Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экстракция обменная

    Эти методы включают ионный обмен, адсорбцию на инертных материалах и природных сорбентах, коагуляцию с добавлением различных коагулянтов, экстракцию, пенную сепарацию, химическое осаждение в виде нерастворимых соединений, деструктивное разрушение. [c.213]

    Затруднения, вызываемые синтетическими ПАВ в определенных концентрациях при осуществлении процессов биологического окисления, обусловили необходимость предварительного извлечения ПАВ из промышленных сточ ных вод перед биохимической очисткой. В существующих методах очистки сточных вод от ПАВ используют в основном следующие процессы деструктивное разрушение, ионный обмен, адсорбцию на активных углях или на инертных материалах и природных сорбентах, коагуляцию с добавлением различных коагулянтов, экстракцию, осаждение с помощью химических реагентов. Анализ существующих методов очистки производственных сточных вод от ПАВ свидетельствует об их сложности и высокой стоимости [209]. [c.320]


    Фракционированная экстракция основывается на том же самом принципе противоточно-перекрестного движения молекул целевого компонента между двумя фазами, что и фракционированная дистилляция. Между этими процессами можно провести далеко идущую аналогию [33]. В обоих процессах мы имеем дело с двумя фазами при дистилляции—с жидкой и парообразной, при экстракции—с двумя жидкими фазами, которые образуют не смешивающиеся друг с другом растворители. Обе фазы совершают замкнутые циклы. В состоянии равновесия компоненты исходного раствора присутствуют в обеих фазах в разных концентрациях. При дистилляции это происходит вследствие различных давлений пара компонентов, при экстракции—вследствие неодинаковой растворимости. Фазы направляются противотоком и во время движения относительно друг друга приводятся в соприкосновение либо ступенчато, либо непрерывно. Во время контакта фаз происходит—в поперечном направлении к основному движению—обмен компонентами, доходящий в соответствующих условиях до состояния равновесия или приближающийся к нему. Применяя соответствующее число ступеней или длину пути, можно добиться любой глубины обмена, а вместе с ним и разделения компонентов исходного раствора. [c.189]

    Массообменные процессы (абсорбция, адсорбция, ионный обмен, экстракция, ректификация) чаще всего осуществляются [c.23]

    В настоящее время процессы ионообменной сорбции находят все более широкое применение в промышленности. В частности, путем ионного обмена производятся умягчение и обессоливание воды, очистка различных растворов, улавливание и концентрирование ценных металлов из разбавленных растворов, разделение смесей веществ и т. д. В ряде случаев ионный обмен может успешно конкурировать по технико-экономическим показателям с процессами ректификации, экстракции и др. Этому способствует простота аппаратурного оформления ироцессов ионного обмена. [c.581]

    Химические свойства ионов титана(IV), циркония(IV) и гафния (IV) напоминают свойства ионов урана, церия, олова, свинца, германия и кремния той же степени окисления свойства ионов титана(III) обнаруживают общность с ионами V(III), Fe(III) и Al (III). Имея почти одинаковые атомные и ионные радиусы вследствие лантаноидного сжатия (2г 0,145 нм Hf 0,144 нм 2г + 0,074 нм Hf+ 0,075 нм), цирконий и гафний очень похожи друг на друга по химическим свойствам. Цирконий и гафний образуют всегда общие минералы. Наиболее удобными технологическими методами разделения циркония и гафния являются ионный обмен или жидкостная экстракция. [c.609]


    Разделение. Метод разделения выбирают в зависимости от свойств определяемого соединения и мешающих элементов, а также от того, какой метод анализа предполагается использовать гравиметрический, титриметрический или какой-либо другой. В практике используют химические, физические и физикохимические способы разделения. К химическим относятся главным образом методы осаждения, основанные на различной растворимости веществ, к физическим — отгонка, сублимация, плавление и т. д., к физико-химическим — экстракция, ионный обмен, хроматография и некоторые другие. Более подробно методы разделения будут рассмотрены в дальнейшем. [c.20]

    Основное содержание учебника составляют разделы, которые, судя по монографиям и периодической литературе, наиболее необходимы биологам. Прежде всего это основы термодинамики и химическое равновесие, физическая химия растворов неэлектролитов и электролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. В дополнение к традиционному изложению этих разделов приведено описание некоторых специфических приложений физической химии, важных для биологии. Так, кратко рассмотрены свойства полиэлектролитов, ионный обмен, мембранное равновесие и мембранные потенциалы, ионоселективные электроды, основы хроматографии и экстракции. [c.3]

    Деление методов исследования на физические и физико-химические условно. К физико-химическим относят методы измерения суммарного свойства в многокомпонентной системе (спектро фотометрия, экстракция, ионный обмен, -электрическая проводимость и др.) С их помощью получают диаграммы состав — свойство для растворов комплексных соединений. Диаграммы дают сведения о составе комплексов, об их устойчивости позволяют рассчитать термодинамические и кинетические характеристики. Часть этих методов будет рассмотрена в гл, 1. [c.199]

    Растворы. Неэлектропроводные или негомогенные пробы переводят в раствор при помощи подходящих реакций растворения. Используя физические или химические операции разделения (экстракция, электролиз, ионный обмен, осаждение и т. д.), можно отделить мешающие элементы, спектры которых имеют очень много линий (особенно железо), или сконцентрировать следовые количества элементов. Таким же образом следует удалять большие количества солей щелочных металлов (например, из сплавов), так как они могут уменьшить чувствительность определения следовых количеств эле- [c.193]

    Методы ионообменной хроматографии, экстракции, а также только начинающий развиваться метод фракционной сублимации летучих соединений РЗЭ [1] основаны на многократном повторении тех или иных обменных процессов. При хроматографировании это многократный об- [c.77]

    Методы прямой, обменной и последовательной экстракции для определения элементов [c.80]

    В последнее время все большее применение находит метод обменной экстракции с последующим определением элементов спектро([юто-метрическим методом. Ю. А. Золотовым [29] даны теоретические основы метода и приведен ряд примеров его практического применения. В качестве реагента обычно применяют раствор внутрикомплексного соединения какого-либо элемента в органическом растворителе. Определяемый элемент (М ) из водной фазы при перемешивании фаз переходит в органическую фазу, содержащую элемент (М. ), вытесняет этот элемент, образуя более устойчивое и лучше экстрагируемое комплексное соединение. Таким путем повышается избирательность [c.80]

    Одним из эффективных методов разделения веществ в неорганической технологии является экстракция компонентов из водных солевых систем органическими растворителями. Этот метод позволяет, например, извлекать рассеянные и редкие элементы, а также цветные и другие металлы из растворов, полученных в результате кислотного разложения природных руд получать концентрированные кислоты из разбавленных растворов без их выпаривания смещать реакции обменного разложения в сторону образования требуемых кислот и солей осуществлять реакции, не идущие в водных системах производить кристаллизацию солей из водных растворов, экстрагируя из них воду и др. [c.315]

    Экстракция, адсорбция, ионный обмен [c.97]

    В этом курсе будут рассмотрены следующие методы разделения осаждение, экстракция, адсорбция, ионный обмен. [c.97]

    Метод концентрирования считают удовлетворительным, если / 100%, а К составляет 10". Коэффициент концентрирования К, показывающий, во сколько раз изменилось отношение абсолютных количеств или концентраций микроэлемента и основы в концентрате по сравнению с теми же параметрами в исходной пробе, может служить дополнительным критерием при выборе метода концентрирования. Так, экстракция, как правило, дает меньшие значения К (до 50) по сравнению с ионным обменом и соосажде-нием с коллектором, где К может достигать 10 . [c.99]


    Вещества особой чистоты получают или глубокой очисткой образцов, полученных обычными методами, или выделением особо чистого вещества из другого, более сложного, особой чистоты, или, наконец, путем синтеза сложного особо чистого вещества из простых особо чистых веществ. Во всех случаях необходима глубокая очистка веществ. Для этого используются химические и особенно физико-химические методы дистилляция и ректификация экстракция различными растворителями сорбционные методы (хроматография, ионный обмен на колонках и пр.) кристаллизационные методы (направленная кристаллизация, зонная плавка и др.) электролиз (см., например, рафинирование меди в гл. УИ1, 7) вакуумная дуговая и электронно-лучевая плавка, широко используемая в промышленности для получения чистых циркония, тантала, ниобия, вольфрама и других металлов другие методы. [c.258]

    Наиболее крупный после химии раздел каждой главы — технология получения соединений редких и рассеянных элементов из рудных концентратов или отходов и полупродуктов цветной и черной металлургии. Авторы стремились осветить физико-химические основы процессов разложения исходного сырья и перевода редких элементов в раствор обработкой растворами кислот и щелочей, спеканием со щелочами, обжигом с солевыми реагентами, действием газообразного хлора и т. д. Изучение физико-химических основ этих процессов имеет большое значение для дальнейшего совершенствования технологии. Не менее важное значение в технологии имеют процессы разделения элементов и получения их соединений в чистом виде. Поэтому в книге рассматриваются процессы разделения осаждение, кристаллизация, ионный обмен, экстракция, возгонка, конденсация и др. [c.4]

    Кроме осаждения таллия в виде малорастворимых соединений, осаждают его цементацией — действием цинковой пыли или амальгамы — и выделяют из растворов экстракцией, ионным обменом или сорбцией. Выбор того или иного метода выделения таллия из исходных растворов в значительной мере определяет всю дальнейшую технологию. [c.344]

    До настоящего времени большинство предложенных методов было реализовано в лабораторных масштабах, поэтому часто их даже трудно отделить от аналитических. Основные методы отделения скандия от примесей 1) осаждение, 2) конденсация и сублимация 3) ионный обмен 4) экстракция. Отметим, однако, что ни один из перечисленных методов не является строго специфичным для скандия получить его соединения высокой степени чистоты можно, лишь комбинируя и сочетая ряд методов. [c.18]

    Важнейшие области применения. Начало применения редкоземельных элементов относится ко второй половине прошлого столетия. Тогда они использовались в производстве газокалильных сеток и колпачков для осветительных газовых фонарей [1]. В последнее десятилетие XX в. в различных странах проведены многочисленные исследования, которые указывают на весьма перспективное использование соединений РЗЭ и самих металлов в черной и цветной металлургии, силикатной промышленности, радио- и электротехнике, квантовой электронике, ядерной технике и т. д. Внедрение новых современных методов, таких, как ионный обмен и экстракция, в практику разделения РЗЭ дало возможность получить достаточно чистые индивидуальные соединения и использовать во многих случаях их уникальные свойства. Применению РЗЭ и их соединений посвяш,ено много статей в отечественной и зарубежной литературе. В них подробно рассмотрены эффективность и целесообразность использования редкоземельных элементов. Ниже приведены лишь наиболее важные и интересные области применения. [c.86]

    Эти соли полезно использовать в качестве МФ-катализатора в тех случаях, когда анион катализатора должен переходить в органическую фазу намного хуже, чем реагируюш,ий анион (по терминологии Брендстрёма такой процесс называется препаративная экстракция ионных пар). Изо всех обычных анионов наиболее подходящими являются бисульфат и хлорид. Во многих случаях можно использовать бромиды, однако применение иодидов часто вызывает трудности, особенно в тех случаях, когда в реакцию вводят алкилиодиды, что вызывает образование в ходе реакции дополнительных количеств иодид-ионов. При этом наблюдается отравление катализатора, которое состоит в том, что весь катализатор экстрагируется в форме иодида в органическую фазу и реакция останавливается. Так же как и в случае гомогенных реакций с предварительно полученной аммониевой солью, в системах с иодидами большую роль может играть ионный обмен. Следует подчеркнуть, что такой обмен в большинстве типичных МФК-реакций не является необходимым. Однако в некоторых реакциях в присутствии катализаторов добавление небольших количеств иодида ускоряет процесс иодид обменивается с галогенидом в алкилирующем агенте, делая его более активным (КХ+1 —Таким способом можно влиять на соотношение С/О-изомеров, образующихся при алкилировании амбидентных анионов (см., например, [1716]). [c.82]

    Препаративно наиболее важными являются синтезы иодидов и фторидов. Однако техника МФК может быть использована также и для получения хлоридов, бромидов и иодидов, содержащих изотопную метку. Старкс [4] нашел, что полное равновесие С1/з С1 между 1-хлороктаном и На С1 в присутствии четвертичной соли в качестве катализатора достигается при кипении смеси за 5 ч. Аналогичный обмен иод — радиоактивный иод при 100 °С проходит полностью за 5 мин [4]. При обмене химически неэквивалентных групп X и превращение могут лимитировать как равновесие экстракции двух ионных пар Q+X и так и химическое равновесие [c.109]

    Применив для выделения соединений кислого характера из высококипящих нефтяных фракций ионный обмен на крупнопористом анионите Амберлист А-29-вместо щелочной экстракции, авторы работы [129] получили концентраты, содержавшие карбоновые кислоты, фенолы, карбазолы и амиды. Доля фенолов среди этих кислых веществ была не ниже 15% в ряде дистиллятов она составляла более 80% суммы кислот и фенолов и, как видно на. примере фракций из двух нефтей (Гэто Ридж и Риклюз), повышалась с ростом температуры выкипания (табл. 3.6). [c.90]

    Разделение циркония и гафния труднее, чем любых соседних элементов, включая лантаноиды, так как их химические свойства ближе друг к другу, чем у всех остальных пар родственных элементов (рис. 3.99). Для отделения циркония от гафния применяют дробную кристаллизацию КгХгРе и К2Н Ре, ректификацию летучих соединений (ЭСЬ. и др.), ионный обмен, селективную экстракцию, последний метод наиболее широко применяют в промышленности. [c.503]

    К способам опреснения без изменения агрегатного состояния воды [2] относятся химические (ионный обмен и осаждение растворенных соединений) электродиали ) электролиз растворенных солей с использованием поглощающих электродов экстракция органическими растворителями биологический ионно-осмотический паро-осмотический обратный осмос. [c.5]

    Центробежные экстракторы являются перспективным оборудованием для проведения процессов жидкостной экстракции. Поскольку ускорение генерируемого в них центробежного поля превышает ускорение свободного падения в 10 —10 раз, в этих экстракторах достигаются большие скорости взаимодействия обрабатываемых жидкостей, высокая эффективность массообмена и четкая сепарация выходных потоков. В связи с этим такие аппараты компактны, в них невелики объемы участвующих в массо-обмене жидкостей, минимальна пожаро- и взрывоопасность установок. Поскольку время контакта в этих аппаратах невелико, они незаменимы при обработке нестойких продуктов, а также легкоэмульгируемых жидкостей и смесей компонентов с мало отличающимися плотностями. [c.120]

    Из других типовых процессов, используемых в солевой технологии, наибольшее значение имеют операции разделения солей, находящихся в твердых смесях или растворах. Помимо описанных выше процессов кристаллизации и выщелачивания, к ним относятся ионный обмен, экстракция веществ неводными растворителями, флотация, гидросепарация и некоторые другие. Эти процессы рассматриваются ниже при изучении конкретных производств. [c.252]

    Зона наибольшей температуры в системе экстракции находится в месте ввода в систему растворителя, наименьшей — на выходе экстрактного раствора, т. е. существует неравенство температура ввода растворителя>температура вывода рафинатного раствора >те мпература ввода сырья>температура вывода экстрактного раствора. При соприкосновении более холодного экстрактного раствора с более горячим рафинатньш растворам между ними происходит обмен тепла, что нарушает существовавшее между ними ранее равновесие и усиливает переход компонентов из одного раствора в другой. Вследствие меньшей растворимости в первую очередь из экстрактного раствора выделяются желательные компоненты. [c.98]

    В гидроэлектрометаллургии нашли применение различные способы разделения кoмпoнeнtoв раствора, например, осаждение малорастворимых соединений, вытеснение, экстракция, адсорбция, ионный обмен и электрохимические способы. [c.240]

    Книга рассчитана на студентов химических специальностей униыерситетов. В ней изложены теоретические основы и практические методы количественного анализа, описаны приемы работы, аппаратура, приборы, методы вычисления результатов анализа. Значительное место отведено современным методам анализа физическим, кинетическим (каталитическим), фотометрии, полярографии, потен-циометрии, амперометрическому титрованию, кулонометрии, ионному обмену, распределительной и газовой хроматографии, соосажденню и гомогенному осаждению, экстракции органическими растворителями, комплексонометрическому титрованию. [c.2]

    В настоящее время разработан новый способ электролитического получения кобальта из его хлористой соли с применением нерастворимых анодов. Растворы от никеля и меди очищают обменной экстракцией жирными кислотами, а от свинца и цинка — адсорбцией анионитом ЭДЭЮП.  [c.405]

    Комплексонометрический анализ различных сплавов, руд и концентратов. При комплексонометрическом анализе сложных объектов используют обычные приемы химического разделения (осаждение, ионный обмен, экстракция и т. д.) и маскировки (цианидом, фторидом, триэтаноламином, оксикислотами и другими реагентами), но почти все компоненты определяют комплексо-нометрическим титрованием. Например, при анализе сплавов цветных металлов, содержащих медь, свинец, цинк и алюминий (бронзы, латуни и т. д.), медь определяют иодометрически, а свинец и цинк — комплексонометрически после оттитровывания меди. Перед определением свинца цинк маскируют цианидом, алюминий — фторидом и титрование производят в присутствии соли магния. Затем демаскируют цинк, связанный в цианидный комплекс, раствором формалина и титруют ЭДТА. [c.244]

    БУФЕРНЫЕ РАСТВОРЫ — растворы с определенной концентрацией водородных ионов, смесь слабой кислоты и ее соли (напр., СНзСООН и Ha OONa) или слабого основания и его соли (напр., NH4OH и NH4 I). Величина pH Б. р. мало изменяется от добавления небольшого количества сильной кислоты или щелочи и разбавления раствора, что дает возможность проводить химические процессы при неизменных условиях среды. Б. р. широко используются в химической практике, они играют огромную роль в процессах жизнедеятельности. Многие из жизненных процессов могут протекать только при определенном значении pH с незначительными колебаниями постоянство pH поддерживается в живых организмах природными Б. р. (напр., в крови есть смесь карбонатов и фосфатов, исполняющая роль Б. р.). Б. р. широко используются в аналитической химии и на производстве при разделении редких элементов, обогащении сырья (Дотацией, когда осаждение, разделение, экстракция, ионный обмен и другие процессы возможны лишь в в определенных пределах pH растворов. [c.50]

    ГИДРОМЕТАЛЛУРГИЯ — извлечение металлов из руд, концентратов или отходов различных производств в виде их соединений водными растворами различных реагентов (кислот, цианидов, аммиака и др.) и последующим выделением их из водных растворов электролизом, цементацией, экстракцией, иоио-обменом и т. п., например, извлечение золота цианированием, меди — раствором серной кислоты, алюминия — щелочью, урана, редкоземельных элементов — экстракцией органическими растворителями, ионообменным способом и др. [c.75]

    Для отделения циркония от гяфния применяют дробную кристаллизацию комплексных фторцдов Кг17х ь] и К2[НГРб , ректификацию летучих соединений ЭСЦ и других ионный обмен, селективную экстракцию (последний метод наиболее щироко применяют я промышленности). [c.488]

    При проведении измерений в идентичных условиях а можно заменить значениями скоростей счета г. При этом отпадает необходимость взвещива-ния и появляется возможность определения содержания микроколичеств веществ. Сочетание данного метода с ионным обменом или с экстракцией растворителями позволяет с достаточной точностью определить следовые количества веществ 10" —10 г. [c.315]

    В последнее время для очистки кобальтового электролита предложили экстракцию примесей жирными кислотами [42]. Способ этот основан на протекании обменных реакций между металлами, находящимися в разных фазах в органической — в виде солей жирных кислот (мыл) и в водной — в виде сульфатов и хлоридов. Для экстракции используют фракции Ст—Сд или Си—С13 (число атомов углерода в молекуле кислоты) монокарбоновых кислот алифатического ряда общей формулой С Н2 + С00Н. [c.97]

    Из концентратов иттриевой подгруппы прежде всего отделяют иттрий, после чего получают концентраты, а затем и чистые индивидуальные соединения РЗЭ. Для разделения РЗЭ применимы следующие методы 1) дробная кристаллизация и дробное осаждение 2) избирательное окисление — восстановление 3) термическое разложение солей 4) ионный обмен 5) экстракция. [c.107]

    ТОГО циркония и чистого гафния представляет собой самостоятельный передел. Для разделения 2г и НГ предложено более 60 способов, которые можно объединить в следующие основные группы 1) дробная кристаллизация 2) дробное осаждение 3) адсорбция и ионный обмен 4) экстракция 5) селективное окисление и восстановление 6) ректификация. Из всех этих способов промышленное применение нашли дробная кристаллизация фтороцирконатов и фторогафнатов калия, экстракция роданидов циркония и гафния метилизобутилкетоном и экстракция нитратов трибутилфосфатом. Некоторые эффективные методы разделения (например, ионный обмен) применимы только в небольших масштабах, другие перспективные методы (например, ректификация и селективное восстановление) не вышли еще из стадии лабораторных исследований и опытной проверки. [c.330]


Смотреть страницы где упоминается термин Экстракция обменная: [c.83]    [c.76]    [c.195]    [c.92]    [c.230]    [c.100]    [c.428]    [c.258]   
Практическое руководство по фотометрическим методам анлиза Издание 5 (1986) -- [ c.127 ]

Методы анализа чистых химических реактивов (1984) -- [ c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопный обмен и экстракция

Ионного обмена экстракция

Ионный обмен в процессе экстракции растворителем

Кинетика экстракции обменной

Марганец экстракция соединений обменная реакция

Мышьяк, экстракция соединений определение обменными реакциями

Обменная экстракция как метод получения нитратов кобальта и галлия особой чистоты. И. Н. Кременскан, Ц. С. Баланевская

Равновесия обмена при экстракции хелатов

Серебро, экстракция соединений обменные реакции

Технологическая схема ионного обмена при экстракции

Экстракция катионного обмена

Экстракция по механизму анионного обмен

реэкстракция экстракция Си обменные реакции



© 2025 chem21.info Реклама на сайте