Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ ионитами гидратации

    Приведенный кислотно-каталитический процесс может служить обобщенной схемой кислотного катализа, поскольку гидратация катализируется любыми кислотами, присутствующими в водных растворах, а не только ионами НзО  [c.202]

    К данньш по сравнительной гидратации алкинов и алкенов следует относиться с осторожностью, поскольку для гидратации алкинов требуется катализ ионами ртути [c.512]


    Присоединение воды к ацетилену в присутствии в качестве катализатора солей ртути приводит к ацетальдегиду — промышленно важному полупродукту гидратация моно- и дизамещенных ацетиленов дает кетоны. Карбоновые кислоты также присоединяются к ацетиленам в условиях катализа ионами ртути, а образующиеся ацетаты енолов легко гидролизуются в соответствующие кетоны [187]. [c.263]

    ПРОТОЛИТИЧЕСКИЕ РЕАКЦИИ, включают стадию протолиза — переноса протона от субстрата (к-ты или основания) к Катализатору. Лежат в основе кислотно-основного катализа. Примеры П. р. енолизация кетонов, р-ции через оксониевые ионы (гидратация олефинов в спирты и др.). [c.484]

    Классическая теория кислотно-основного катализа имела не только ограничения. Она не могла служить серьезным средством управления катализом. Главные ее недостатки заключались в неправильной интерпретации лежащих в ее основе экспериментальных фактов. Эта теория просто не могла еще объяснить всех сложных процессов, связанных с изменениями среды, которая окружает ионы. Необходим был синтез известной гидратной теории растворов Менделеева и теории электролитической диссоциации Аррениуса, т. е. создание новой теории ионной гидратации, чтобы дать правильное объяснение [c.88]

    Особенность механизма, которую всегда пытаются выяснить для любой реакции, связанной с присоединением протона, состоит в том, заканчивается ли передача протона в предравновесной стадии, т. е. до того, как система перейдет в переходное состояние лимитирующей стадии (специфический катализ ионом водорода), или перенос протона является медленным процессом, идущим в переходном состоянии (общий кислотный катализ). После почти десятилетних исследований эта проблема была решена, когда в 1952 г. Тафт [26] установил, что скорости кислотной гидратации олефинов зависят от функции Гаммета ho более точно, чем от концентрации [Н+]. Шкала Гаммета построена как мера кислотности для равновесного переноса протона к азотистым основаниям. Вывод, который следовало бы сделать из наблюдений Тафта (практически автоматически), состоит в том, что скорости гидратации олефинов зависят от равновесного переноса протона (специфический катализ ионом водорода). Первая трудность, которая затем возникла, состояла в необходимости сделать приемлемое допущение относительно того, что же является медленной стадией процесса, приводящей к образованию переходного состояния. Предположения, которые были сделаны (вероятно, единственно возможные), оказались все же неприемлемыми. Строго говоря, все попытки проверить вывод о существовании предшествующего равновесия с помощью других методов не смогли подтвердить его. Тафт, как и другие авторы, использовал несколько независимых подходов. [c.788]


    Механизм Е1 соответствует специфическому катализу ионами водорода гидратации а,Р-ненасыщенных кетонов. Механизм Е2(С ) соответствует общему кислотному катализу гидратации. Следовательно, определение типа кислотного катализа в этих реакциях будет решающим фактором при выборе между двумя механизмами элиминирования. [c.829]

    Скорости щелочного гидролиза Ы-метиланилидов [300] и анилидов [301, 302] пропорциональны концентрации гидроксильного иона, а также квадрату этой концентрации. Можно считать, что вторая степень концентрации гидроксида соответствует катализу ионом ОН" нуклеофильной реакции этого иона с анилидом. Аналогичным примером общего основного катализа реакций присоединения к карбонилу является гидратация ацетальдегида [303]. [c.119]

    Катализ второго класса — ионный — протекает ца твердых телах, не имеющих свободных носителей тока в объеме, т. е. на изоляторах. Электропроводность этих тел, заметная при высоких температурах, — ионная, аналогичная электропроводности электролитов. Катализаторы этого типа, как правило, не окрашены реакции происходят без разделения электронных пар и объединяются в тип гетеролитических. Сюда относятся реакции изомеризации, присоединения (гидратации, аминирования), замещения гидролиза), дезаминирования. Указанные два класса каталитических реакций не включают в себя, однако, всех возможных механизмов катализа. [c.13]

    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]

    Гидратация изобутилена на катионитах — пример специфического кислотного катализа, когда каталитический процесс осуществляется сольватированным ионом водорода. Реакция первого порядка по ионам водорода и первого порядка по олефину. Скорость процесса дегидратации триметилкарбинола на катионите описывается уравнением Фроста  [c.222]

    Необходимость кислотно-основного катализа в случае гидратации ацетона и отсутствие подобного требования при гидратации альдегидов объясняется тем, что в кетонах положительный заряд на атоме углерода карбонильной группы меньше, и поэтому нужна начальная атака ионами "ОН (или атака атома кислорода ионами Н" ), тогда как в случае альдегидов более положительный атом углерода может атаковаться молекулами Н О непосредственно. Несколько неожиданным, в свете сказанного выше, является тот факт, что скорость гидролиза МеСНО наблюдаемая при pH 7, сильно возрастает при значениях pH 4 или 11. [c.202]

    Гетеролитический, или так называемый ионный катализ, имеет место в каталитических реакциях крекинга, изомеризации, циклизации, алкилирования, деалкилирования, полимеризации углеводородов, дегидратации спиртов, гидратации олефинов, гидролиза и многих других химических и нефтехимических процессах. [c.416]

    Одновременное проявление общего кислотного и общего основного катализа можно установить, измеряя зависимость скорости реакции от концентрации каждого из катализаторов. Скорость некоторых реакций, например галогенирования кетонов, гидратации дихлорацетона, а также образования кетона из аниона щавелевоуксусной кислоты, зависит от концентраций общей кислоты и общего основания. Однако реакции, скорость которых пропорциональна как концентрации карбоновой кислоты, так и карбоксилат-иона, нельзя строго отнести к процессам, где реализуется полифункциональный катализ. Эти реакции могут катализироваться димерными (основными) частицами типа НАг, которые в принципе могут существовать в растворе. Кинетически эти две возможности неразличимы. [c.282]


    При гидролизе п-нитрофенилацетата (но не этилацетата) имидазол оказывается в 4000 раз более эффективным катализатором, чем ион НРО , хотя они имеют одинаковую константу основности [41]. Имеются прямые доказательства того, что в качестве промежуточного соединения в этой реакции образуется ацетилимидазол (разд. 5.26). Такой механизм называется нуклеофильным катализом он несомненно отличается от общего основного катализа в реакциях типа гидратации альдегидов. [c.431]

    Ионно-кислотно-щелочно-солевой гомогенный и псевдогомогенный катализ играет исключительно большую роль в химических процессах, совершающихся в водной среде при участии катализаторов и ферментов. Пользуясь терминологией Кобозева , можно причислить эти реакции к ионно-органическому катализу, в котором исключительную роль играют соли, как, например, в реакциях гидратации ацетилена (по Кучерову) в присутствии солей ртути и в полимеризации ацетилена до винилацетилена в присутствии солей меди. [c.309]

    Реакция гидратации а-окисей является случаем водородо-ионного катализа. Видимо, этот же случай катализа будет иметь место при изомеризации а-окисей в карбонильные соединения при нагреве с разведенными кислотами, способными отнимать воду от соответствующих а-гликолей с образованием тех же карбонильных соединений. Действие безводного хлористого цинка и концентрированной серной кислоты легче представить себе как результат образования молекулярных соединений между окисью и хлористым цинком или концентрированной серной кислотой. [c.314]

    Иное положение в случае гетеролитических реакций, таких как гидратация, дегидратация и др. На поверхности катализатора их можно, очевидно, осуществить без разрыва электронной пары, аналогично тому, как это происходит при гомогенном катализе. Рассмотрим, например, схему дегидратации спирта на катализаторе, состоящем из ионов А и В+  [c.104]

    Легко протекает и гидратация нитрилов до амидов, если молекула нитрила координируется с электроположительным ионом металла через атом азота [86]. Нуклеофильная атака воды по ненасыщенному атому углерода приводит к образованию гидроксиимида и далее амида (о катализе ионом Си + гидратации СНз = - N м. гл. 5, разд.1). [c.115]

    Это означает наличие общего кислотного катализа. Если в состав переходного комплекса входит, помимо олефина, кислота НдО , которая служит переносчиком протона к олефину, то следует допустить возможность существования других переходных комплексов, содержащих какие-нибудь другие кислоты НА. При специфическом катализе ионом водорода переходный комплекс содержит субстрат и протон кислоты, так что любая кислота ведет к образованию одного и того же переходного комплекса. Обычной трудностью, препятствующей обнаружению мультиплетности переходных комплексов, является то, что зависимость скорости от природы кислоты часто бывает слишком малой, чтобы ее можно было заметить. Хотя это было установлено уже после того, как первоначально выяснилось, что скорость гидратации зависит от кислотной функции Гаммета, следует заметить, что Шуберту с сотр. [30] при использовании очень реакциоппоспособного олефина, п-ме-токси-а-метилстирола, и формиатного буфера удалось установить, что гидратация может катализироваться молекулами муравьиной кислоты. Отсюда становится очевидным, что гидратация олефинов является в принципе реакцией общего кислотного катализа. [c.789]

    Полулернод обмена H/D для ацетальдегида s нейтральной среде составляет около 1 мин в кислой нли основной средах реакция значительно ускоряется. Константа скорости второго порядка при катализируемой кислотой гидратации ацетальдегида имеет порядок 500 [1]. Механизм гидратации исследован подробно, поскольку является прототипом механизма многих реакций по карбонильным центрам, включенным в более сложные молекулы (2]. Гндратация катализуется как осно-вание.м, так и кислотой. Основные катализаторы способствуют депротонированию воды, содействуй образованию более реакционноспособного нуклеофила — гидроксид-иона. При кислотном катализе происходит образование комплекса с участием карбонильной групиы, что повышает ее мектрофнльность  [c.292]

    К кислотно-основному (ионному) катализу относятся реакции гидратации, дегидратации, аминирования, изомеризации, алкилирования и т. п. (см. табл. 8). Катализаторами для этих реакциГ служат твердые кислоты или основания, обладающие лишь ионной проводимостью. К кислотным катализаторам относятся малолетучие кислоты (Н3РО4, Н2504), нанесенные на пористые носители, кислые соли (фосфаты, сульфаты), а также твердые неорганические вещества, способные передавать анионы (алюмосиликаты, частично гидратированные оксиды А1, 51, У, галогениды металлов). К основным катализаторам относятся гидроксиды и оксиды щелочных и щелочноземельных металлов на носителях и без них, щелочные или щелочноземельные соли слабых кислот (карбонаты и т, п.). [c.226]

    Все это, очевидно, свидетельствует в пользу карбкатионного механизма, причем близкие скорости присоединения к МеСН=СН2 и МеСН=СНМе лучше всего согласуются с промежуточным образованием карбениевого иона, а не мостикового иона. Более того, было показано, что в реакции гидратации напряженных олефинов имеет место общий кислотный катализ. Для всех олефинов, кроме сильно дезактивированных, эти данные согласуются с простым механизмом, представленным уравнением (88)  [c.200]

    Присоединение к олефинам реагентов, содержащих О—Н-связь, происходит по правилу Марковникова (атом О оказывается у более замещенного углеродного атома), что по-видимому объясняется участием карбениевого иона. Если гидроксилсодержащее соединение является слабой кислотой, например вода или спирт, необходим катализ протонной кислотой или кислотой Льюиса (ср. с реакцией гидратации), однако более сильные кислоты сами выступают в качестве источника протона. Далее, наличие в олефине алкильных заместителей (стабилизующих появляющийся карбение-вый ион) и напряжение в молекуле увеличивают его реакционную способность. Классическим способом гидратации простых олефинов, первоначально осуществлявшимся в промышленном масштабе, является присоединение серной кислоты, приводящее к кислому алкилсульфату, с последующим его гидролизом. Другие реакции присоединения гидроксилсодержащих соединений к олефиновым углеводородам не нашли широкого применения в синтезе, по-видимому, вследствие склонности более сложных карбениевых ионов к перегруппировкам. Некоторые примеры этих реакций даны уравнениями (91) — (93)  [c.201]

    При типичном гидролизе эфиров разрывается связь ацил — кислород, т. е. эфирный кислород остается у алкильной группы [37]. В водных растворах или в растворах, содержащих значительные количества воды, реакция резко ускоряется ионами гидроксония и ионами гидроксила общего кислотного или общего основного катализа не наблюдается. Хотя первая стадия реакции заключается в гидратации карбонильной группы, скорости гидролиза эфиров в 10 — 10 раз меньше, чем скорость гидратации ацетальдегида.  [c.430]

    При гидратации окиси этилена в присутствии солей слабых кислот II сильных оснований наряду со щелочным и некаталитическим гидролизом протекает реакция с участпел соли. При этом образуется этиленгликолевый эфир соответствующей кислоты [89]. При быстром гидролизе последнего образуется этиленгликоль (с количественным выходом), и катализатор регенерируется. Таким образом, выход этиленгликоля при нуклео( ильном катализе солями слабых кислот выше, чем при других типах катализа и при некаталитической гидратации, причем он увеличивается с повышением концентрации и нук-леофильности аниона и уменьшением концентрации гидроксил-иона. Например, ири гидратации окисп этилена под давлением СО2 в водном растворе, содержащем 0,5—5% NaH Og, выход этиленгликоля достигает более 90% при отношении окиси этилена к воде около 0,17 [90]. Однако наличие значительных количеств солей в водном растворе этиленгликоля усложняет процесс его выделения. [c.77]

    Обширная литература по структуре и свойствам поверхности алюмосиликатов обобщена в нескольких обзорах [18, 112, 121]. Отметим наиболее существенные выводы. Многочисленные данные свидетельствуют, что в зависимости от условий эксперимента алюмосиликаты проявляют или бренстедовские, или льюисовские кислотные свойства. ИК-сиектры указывают на присутствие как протонированной, так и непротонированной форм адсорбированного аммиака или пиридина [114, 122—124]. Количество бренстедовских центров уменьшается при обмене на ионы щелочных металлов и растет с увеличением степени гидратации в том же направлении изменяется каталитическая активность геля в реакции крекинга углеводородов. Для разных гелей, дегидратированных нри 770 К, отношение концентрации непротонированной формы адсорбированного пиридина к протонированной колеблется в интервале 1—6. Если дегидратация ведется при 370—770 К, то по степени гидратации алюмосиликаты занимают промежуточное положение между окисью алюминия и двуокисью кремния, но после дегидратации при температурах 670—770 К, которые отвечают важному для катализа интервалу, степень их гидратации лишь немного больше, чем у силикагеля [125]. [c.80]

    В настоящее время пока трудно сказать о роли поверхности для реакций гидратации и дегидратации. По результатам работ Баландина и Рубинштейна (см. стр. 286) можно судить, что эта роль достаточно велика и является даже определяющей в случае параллельно протекающих реакций дегидрогенизации — дегидратации спиртов. Согласно же выводам из работ Рогин-ского, Крылова и Фокиной (см. стр. 348), олредел яющим фактором для реакций гидратации и дегидратации, так же как п для всех ионных реакций, является кислотно-основная характеристика катализатора, а не его поверхность. Рогинский и Иоффе в соответствии с этим выдвинули гипотезу о единстве механизмов гомогенного и гетерогенного кислотно-основного катализа (стр. 348). [c.104]

    Катализ на ионообменных смолах. Ионообменные смолы вот уже более 20 лет используют в качестве катализаторов разнообразных химич. реакций. В таких системах каталитич. функции выполняют противоионы. В случае катионитов это протоны, катализирующие реакции, протекающие с промежуточным образованием карбониевых ионов (гидролиз, этерификация, гидратация и дегидратация, алк1и[ироваиие, катионная нолимеризация и др.). Аниониты, каталитич. функции к-рых выполняют ноны 0Н , N-, СН СОО и др., катализируют реакции, характеризую1циеся образова-нш м анионных комплексов в качестве промежуточных соедннешп , гл. обр. конденсацию и этерификацию. [c.486]


Смотреть страницы где упоминается термин Катализ ионитами гидратации: [c.89]    [c.398]    [c.254]    [c.140]    [c.254]    [c.296]    [c.420]    [c.51]    [c.395]    [c.330]    [c.366]    [c.267]   
Иониты в химической технологии (1982) -- [ c.321 , c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратация ионов

Катализ гидратации

Катализ ионитами



© 2025 chem21.info Реклама на сайте