичным аэрозолям относятся туман (НгО) размер частиц— 0,5 мкм топочный дым — 0,1 —100 мкм дождевые облака— 10—100 мкм 2пО (дым)—0,05 мкм Н2504 (туман) — 1 — 10 мкм Р2О5 (дым) — 1 мкм. Частицы высокодисперсных аэрозо- [c.184]

    В качестве примера кристаллизационных структур дисперсных систем, возникающих как новые фазы в результате переохлаждения и пересыщения расплавов, можно назвать металлы и сплавы. В твердом состоянии все металлы и сплавы имеют кристаллическое строение. Переход из жидкого расплава в твердое состояние при охлаждении начинается с возникновения зародышей атомы металла ориентируются определенным образом в пространстве, образуя кристаллическую решетку зародыша. В сплавах компоненты могут сокристаллизоваться, а химические соединения между ними образуют свою кристаллическую решетку. В качестве центров кристаллизации могут выступать не только возникающие зародыши из самого металла, но и мельчайшие шлаковые и неметаллические включения. Рост числа и размеров кристалликов приводит к их срастанию и образованию поликристаллической структуры. Так как процесс кристаллизации развивается одвовременно из многих [c.386]

    Л. Г. Гурвич наблюдал в нефтяных продуктах, сравнительно бедных парафином и богатых смолистыми веществами, что парафин, расплавившись при нагревании, не выкристаллизовывается при последующем охлаждении, но остается в виде пересыщенного раствора кристаллизация его задерживается смолистыми веществами подобно кристаллизации сахара в патоке. В нефтяных продуктах, богатых парафинами, но менее смолистых, под микроскопом после подогрева и охлаждения обнаруживаются многочисленные мелкие кристаллы парафина [32]. 1 сокая степень дисперсности парафина в нефтепродуктах в присутствии смол отмечена также А. О. Юрковым [33]. [c.98]

    Для получения высокодисперсной промывочной жидкости таким способом необходимо, чтобы раствор был пересыщенным по выделяемой фазе, и в нем надо создать условия, обеспечивающие одновременное возникновение огромного числа зародышей дисперсной фазы. При этом скорость образования зародышей должна быть намного больше скорости роста кристаллов. Практически это достигается путем введения химических реагентов (КМЦ, крахмала, КССБ и др.) при сильном перемешивании. Происходит не только достижение требуемой дисперсности, но и закрепление этого состояния, стабилизация системы. [c.41]

    Несмотря на значительный ассортимент депрессоров и ингибиторов парафиноотложения, механизм их действия остается до последнего времени вопросом дискуссионным. Как правило, рассматриваются два возможных варианта отложения парафина на внутренних поверхностях технологического оборудования и трубопроводов вследствие пересыщения нефтяного раствора при соприкосновении с холодными стенками труб, а также в потоке перекачиваемой нефтяной системы. Улучшение текучести высокозастывающих нефтей и газовых конденсатов и предотвращение парафиноотложения при введении в систему соответственно депрессоров или ингибиторов парафиноотложения связывают с поверхностным и объемным механизмом их действия. Согласно первому механизму, молекулы присадки, имеющие длинные алкильные радикалы, встраиваются в растущие крис га. лы парафиновых углеводородов, начиная со стадии зародышеобразования. При этом полярные функциональные группы присадки ориентируются в дисперсионную среду и тормозят встраивание парафиновых углеводородов в растущую структуру, что ограничивает ее рост. По второму механизму предполагается, что молекулы депрессорной присадки за счет высокой полярности функциональных групп формируют собственные ассоциаты и мицеллы при температурах более высоких, чем температура ассоциатообразования молекул нормальных парафинов. Такие мицеллы содержат полярные группы внутри ассоциата, а алифатические радикалы направлены в дисперсионную среду. Это способствует сольватации таких мицелл молекулами нормальных парафиновых углеводородов и созданию аморфизированных структур. Их кристаллизация в охлажденных нефтяных дисперсных системах носит локализованный характер, и при конденсации [c.242]

    В гл. 1 мы показали, что дисперсные системы образуются либо при раздроблении большой фазы, либо при конденсации молекул в пересыщенной системе. Поэтому конденсационное образование новой фазы представляет собой чрезвычайно важный, фундаментальный вопрос коллоидной химии. К сожалению, теория этого процесса и его экспериментальное исследование далеки от своего завершения. В настоящее время наиболее удовлетворительные результаты получены для самого простого случая — образования новой фазы в газовой среде, т. е. образования аэрозоля. По этой причине в нашем кратком изложении мы ограничимся только примерами из области аэрозолей. Но чтобы подчеркнуть общее значение этого вопроса, мы решили в настоящем издании поместить его в об1цей части курса. [c.95]

    По происхождению системы с газовой дисперсионной средой разделяют, как и все дисперсные системы, на диспергационные и конденсационные аэрозоли. Диспергационные аэрозоли, образующиеся при измельчении твердых тел или распылении жидкостей, как и лиозоли, полученные путем диспергирования, имеют довольно крупные частицы и, как правило, полидисперсны. Аэрозоли, полученные методом конденсации из пересыщенных, паров или в результате химических реакций, наоборот, обычно являются высокодисперсными системами с брлее однородными по размеру частицами. [c.341]

    Охлаждение, пересыщение и конденсация паров может происходить различными путями, например при адиабатном расширении газа, содержащего пары какой-либо жидкости. Именно так образуются обычные кучевые облака, когда тейлые массы влажного воздуха поднимаются в более высокие слои атмосферы. Перистые облака, возникающие на больших высотах, также являются результатом конденсации водяных паров, однако в этом случае при конденсации в верхних слоях атмосферы вследствие низкой температуры образуются не жидкие капельки, а твердые кристаллики льда. Таким образом, перистые облака следует отнести к системам с твердой дисперсной фазой. [c.356]

    Рассмотрим сначала механизм образования новой фазы в отсутствие посте-, ронних зародышей, пользуясь представлениями, развитыми Фольмером. Для простоты возьмем случай, когда эбрачуется дисперсная система с жидкой дисперсной фазой. Если только система не близка к критическому состоянию, возникновение новой (жидкой) фазы без сильного пересыщения невозможно. Причина этого заключается в. том, что первоначально образующиеся мельчайшие капельки, необходимые для получения тумана со сравнительно большими частицами, обладают очень малым радиусом кривизны, вследствие чего давление пара у поверхности таких капелек весьма велико и они легко испаряются. Это становится более понятным из следующих рассуждений. [c.357]

    Agi 3 10" г/л). При этих условиях достигается значительная (в несколько порядков) степень пересыщения при малой концентрации кристаллизирующегося вещества. В результате образуются мельчайшие кристаллы Agi коллоидной степени дисперсности. В зависимости от того, излишек какого исходного раствора будет взят при смешении, в образовавшемся коллоидном растворе Agi окажется избыток ионов Ag или I". В первом случае частицы адсорбируют HOHHAg и соответственно приобретают положительный заряд во втором случае они приобретают отрицательный заряд. Таким образом можно управлять процессом заряжения коллоидных частиц. [c.387]

    По термодинамической устойчивости и характеру об-)азования различают лиофобные и лиофильные системы. Тервые образуются из пересыщенных систем или в результате дробления более крупных частиц и являются термодинамически неустойчивыми. Лиофильные системы образуются самопроизвольно и, следовательно, термодинамически устойчивы. В лиофильных системах частицы дисперсной фазы могут состоять из небольших молекул или представлять собой одиночные молекулы большой массы. Изучение растворов высокомолекулярных соединений представляет исключительный интерес с точки зрения биологии и медицины, так как к ним относятся системы, образуемые белками, полисахаридами, нуклеотидами. [c.12]


Смотреть страницы где упоминается термин Пересыщение на дисперсность: [c.114]    [c.93]    [c.208]    [c.133]    [c.190]    [c.190]    [c.66]    [c.101]    [c.101]    [c.106]    [c.107]    [c.353]    [c.11]    [c.12]    [c.225]    [c.225]    [c.357]   
Теоретические основы образования тумана при конденсации пара Издание 3 (1972) -- [ c.261 , c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость дисперсности и численной концентрации тумана от пересыщения пара

Пересыщение



© 2025 chem21.info Реклама на сайте