Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические отличие от химической

    В физике распространено представление о существенном отличии процессов плавления низкомолекулярных кристаллических тел и размягчения аморфных (или соответственно их кристаллизации и стеклования). При этом процессы кристаллизации и плавления относят к фазовым переходам 1-го рода, при которых первые производные термодинамического или химического потенциала по давлению и температуре испытывают скачок. [c.271]


    Методы теоретического расчета скоростей реакций на основе свойств перерабатываемых систем пока отсутствуют. Системы, подвергающиеся обработке при высоких температурах в промышленных аппаратах, не являются термодинамически изолированными. Химические и другие превращения обычно идут в них с большими скоростями в условиях далеких от равновесия и, кроме того, в условиях неизотермичности и гидродинамической нестационарности. Поэтому теоретическое выявление и обобщение кинетических закономерностей представляет пока неразрешенную задачу. Движущие силы и коэффициенты скоростей процесса или его стадий применительно к выбранному на основе общих соображений кинетическому уравнению приходится определять экспериментально, преодолевая трудности достаточно корректного их моделирования. В отличие от промышленных установок, работающих в непрерывных стационарных режимах, в моделях процесс чаще всего осуществляется в периодическом режиме. Кроме того, закономерности, которым подчи- [c.347]

    Энтропия 5 относится к основным термодинамическим характеристикам химических систем (вещества нли совокупности веществ). В табл. 8 представлены значения стандартной молярной энтропии 5 различных веществ. В отличие от энтальпии образования веществ ДЯц, характеризующей изменение энтальпии при протекании строго определенных реакций — реакций образования веществ и имеющей условную точку отсчета — нулевую энтальпию образования эталонных простых веществ (см. 3.2), энтропия является абсолютной величиной для каждого вещества (поэтому знак Д перед обозначением 5 не ставится). [c.70]

    Силы отталкивания, появляющиеся в водной среде, обусловлены расклинивающим давлением тонкого слоя жидкости, находящегося между поверхностями контактирующих тел. Расклинивающее действие является особенностью, заключающейся в отличии термодинамического и химического потенциалов тонких слоев жидкости от потенциалов объемной фазы [157]. [c.213]

    Предметом химической кинетики являются скорости реакции со всеми влияющими на них факторами и интерпретация скорости реакций на основе их механизма. В этом смысле кинетика отличается от термодинамики, в которой рассматриваются начальное и конечное состояния системы вне зависимости от времени протекания этого превращения. Термодинамика обычно рассматривает системы в состоянии равновесия, т. е. в состоянии, в котором скорости прямой и обратной реакций в обратимом процессе равны, что связывает эти две области химии. Однако обратное не верно скорость реакции нельзя определить только на основе термодинамических данных. Химическую кинетику можно считать более фундаментальной областью науки, но, к сожалению, часто сложность исследуемых процессов делает применение теории химической кинетики довольно трудным. [c.306]


    Биохимия учит нас, что все биохимические и если не все, то по крайней мере многие морфогенетические отправления клетки осуществляются при посредстве ферментов. Каждая химическая реакция, протекающая в живом организме, катализируется ферментом — это закон биологии. Таким способом живые существа отбирают из огромного числа термодинамически возможных химических реакций именно те, которые им нужны для осуществления необходимых превращений. Поскольку специализированные клетки различных типов отличаются друг от друга по внешнему виду и имеют различные функции, естественно было бы допустить, что по существу такие клетки отличают друг от друга по набору содержащихся в них ферментов и что различия в наборе ферментов, рассмотренные выше, являются на самом деле причиной дифференцировки, а не ее следствием. Это предположение еще не получило твердого доказательства и используется здесь в качестве рабочей гипотезы, однако мы будем учитывать ее при обсуждении проблемы дифференцировки. [c.523]

    Из рис. 32.1 видно, что реакционная способность молекулы, находящейся на поверхности (тенденция к переходу из одной фазы в другую, термодинамическая активность, химический потенциал), должна сильно отличаться от реакционной способности молекулы в объеме вещества. Кроме того, можно прийти к выводу, что для больщинства условий разные молекулы на поверхности будут обладать различной тенденцией к переходу из одной фазы в другую вследствие неровностей на поверхности. То же наблюдается, конечно, и для атомов в молекулах вспомните различие в реакционной способности первичного, вторичного и третичного атомов углерода (т. 2, гл. 24). Рис. 32.1 также поясняет одну из основных трудностей в изучении химии поверх- [c.52]

    Таким образом, между константой равновесия и максимальной полезной работой существует вполне определенная связь. Вывод уравнения, связывающего максимальную работу и константу равновесия с использованием так называемого ящика равновесия , был предложен голландским физико-химиком Вант Гоффом (1884 г.). Для вывода такого уравнения необходимо прежде всего доказать, что термодинамически обратимый химический процесс может быть осуществлен. Для этого надо выполнить следующие условия процесс должен протекать бесконечно медленно. Концентрации реагирующих веществ не должны (практически) отличаться от концентраций, соответствующих состоянию равновесия. Кроме того, должны отсутствовать процессы диссипации энергии (например, трение и отдача тепла). Вант Гоффу удалось показать, что с помощью ящика равновесия эти условия с достаточной степенью точности можно выполнить. [c.128]

    Чем отличаются химически обратимые реакции от термодинамически-обратимых  [c.141]

    Химически обратимый процесс отличается от термодинамически обратимого тем, что в первом процессе при достижении и при смещении равновесия вправо или влево система может терять или приобретать энергию, что исключено для второго. Поэтому любой химически обратимый процесс является термодинамически необратимым, реальным процессом. Химическое равновесие можно превратить в термодинамическое, если поддерживать в системе постоянство ее внутренней энергии. В этом случае химическое равновесие рассматривается как частный случай термодинамического равновесия системы, в которой протекает обратимая химическая реакция. Тогда условия термодинамического (и химического) равновесия системы выражают следующими равенствами АО-О, ДТ -О, АК-О и Ас в -0. [c.141]

    Такого рода химические превращения впервые наблюдал Б. П. Белоусов, они были названы колебательными химическими реакциями, и для их объяснения придумана особая дисциплина — синергетика. Однако механизм подобного самопроизвольного кругового химического процесса в принципиальных своих чертах ничем не отличается от действия любой другой термодинамической пары. Химических опытов я сам не проводил, поэтому упоминаю здесь о ПД-23 очень кратко. Более подробные сведения можно найти в моих работах Книга скорби (1981 г.) и Поиски новой парадигмы науки (другое название Теоретические и экспериментальные основы нетрадиционных источников энергии , 1985 г.). Они в числе семи моих книг ходят по рукам в виде ксерокопий после опубликования монографии [21] в 1973 г. официально издать их я уже не имел возможности. [c.478]

    Следует еще раз подчеркнуть, что значения термодинамических функций, относящиеся к действительным газам (жидкостям), часто значительно отличаются от тех, которые рассчитаны при предположении, что вещество имеет свойства идеального газа. Обычно для предварительной оценки химической концепции достаточно точности ориентировочных расчетов, выполненных при этом предположении. Некоторые примеры введения соответствующих поправок приведены ниже. Более подробно этот вопрос рассмотрен в специальных монографиях [10, 12]. [c.131]


    Другие осложнения, связанные с возможностью тех или иных выводов о применимости химической концепции по результатам термодинамического расчета, выявляются особенно остро, когда реакция проводится в условиях, при которых, например, поведение газообразных реагентов резко отличается от поведения идеальных газов (область высокого давления). В этих случаях обязательно нужно ввести поправки в вычисленные значения Ср, АЯ, АО и А5, расчет константы химического равновесия проводить не по концентрациям или парциальным давлениям, а по активностям и т. д. Ошибки могут быть очень значительными, и поэтому уже при предварительном анализе химической концепции указанные факторы упускать из вида нельзя. [c.155]

    Со статистической точки зрения все химические реакции протекают одновременно в сторону равновесия и в противоположном направлении. Скорость реакции в сторону равновесия больше скорости в противоположно.м направлении, в результате система приближается к равновесию. При равновесии обе реакции имеют одинаковые скорости, так что скорость суммарного процесса равна нулю. Таким образом, в общем случае химические реакции являются двусторонними или, как часто говорят, обратимыми. Понятие обратимая реакция в изложенном выше смысле следует отличать от термодинамического понятия обратимый процесс (см. т. I, гл. I, 6). Последний характеризуется бесконечно малым различием скоростей прямого и обратного процессов и, следовательно, бесконечно малой скоростью результирующего процесса и бесконечно малым отклонением системы от положения равновесия. [c.15]

    Биополимеры. Существенная, при рассмотрении проблемы гидратации, особенность биополимеров состоит в наличии больщой и сложной по химическому составу молекулярной поверхности. Возникает вопрос не может ли такая поверхность в отличие от малых молекул оказывать на воду усиленное воздействие вследствие кооперативных эффектов Один из путей решения вопроса состоит в анализе аддитивности термодинамических гидратационных эффектов по атомному составу гидратируемой поверхности. Кооперативность проявилась бы в усилении гидратационного эффекта по сравнению с суммой вкладов поверхностных атомных групп, который подсчитывали на основании анализа низкомолекулярных соединений.  [c.58]

    Насколько отличается значение, полученное методом энергий связей, от термодинамического значения г) Объясните теплоту изомеризации паров этанола на основе соображений о химической связи в молекулах этанола и диметилового эфира. [c.43]

    В ходе любой химической реакции чисто качественно можно выделить следующие характерные области (рис. 13) начальное состояние неустойчивого (ложного) равновесия А), неравновесную область, в которой допустимо линейное приближение (2), неравновесную область нелинейного взаимодействия термодинамических сил и потоков (3), неравновесную фазу, в которой опять допустимо линейное приближение зависимости сил и потоков (4), конечное устойчивое (или истинное) равновесие (В). Начальное равновесное состояние является неустойчивым (ложным) в том смысле, что хотя в этом состоянии скорость процесса и = О, химическое сродство не только не равно нулю, по и максимально, и при у создании подходящих условий (инициировании процесса тем или иным способом) система начинает реагировать. В отличие от начального конечное состояние в этом смысле является не только равновесным, но и устойчивым, поскольку выполняется условие г/7 = О, = О [5]. [c.99]

    Неустойчивости, обычно возникающие за точками бифуркации, обязаны своим появлением термодинамическим флюктуациям, которые могут быть причиной вывода системы из равновесия. Возможен с.тучай, когда неустойчивость приводит к появлению нового состояния системы, которое стабилизируется во времени и пространстве. Такое состояние означает, по существу, образование новой так называемой диссипативной структуры, характеризующейся согласованным поведением системы. Термин диссипативные структуры специально введем для того, чтобы подчеркнуть отличие от равновесных структур. Диссипативные структуры являются поразительным примером, демонстрирующим способность неравновесности служить источником упорядоченности. Механизм образования диссипативных структур следует четко отличать от механизма формирования равновесных структур, основанного на больцмановском принципе упорядоченности. Поддержание стабилизированной во времени и пространстве физико-химической структуры с определенным типом изменения концентрации реагентов достигается за счет непрерывного обмена с окружающей средой энергией и веществом, что является прямым следствием образования диссипативных структур в открытых системах и тем самым отличает их от равновесных структур (например, кристаллов). [c.281]

    Во-вторых, если активные центры состоят из химически различных компонентов, то сформированная поверхность работающего катализатора должна представлять собой систему типа твердого раствора этих компонентов. В связи с процессами диффузионного обмена стационарный состав приповерхностных слоев катализатора также будет отличаться от состава термодинамически устойчивой фазы. [c.302]

    Реакции радикалов характеризуют истинные химические стадии это отличает их от реакций молекул, когда стехиометрическое уравнение получают объединением большого числа элементарных стадий. Кинети Ческие параметры (константы скорости, энергии активации, предэкспоненциальные множители) радикальных реакций удается во многих случаях рассчитать, используя термодинамические функции, что позволяет сократить объем эксперимента при определении этих параметров, критически оценить результаты эксперимента. [c.290]

    Естественно, закономерности в свойствах различных веществ или в параметрах различных реакций должны быть более простыми, если при сопоставлении ограничиться веществами, близкими между собой по химическому составу и строению. Условимся называть однотипными соединения, обладающие аналогичной формулой и различающиеся только одним элементом, причем эти элементы должны быть аналогами (т. е. принадлежать к одной подгруппе периодической системы) и находиться в одинаковом валентном состоянин. Однотипными можно считать, например, карбонаты щелочно-земельных металлов. Можно пользоваться понятием о различной степени однотипности. Так, карбонаты кальция, стронция и бария являются более однотипными между собой, а карбонаты магния и тем более бериллия менее подобны им по термодинамическим свойствам, в соответствии с большим отличием строения электронной оболочки их катионов. [c.291]

    Предлагаемый курс химической термодинамики в отличие от традиционных учебников имеет следующее расположение материала. Вначале на основе трех законов термодинамики составляются аналитические выражения термодинамических функций для химически и фазово однородных и неоднородных систем. Затем рассмотрены методы применения термодинамических функций для расчета равновесий в идеальных и неидеальных смесях веществ. [c.4]

    Химический потенциал, подобно Т и Р, выравнивается в юде протекания процесса химического превращения веществ и обмена веществами между фазами. Однако в отличие от Р и Г химический потенциал нельзя опытно измерить, его величину только рассчитывают. Для химически неоднородной или гетерогенной системы термодинамические функции можно уже представить в таком виде  [c.145]

    Близкое согласие вычисленных и измеренных скоростей детонации можно рассматривать как доказательство правильности основной предпосылки гидродинамической теории детонации, согласно которой скорость химической реакции достаточно велика, чтобы обеспечить установление термодинамического равновесия во фронте детонационной полны. Отметим, что в случав богатых смесей, для которых расхождение между вычисленными и измеренными скоростями больше всего отличаются от среднего, Иост [55] в качестве одной нз вероятных причин расхождения указывает недостаточно большую скорость химической реакции, вследствие чего реакция в детона- [c.242]

    Внешнее давление при квазистатическом процессе на бесконечно малую величину (1Р отличается от внутреннего давления в системе, ноторое может быть вычислено из уравнения состояния, например, для идеального газа — из уравнения состояния Менделеева — Клапейрона (56.2). Уравнение (56.7) позволяет вычислить работу расширения при различных квазистатических процессах. Понятия равновесного и обратимого процессов широко используются при термодинамических исследованиях и, в частности, при изучении химического равновесия. [c.190]

    Книга А. Мюнстера Химическая термодинамика отличается от большей части оригинальных и переводных учебных пособий по химической термодинамике, имеющихся на русском языке. В основу данного курса химической термодинамики положен дедуктивный и математический метод изложения, причем большое внимание уделяется математической структуре термодинамических уравнений и совокупности этих уравнений. Вся формальная структура книги основана на выводе термодинамических уравнений из трех основных положений фундаментального уравнения, условия равновесия и условия стабильности. [c.5]

    Второе замечание относится к природе термодинамического равновесия гальванического элемента. При этом речь идет об электрохимическом равновесии, которое следует отличать от химического равновесия рассматриваемой реакции (если такое существует). Соответственно отличается также обратное протекание реакции,описанное в случае в"., от протекания реакции при сохранении химического равновесия, рассмотренного в 14. [c.262]

    Обычно после получения результатов исследования на пилотной установке возникает проблема переноса данных на производственный агрегат. В специальной литературе высказывается мнение, что, в отличие от гидродинамических процессов, закономерности химического взаимодействия и термодинамические связи можно использовать лишь при 3—5-кратном увеличении масштаба. Поэтому выбор производительности пилотной установки, а также выбор числа опытно-проМышленных установок, подлежащих исследованию, целиком определяется соображениями допустимости масштабирования полученных результатов. [c.174]

    С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в -оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида. [c.81]

    Практически все изучаемые нефтяные системы полидисперсны и отличаются сложностью химического и компонентного состава. Для таких систем характерны самопроизвольные процессы, приводящие к понижению дисперсности и свободной энергии системы и являющиеся признаком ее термодинамической неустойчивости, К таким процессам можно отнести, в частности, коллоидно-химические превращения, обязанные взаимодействию компонентов дисперсной фазы и дисперсионной среды системы. При этом система, сохраняя постоянство состава, может существенно изменять энергетические характеристики. Потеря агрегативной устойчивости может привести к кинетической (седиментационной) неустойчивости системы, на что [c.124]

    Энтропия S° и теплоемкость С /. - важнейшие термодинамические свойства химических веществ, используемые при инженерных расчетах массотеплообменных аппаратов и химических реакторов технологических процессов нефтегазопереработки и нефтехимии. Экспериментальные данные по моделируемым свойствам представлены преимущественно в виде таблиц или номограмм в различных физико-химических справочниках и монографиях [8, 22]. Для их расчетов при разных температурах предложены индивидуальные модели, как правило, в виде уравнений регрессии. Непосредственное использование этих данных для массовых инженерных расчетов затруднительно, поскольку они не приведены к удобному для компьютерных методов расчетов и к тому же существенно отличаются друг от друга точностью. [c.96]

    Изменение наклона графика становится еше более заметным, если в эту серию кислот включить Н2О и Н3О+. Подобную картину наблюдают и для ряда других кислотнокатализируемых процессов, а также в случае основного катализа частицами Н2О и ОН , даже если скорости как прямой, так и обратной реакций намного меньше определяемого диффузией предела. Сомнительно, однако, сколь далеко идущие выводы можно делать из анализа кривизны графиков соотношений Брёнстеда, основываясь только на данных для реакции субстрата с молекулами растворителя. Во-первых, частицы Н2О, Н3О+ и ОН- отличаются химически (а часто и по своей зарядности) от молекул других изученных катализаторов. Кроме того, при катализе молекулами воды наблюдаемую скорость необходимо поделить на величину 55,5 моль/л, чтобы получить константу скорости второго порядка, сопоставимую с каталитическими константами других растворенных частиц. Во-вторых, обычно используемые значения р/С(НгО) =15,74 и р/С(НзО+)=—1,74 включают концентрацию воды [Н20]=55,5 и могут не отражать истинную кислотность или основность этих частиц. Тот факт, что каталитический эффект иона гидроксила (и в меньшей степени иона гидрония) часто на несколько порядков меньше предсказываемого с помощью соотношения Брёнстеда, имеет некоторое практическое значение. Нетрудно показать, что если бы соответствующие кинетические и термодинамические характеристики данных ионов удовлетворяли этому соотношению, было бы невозможно обнаружить общий кислотно-основный катализ в реакциях, где значения а или р близки к единице. [c.239]

    Наличие взаимодействия частиц приводит к тому, что необходимо рассматривать термодинамическую устойчивость химического равновесия. Устойчивость равновесия s l = s + С1 в сильнонеидеальном случае рассматривалась в [241]. Нарушение устойчивости было истолковано как указание на фазовый переход первого рода. Две фазы отличаются друг от друга концентрацией ионов. [c.112]

    Используемые для расчетон химических равновесий термодинамические соотношения, как легко видеть из приводимых в учебниках термодинамики выводов (см., например, [1, 2, 4]), основаны на применении уравнения состояния идеальных газов к описанию свойств реагирующих газовых смесей. Поэтому понятно, что применимость этих уравнений ограничивается только теми случаями, когда газовые смеси подчиняются уравнению состояния идеальных газов. В применении к реальным системам эти уравнения могут привести 1г некоторым неточностям, величина которых будет тем больше, чем больше отличаются свойства реагирующих веществ от свойств идеальных газов. [c.156]

    Третье издание практикума существенно отличается от первых двух изданий. Получили значительное развитие работы по молекулярной спектроскопии, а работы по атомным спектрам сокращены — в связи с изменениями учебных планов. В практикум введены новые работы, знакомящие со спектральными методами изучения свойств молекул и определения молекулярных констант веществ, работы по расчету сумм состояния и термодинамических функций на основе непосредственно полученных опыть ых данных. Студенты знакомятся с применением методов статистической термодинамики для расчета химических равновесий. Существенно изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. [c.4]

    В заключение отметим, что формирование слоев связанной воды вблизи поверхности силикатных частиц коллоидных размеров тесно связано с формированием коагуляционной сетки в дисперсии. Из работ [132—134] следует, что формирование гиксотропной структуры в дисперсиях монтмориллонита приводит к заметному увеличению так называемого всасывающего давления я — величины, которая измеряется с помощью тен-зиометров и характеризует способность почвы при соприкосновении с чистой водой впитывать ее в себя. По величине я легко определить изменение химического потенциала связанной воды граничного слоя по сравнению с объемной, а по зависимостям я от температуры — парциальные молярные энтальпии и энтропии связанной воды. Перемешивание дисперсий (разрушение тиксотропной структуры) приводило к резкому уменьшению значений я. Получаемые на их основе парциальные термодинамические функции связанной воды практически не отличались от таковых для объемной воды. Тиксотропное структу-рообразование, наоборот, вызывало повышение значений я, а термодинамические характеристики связанной в структурированной дисперсии воды были существенно иными, чем в объемной воде [133]. [c.44]

    Не следует путать обратимость (равновесность, квазистатичность) термодинамическую с обратимостью химической реакции. Последняя означает, что в процессе А1 — -Аз со временем начинает играть роль процесс А2 —А1, что и отражено в общей записи Аз. Эта обратимость кинетическая никак не связана с обратимостью термодинамической, и в естественных условиях обратимая химическая реакция является термодинамически необратимым процессом, система приходит в состояние не исходное, но конечное, и ее состав и свойства отличны от состава и свойств исходной системы. Два макроскопических состояния считаются разными, если отличаются хотя бы одной из макроскопических характеристик. Состояние системы, не меняющееся со временем, называется стационарным. Оно является равновесным, если неизменность его во времени не обусловлена каким-либо внешним воздействием. [c.21]

    Катализаторы и каталитические реакции. Катализатором называют вещество, многократно вступающее в промежуточное химическое взаимодействие с реагентами, не участвующее в стехиомет-рическо м уравнении реакции, не изменяющее термодинамическое равновесие, но увеличивающее скорость его достижения, т. е. скорость реакции. То, что катализатор не участвует в стехиометриче-ском уравнении реакции, не означает неизменности его состава и свойств. Под влиянием реагентов, примесей к реагентам, основных и побочных продуктов реакции, температуры катализатор всегда претерпевает физико-химические изменения. До момента, когда в результате медленных изменений свойства катализатора начинают существенно отличаться от начальных, продукты реакции образуются в количествах, в 1000 раз и более превосходящих массу катализатора. Иногда в результате взаимодействия с одним из продуктов реакции свойства катализатора изменяются очень быстро, но при удалении этого продукта он восстанавливает свои первоначальные свойства — регенерируется. [c.132]


Смотреть страницы где упоминается термин Термодинамические отличие от химической: [c.22]    [c.15]    [c.251]    [c.59]    [c.71]    [c.103]    [c.10]    [c.112]    [c.54]    [c.105]   
Химическая термодинамика Издание 2 (1953) -- [ c.482 ]




ПОИСК





Смотрите так же термины и статьи:

Химические обратимость, отличие от термодинамической



© 2024 chem21.info Реклама на сайте