Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детекторы термические

    Температурные ограничения применения неподвижных жидких фаз. Верхний предел рабочей температуры колонки диктуется давлением пара неподвижной жидкости и ее термической устойчивостью, Потери неподвижной фазы в процессе работы колонки, ее изменение вследствие термического распада, а такл<е высокое давление ее насыщенного пара значительно снижают эффективность работы колонки и создают затруднения в работе детектора. Поэтому в качестве неподвижных жидких фаз могут применяться лишь жидкости, упругость пара которых при рабочей температуре колонки достаточно низка. Считается, что температура кипения неподвижной фазы должна быть по крайней мере на 100° выше рабочей тем пературы колонки, а давление пара неподвижной фазы при рабочей температуре не должно превышать 1 10 Па (1 мм рт. ст.). В случас чувствительных детекторов требования к низкому давлению пара неподвижной фазы еще более жестки. [c.177]


    Пламенно-ионизационный детектор (ПИД). Работа ПИД основана на том, что органические вещества, попадая в пламя водородной горелки, подвергаются ионизации, вследствие чего в камере детектора, являющейся одновременно ионизационной камерой, возникает ток ионизации, сила которого пропорциональна количеству заряженных частиц. Предполагалось, что механизм образования заряженных частиц в пламени водорода основан на термической ионизации. Однако некоторые данные показывают, что роль термической ионизации в общем механизме ионизации, по-видимому, невелика. [c.186]

    В. И. Калмановский предположил, что в определенной зоне пламени горелки происходит термическая диссоциация молекул органических соединений, вследствие которой образуются радикалы, поступающие затем в наиболее горячую зону пламени, где углерод радикала окисляется и ионизируется. Этот механизм детектирования объясняет многие известные экспериментальные наблюдения, в том числе пропорциональность сигнала детектора числу атомов углерода в молекуле углеводорода. [c.186]

    Температурные ограничения применения неподвижных жидких фаз. Верхний предел рабочей температуры колонки диктуется давлением пара неподвижной жидкости и ее термической устойчивостью. Потери неподвижной фазы в процессе работы колонки, ее изменение вследствие термического распада, а также высокое давление ее насыщенного пара значительно снижает эффективность работы колонки и создает затруднение в работе детектора. Поэтому в качестве неподвижных жидких фаз могут применяться лишь [c.69]

    В дальнейшем химики всего мира приобрели в газо-жидкостной хроматографии мощный и вместе с тем простой универсальный метод разделения и анализа сложнейших смесей самых разнообразных, в основном органических, веществ. Для анализа нужно, чтобы компоненты смеси были летучи и стойки при температуре разделительной колонки летучесть может быть минимальная и лишь достаточная для обнаружения детектором паров, выходящих вместе с газом-носителем из колонки. Детекторы в настоящее время обладают настолько высокой чувствительностью, что отмечают концентрацию паров 10 объемн, % и менее, например пламенно-ионизационный детектор. Это позволяет, с одной стороны, разделять и анализировать высококипящие вещества (при условии, если неподвижные жидкие фазы практически нелетучи), с другой стороны, работать с микрограммовыми количествами анализируемой смеси. Это особенно выгодно, когда компоненты смеси термически мало устойчивы, а исследователь располагает лишь весьма малыми количествами анализируемого материала. [c.104]


    Для получения вакантной хроматограммы можно использовать любой хроматограф с проточными камерами детектора. Вакантная хроматография имеет ряд практических преимуществ перед обыкновенной газовой хроматографией. Так как анализируемая смесь непосредственно пропускается через слой сорбента, а дозировка осуществляется по объему газа-носителя, то резко упрощается и уточняется операция дозировки. Исчезает необходимость в применении специальных материалов для изготовления дозаторов. Устраняется возможность термического разложения анализируемых неустойчивых соединений в дозаторах обычной конструкции. Допускается применение более активных сорбентов, что приводит к большей селективности разделения. [c.20]

    Применение газовой, хроматографии имеет свои ограничения. Далеко не все вещества можно переводить в газовую фазу без разложения. В особенности это относится к сильно ассоциирующим, термически нестойким соединениям, в том числе ко многим биологически активным и высокомолекулярным веществам. Химическое модифицирование (дериватизация) молекул таких термически нестойких веществ для устранения или ослабления их способности к ассоциации лишь отчасти помогает обойти эти затруднения. Поэтому, начиная с середины 60-х годов, когда были преодолены трудности в разработке проточных детекторов для обнаружения компонентов в жидких растворах, началось бурное развитие жидкостной хроматографии (ЖХ), причем в основном адсорбционной жидкостной хроматографии, т. е. произошло второе рождение собственно хроматографии Цвета. В настоящее [c.9]

    Газохроматографический метод с чувствительными детекторами, в особенности в случае адсорбции на таком непористом адсорбенте с близкой к однородной поверхности, как графитированная термическая сажа, позволяет при небольших (нулевых) дозах вводимого в колонну адсорбата непосредственно определять константу Генри Кг,с, (см. разделы 1.7, 7.8 и 7.9). Это обстоятельство, а также возможность использования калиброванных по концентрации с детекторов и в статических измерениях адсорбции (что особенно удобно для исследования адсорбции при очень малых значениях с, когда измерения давления становятся неточными, и при адсорбции газовых смесей) делают более предпочтительными измерения молярной концентрации адсорбата с, чем измерения его (парциального) давления р. Поэтому в дальнейшем термодинамические характеристики адсорбции даются в основном в терминах концентрации объемного газа с (если адсорбируется газ идеальный) или его активности а. [c.134]

    Этим путем можно оценивать продолжительность жизни колонки в данных условиях сравнивать термическую устойчивость неподвижных фаз друг с другом и устанавливать, изменяет ли полимерная фаза своп свойства от партии к партии (что часто происходит). Кроме того, в этой трубке можно кондиционировать неподвижную фазу еще до ее введения в колонку (см. разд. 4) и тем самым устранить загрязнение детектора. [c.93]

    Инерционность детектора является важной характеристикой, так как влияет на форму и высоту пика. Инерционность детектора зависит от свойств чувствительного элемента (например, от термической инерционности нити или термистора катарометра) и от объема детектора, определяюш,его характер вымывания газа. Решающее влияние почти во всех случаях имеет объем детектора. [c.114]

    Принцип работы пламенно-ионизационного детектора, описанного впервые Мак-Уильямом и Дьюаром (1958), основан на обнаружении ионов, возникающих вследствие термической ионизации при сгорании органических -молекул вымываемых из олонки. Водородное пламя помещают в электрическом поле, так что образующиеся ионы достигают электродов. Водород выходит из сопла на конце колонки вместе с газом-носителем. Сопло и электроды находятся в закрытом корпусе, в который подается также воздух, необходимый для сгорания водорода. Величина ионизационного тока в момент времени t выражается как [c.128]

    Диссоциация и последующее образование ионов в пламенно-ионизационном детекторе очень незначительны из-за низкой температуры пламени. Вклад термической ионизации в величину Ев [см. выражение (40)] может быть определен следующим образом. [c.131]

    Быстро развиваются гибридные методы анализа, объединяющие разделение и определение. Напр., газовая хроматография с разл. детекторами - важнейший метод анализа сложных смесей орг. соединений. Для анализа труднолетучих и термически нестойких соед. более удобна высокоэффективная жидкостная хроматография. [c.160]

    В некоторых хроматографах поток газа-носителя отсасывают непосредственно из детектора или ловушки вакуумным насосом. При этом можно работать с пониженным или повышенным давлением у входа в колонку. Использование вакуума удобно при хроматографировании термически нестойких веществ, так как пониженное давление в колонке позволяет работать при более низких температурах. При препаративном разделении высококипящих веществ применением вакуума можно предотвратить конденсацию фракций в промежутке между колонкой и ловушкой. Условием успешного применения вакуума является очень малое сопротивление хроматографической колонки току газа-носителя и полная герметичность всей аппаратуры. Источником вакуума может служить водоструйный или масляный насос. Для поддержания постоянного вакуума при входе в колонку служит маностат или игольчатый вентиль. Давление у входа в колонку и у выхода из колонки обычно измеряют ртутными манометрами, которые включают перед колонкой и за детектором или ловушкой. Соединение входа в колонку с выходом из колонки посредством и-образного ртутного манометра позволяет непосредственно отсчитывать перепад давления в колонке. Расход газа-носителя контролируют расходомерами, которые при работе под вакуумом обычно помещают перед входом в колонку. Следует отметить, что применение вакуума, не улучшая существенно условий хроматографического разделения, значительно усложняет конструкцию прибора. [c.508]


    Детекторы размещаются в алюминиевом корпусе под вакуумом и работают при температуре жидкого азота, содержащегося в сосуде Дьюара, главным образом для того, чтобы уменьшить термически индуцируемый ток утечки. Существуют два основных положения детектора, которые показаны на рис. 8.4-4. Чтобы уменьшить фон от внешнего излучения, детекторы защищают с помощью эффективного экранирования. [c.106]

    Трехступенчатая система [17]. Имеется в продаже трехступенчатый хроматограф (фирмы Perkin-Elmer orp. ) каждая ступень по выбору аналитика может работать последовательно или независимо. При анализе сложных смесей, содержащих компоненты с широким интервалом температур кипения, каждая ступень содержит отдельную колонку, работающую при температуре, наиболее подходящей для разделений компонентов одной из. фракций. Схема всего прибора показана на фиг. 9. Подвижная фаза из общего баллона проходит последовательно через каждую из ступеней, включающих дозаторы, колонки и детекторы. Для сравнительных плеч детекторов (термических) газ-носитель подают по параллельной линии. Соединительные краны предназначены для включения и отключения соседних ступеней. При одном положении крана поток идет из предыдущей ступени через редукционный клапан и измеритель скорости потока в атмосферу, не попа- [c.36]

    В частности, с появлением УФ-В-детектора на диодаой матрице ВЭЖХ стала стандартным методом контроля качества природной и питьевой воды на содержание пестицидов (34,56,57]. Известно, что многие из них термически нестабильны, например производные (( еноксиуксус-ных кислот Анализируемые вещества извлекают из воды с помощью жидкостной или твердофазной экстракции. [c.273]

    Газовую хроматографию также можно применять в анализе следовых количеств элементов. Многие элементы, например А1, Сг, Ве, 2п, (лг, 1п, Си и др., образующие летучие и термически достаточно устойчивые комплексы, можно селективно обнаружить, и количественно определить. Для анализа можно применять такие комплексные соединения, как ацетилацетонаты,. фторированнь1е диэтилдитиокарбаминаты и в первую очередь фторированные -р-дикетонаты. Последние термически очень устойчивы, и, кроме того, электронный детектор особенно чувствителен к фторированным соединениям. При этом абсолютный предел обнаружения равен 10 г. Из-за небольшого объема анализируемой пробы при работе с растворами предел обнаружения в этом случае такой же, как в ААС. [c.418]

    Условия опыта. Искусственр1ая смесь состава ацетон (растворитель)—94,0, кротоновый альдегид — 2,2, масляный альдегид—1,8, бензальдегид — 2,0% (мае.). Длина колонки 200 см, внутренний диаметр 0,2 см. Адсорбент — термическая графитированная сажа (5уд = 8 м г). Температурная программа колонки от 100 до 250°С. Скорость программирования температуры 350 град/мин. Газ-носитель азот, его скорость 20 мл/мин. Детектор пламенно-ионизационный. Входное сопротивление 10 Ом. Скорость диаграммной ленты 4 см/мин. Время анализа 6 мин. Объем пробы 5 мкл. [c.244]

    Температура отмечаемого детектором испарения или деструкции многих жидкостей, используемых в обычной газожидкостной хроматографии, не превышает 150—250°С. Однако при нанесении модифицир ующих веществ на поверхность адсорбента-носителя, например на поверхность графитированной термической сажи, в виде мономолекулярного адсорбционного слоя, сильно взаимодействующего с адсорбентом-носителем, можно значительно повысить верхний предел температуры работы колонны. Сильные межмолекулярные взаимодействия молекул монослоя с адсорбентом-носителем резко снижают давление пара модификатора над поверхностью, в результате чего фоновый ионный ток детектора мало изме- [c.76]

    В детекторе ио ионизации пламени анализируемые нсщестна, выходя из колонки с током газа-носителя, попадают в пламя водородной горелки. В результате термической диссоциации соединения в пламени образуются ионы. Концентрация иоков прямо пропорциональна количеству углерода, входящего в состав молекулы. Концентрацию ионов определяют, измеряя проводимость пламени. Для этого в детекторе имеется анод и катод, между которыми накладывают высокое напряжение (около 300 В). Измеряя ионный ток, фиксируют прохождение через детектор зоны вещества. Детектор позволяет измерять до 1 нг углерода. Линейная зависимость сигнала детектора охватывает широкий интервал значений (до 100 мкг вещества). Детектор по ионизации пламени чувствителен только к соединениям, ионизирующимся в иламеии, т. е. [c.619]

    О2 и СО при помощи н-гептана и ацетона. Эти же авторы применили фуран (т. кип. 32°) в методе, названном ими циркуляционной газовой хроматографией . Во всех других случаях верхний предел рабочей температуры диктуется давлением пара и термической устойчивостью неподвижной фазы. Потери веса или изменение неподвижной фазы вследствие испарения или разложения влияют на продолжительность жизни колонки, время удерживания и показания детектора. Харвей и Чокли (1955) указали, что температура кипения неподвижной фазы должна лежать по крайней мере на 100° выше температуры колонки. Однако выяснилось, что необходимы еще более жесткие требования. По Адларду (1957), давление пара неподвижной фазы при температуре колонки не должно превышать 1 мм рт. ст., а Тьюи (1960) рекомендует в качестве граничной температуры считать температуру, при которой за 1000 час испаряется 50% неподвижной фазы. По приближенному правилу за верхнюю границу температуры можно принять температуру колонки на 70° ниже температуры кипения неподвижной фазы, что соответствует давлению пара 0,1—0,5 мм рт. ст. [c.92]

    Как указывает Калмановский, имеется, однако, различие между прямым окислением без предварительной термической диссоциации и окислением с предшествующей термической диссоциацией молекул углеводородов. В последнем случае образуется существенно больше ионов. Прямое окисление имеет место преимущественно в гомогенном пламени при сгорании смеси водорода с кислородом. Предварительная диссоциация с последующим окислением наблюдается в диффузионном иламени. Это пламя имеет реакционную зону, в которой происходит сгорание выходящего из сопла детектора водорода с диффундирующим извне кислородом. Между этой зоной и холодным ядром пламени из чистого водорода или водорода с газом-носителем находится зона, которая нагревается от горячей реакционной зоны, но не содержит кислорода, так что в ней не происходит сгорания, но, по-видимому, имеет место предварительное термическое разложение молекул углеводородов, выходящих из сопла. При этом образуются углеродсодержащие радикалы, которые, вероятно, находятся в возбужденном состоянии, облегчающем последующую ионизацию. Эти углеводородные радикалы поступают затем в реакционную зону, причем углерод окисляется и ионизируется. Для бензола, например, эти процессы можно представить следующим образом  [c.130]

    При низких напряжениях скорость дрейфа катионов столь незначительна, что только часть их достигает катода, а остальные рекомбинируют. Таким образом, в создании тока при низких напряжениях участвуют не все термически ионизированные атомы углерода, полученные при имеющейся степени ионизации. С увеличением напряжения доля рекомбинирующих ионов уменьшается до тех пор, пока все создаваемые носители заряда не будут достигать электродов. Эта зависимость ионизационного тока от напряжения на электродах может быть объяснена также образованием объемного заряда. При низких напряжениях происходит лишь сдвиг плотности заряда, так как создаваемые положительные ионы вследствие их существенно большей массы в сравнении с электронами медленно движутся к катоду и это приводит к образованию объемного положительного заряда. Благодаря противоположно направленному действию поля этого объемного заряда, возникающего у катода, ионизационный ток ослабляется. С ростом напряжения плотность объемного заряда уменьшается и ионизационный ток возрастает. В режиме насыщения ионизированные атомы углерода, число которых отвечает данной степени ионизации, так быстро достигают электродов, что объемный заряд не может образоваться. Напряжение насыщения зависит как от формы и положения электродов, так и от количества вещества, поступающего в пламя за 1 сек. Обстоятельные исследования этого явления провели Дести, Геч и Голдан (1960). На рис. 22 показаны изменения ионизационного тока при различных количествах вещества и ири применении сеточного электрода с собирающей поверхностью 0,8 см , отстоящего на расстояние 10 мм по вертикали от отрицательно заряженного сопла детектора (рис. 23). При положительно заряженном сопле напряжение насыщения примерно на 20 в выше, так как в этом случае путь положительных ионов к электроду длиннее. Линейный диапазон детектора при объемной скорости водорода 2 л-час ограничен потоком 2,5 10 г-сек . [c.131]

    Пламенно-ионизационный детектор регистрирует все соединения, образующие ири термическом распаде в микропламени углеводородные радикалы, при окислении которых ионизируется углерод (ср. гл. IV). [c.308]

    Следует обратить внимание на то, что температурный режим анализа и термической обработки цеолитов влияет не только на качество разделения тех или иных компонентов, но может изменить и порядок выхода компонентов. Так, в [Л. 129] отмечается, что с изменением температуры от 120 до 190° С порядок выхода этилена и пропана меняется на безводном цеолите СаХ и ЫаХ (колонка 50X0,4 см, газ-носитель—гелий, детектор-катарометр). [c.106]

    С помощью кварцевого капилляра с внутренним диаметром 50-100 мкм удалось достигнуть высокоэффективного разделения белков и дансил-аминокислот, при котором из-за сравнительно большого отношения поверхности к объему было сильно уменьшено влияние мешающей разделению термически индуцированной конвекции. Применение кварцевого капилляра позволило использовать модифицированный ВЭЖХ-детектор для определения разделяемых веществ непосредственно в капилляре. Простота аппаратуры и возросшая потребность в разделении биомолекул привели во второй половине 80-х годов к повышенному интересу к данному методу. [c.7]

    Скорость подъема температуры. Большое значение имеет возможность точно осуществлять подъем температуры в системе, особенно при максимальных скоростях программирования температуры. Обычно при программировании темнературы наблюдается небольшое запаздывание в начале и опережение в конце программы. Система регулирования темнературы должна обеспечивать сведение к минимуму этих эффектов. Характерная кривая подъема температуры в термостате представлена на рис. 4-1. "Нажудшая" максимальная скорость подъема температуры задается наклоном кривой на участке, соответствующем максимальным температурам. Перечислим параметры, которые влияют на максимальную скорость подъема температуры термическая масса системы, мощность нагревателя, термическая "герметичность" системы (хорошая термоизоляция), теплоперенос от нагретых зон (таких, как узел ввода пробы и детектор), характеристики колонок и ириснособлений, установленных в термостате, [c.67]

    Для обеспечения равновесной концентрации термических электронов в электронозахватном детекторе (ЭЗД) необходимо использовать дополнительный газ, например азот или смесь аргона с метаном. Этот газ можно также использовать в качестве газа на обдув. Электронозахватный детектор является концентрационным, поэтому его чувствительность обратно пропорциональна расходу. Может показаться, что предпочтительно использовать низкие скорости вспомогательного газа. Однако объем ячейки детектора должен быть достаточен для того, чтобы в нем поместился источник частиц, и, следовательно, объем проходящего газа должен быть достаточно велик для эффективной продувки ячейки. При одной и той же объемной скорости нельзя достичь оптимальной чувствительности детектора и минимальной ширины зоны анализируемого вещества. Таким образом, в каждом конкретном случае следует подбирать объемную скорость вспомогательного газа, у петывая требования решаемой задачи. [c.73]


Смотреть страницы где упоминается термин Детекторы термические: [c.51]    [c.486]    [c.263]    [c.190]    [c.305]    [c.85]    [c.329]    [c.128]    [c.133]    [c.115]    [c.7]    [c.98]    [c.65]   
Инструментальные методы химического анализа (1989) -- [ c.101 ]

Газовая хроматография в биохимии (1964) -- [ c.55 , c.58 ]




ПОИСК







© 2025 chem21.info Реклама на сайте