Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родий спектрофотометрическое

    Спектрофотометрическое определение родия (III) в электролите родирования [c.35]

    Изонитрозоацетофенон предложен для спектрофотометрического определения иридия (III) в присутствии родия (III). [c.37]

    Реагент рекомендован для спектрофотометрического определения иридия в присутствии платиновых металлов, кроме родия и рутения. [c.39]

    Один из основных физических параметров, определяющий цвет несамосветящихся объектов, задается спектральными апертурными коэффициентами отражения р (X) или спектральными коэффициентами пропускания т (А,) объектов, измеряемыми на спектрофотометрах. Если два таких объекта имеют идентичные спектрофотометрические характеристики р (X) или т X) для данных условий освещения и наблюдения, то при этих условиях они будут восприниматься одинаковыми по цвету независимо от индивидуальных свойств наблюдателя и от того, каким светом они освещены. Этот вывод не требует для своего подтверждения каких-либо преобразований спектрофотометрических данных, и о таких объектах говорят, что они колориметрически идентичны. При непосредственном сравнении двух спектральных кривых, имеющих не слишком схожую форму, можно качественно оценить разницу в цвете соответствующих образцов. Так, например, сопоставление кривых для образцов белого и рыжевато-коричневого цвета, которые представлены в верхней части рис. 2.4 (воспроизводящего ранее приведенный рис. 1.11), показывает, что второй образец темнее и имеет красновато-желтый оттенок по сравнению с первым. Такого рода вывод вытекает из простого сопоставления спектральных кривых апертурных коэффициентов отражения. [c.132]


    Спектрофотометрическое изучение водного раствора перхлората родия в УФ- и видимой областях. [c.554]

    На абсолютную и относительную точность (воспроизводимость) спектрофотометрических измерений влияет ряд разнообразных и часто трудно поддающихся учету факторов [23, 40]. Для количественного анализа и различных сравнительных исследований наиболее важной является воспроизводимость измерений и несущественны некоторые ошибки систематического характера, так что при разработке многих методик исследования, а также аппаратуры, исключению последних уделяется мало внимания. В связи с этим существует такое положение, что при высокой в большинстве случаев относительной точности современных спектрофотометрических измерений данные, полученные на различных приборах или в различных условиях эксперимента, часто значительно различаются. В большей части опубликованных исследований ультрафиолетовых спектров поглощения авторами не оценивается абсолютная точность измерений, а также не приводятся данные, относящиеся к аппаратуре и методике эксперимента, позволяющие провести хотя бы грубую оценку подобного рода. [c.383]

    Методы абсорбционного спектрального анализа. Абсорбционный спектральный анализ основан на изучении спектров поглощения анализируемого вещества. Различают спектрофотометрический и фотометрический методы абсорбционного анализа. Спектрофотометрический метод основан на измерении поглощения света определенной длины волны (монохроматического излучения), которая соответствует максимуму кривой поглощения исследуемого вещества. Такого рода измерения поглощения света осуществляются в специальных приборах, называемых спектрофотометрами, в которых используется всегда монохроматический поток световой энергии, получаемый при помощи оптической системы, называемой монохроматором. [c.264]

    Выполнено много работ, в которых электролиз сочетается с колориметрическим или спектрофотометрическим методом анализа концентрата. Например, в работе [9] разработаны методы электролитического выделения основного компонента с последующим определением примесей фотометрически или полярографически. Однако, с нашей точки зрения, наиболее целесообразно комбинирование электролиза со спектральным эмиссионным методом анализа концентрата, позволяющим проводить одновременное определение многих элементов с достаточно высокой абсолютной чувствительностью. Дополнительным преимуществом такого сочетания является возможность выделения примесей на твердые электроды, которые в дальнейшем непосредственно используются при проведении дугового или искрового возбуждения спектра. К сожалению, работ такого рода сравнительно немного, и они не систематизированы. Содержание и результаты этих работ изложены ниже. [c.137]


    ЭКСТРАКЦИОННО-СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ РОДИЯ (HI) [c.360]

    В настоящей работе приведены результаты экстракционно-спектрофотометрического исследования взаимодействия родия (III) с ПАН, так как эта реакция, по нашему мнению, представляет интерес для фотометрического определения этого иона. [c.360]

    Особой проблемой, характерной для металлов восьмой группы периодической системы, является легкость гидролиза их соединений, приводящая к образованию нерастворимых гидроокисей. Процесс гидролиза — источник ошибок спектрофотометрических методов, включающих нагревание растворов с низкой кислотностью (pH 4—8). Склонность к гидролизу и, следовательно, чувствительность к изменению концентрации электролитов объясняют затруднения, испытываемые химиками, разрабатывающими спектрофотометрические методы определения платиновых металлов. Чтобы в достаточной мере изучить состояние металла в растворе, требуется также хорошее знакомство с процессами растворения платиновых металлов. Из платиновых металлов только палладий и родий могут быть количественно растворены в одной из минеральных кислот. Родий в некоторых случаях можно растворить в концентрированной серной кислоте. Влияние серной кислоты, часто мешающей определению платиновых металлов, редко учитывают полностью. [c.136]

    Методы выделения родия изложены в гл. 2, Во всех известных промышленных продуктах, содержащих платиновые металлы, родий находится в сравнительно малых количествах и практически всегда вместе с иридием. Обычно при кислотной обработке получаемых при пробирном анализе сплавов и корольков остается нерастворимый остаток, почти всегда содержащий малые количества родия и иридия. Разделение этих двух металлов— наиболее трудная задача в анализе благородных металлов. Поэтому те спектрофотометрические методы, в которых определению родия пе мешает иридий, особенно ценны. Поскольку серная кислота — единственная минеральная кислота, растворяющая родий при нагревании до ее паров, предпочтение оказывают спектрофотометрическим методам анализа таких сернокислых растворов. Следует снова указать, что, говоря об отсутствии мешающего влияния сульфатов, не всегда можно отождествлять растворы со специально добавленными сульфатами с растворами, полученными после выпаривания с серной кислотой до ее паров, особенно когда они содержат и сопутствующие металлы. [c.187]

    СПЕКТРОФОТОМЕТРИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ РОДИЯ [c.188]

    Для определения 3,5—34 мкг/мл родия можно использовать гипохлорит натрия. Эре и Ф. Янг [644] провели спектрофотометрическое исследование синих растворов, образующихся при взаимодействии родия с гипохлоритом натрия в области pH 4,7—7,2. При медленном приливании гипохлорита натрия к буферному раствору, содержащему родий, интенсивность окраски растворов невысока. Хорошо воспроизводимые результаты получают при быстром приливании реагентов (порядок приливания не имеет значения) и измерении светопоглощения спустя 1 час. Окрашенные растворы характеризуются максимумом светопоглощения при 665 ммк закон Бера выполняется. Для получения максимальной синей окраски необходим большой избыток гипохлорита натрия по отношению к родию. Состав окрашенного соединения неизвестен. Методика допускает присутствие в значительных количествах платины и палладия. Последний образует с гипохлоритом окраску, которая мало влияет на величину светопоглощения при 665 ммк. На определение родия при помощи этого реагента влияют некоторые примеси. Неблагородные металлы, например медь и кобальт, мешают, если их содержание примерно равно содержанию родия. Серьезное мешающее действие оказывает иридий. [c.198]

    Содержание иридия, родия, осмия и рутения в большинстве природных материалов незначительно. Поскольку общее содержание платиновых металлов в самых богатых в мире рудах составляет лишь несколько граммов на тонну, очевидно, чувствительные спектрофотометрические методы весьма удобны для прямого открытия или определения этих металлов. Как и следовало ожидать, спектрофотометрическому определению иридия мешают другие благородные металлы, а также железо, медь, никель и часто хром. По аналитическим свойствам наиболее близким к иридию платиновым металлом является родий. [c.199]

    Поскольку определению обычно предшествует разделение металлов, спектрофотометрические методы определения иридия должны учитывать не только влияние сопутствующих металлов, ио также н присутствие серной кислоты и сульфатов, которые иногда используют при селективном осаждении родия. Следует еще раз подчеркнуть, что влияние серной кислоты нужно изучать на растворах, выпаренных до ее паров, так как такую обработку обычно применяют для полного растворения родия. [c.199]

    Вместо электродов второго рода величины [А] или [НА] можно измерять через экстракцию, растворимость, спектрофотометрически ИТ. п., причем можно показать, что для данного объекта такие измерения перспективнее рН-метрических. [c.172]


    Чувствительность ВЭЖХ определяется типом используемого детектора и химическим строением анализируемых веществ. Для соединений, в молекулах которых хромофоры отсутствуют, она часто оказывается недостаточной, и примеси такого рода нелегко зарегистрировать. К счастью, большинство лекарственных веществ и полупродуктов содержит хромофоры, и но отно1 ению к таким соединениям чувствительность на 1—2 порядка превышает чувствительность спектрофотометрического анализа. Это обстоятельство может быть решающим при выборе метода анализа лекарственных форм высокоактивных препаратов, где содержание действующего вещества мало. [c.246]

    Разрыв одной из связей одной или двух отдельных бидентатных групп с изменением положения при воссоединении [244]. Диссоциация одной связи такого рода была установлена (с некоторой степенью надежности) по крайней мере в двух различных случаях с помощью различных методов (30, 148, 153]. Скорость диссоциации [Ге(с11ру)з] , измеренная спектрофотометрически, возрастает при pH меньше 2, и изменение с (Н" 1 может быть разумно объяснено [30, 148] на основании следующего механизма  [c.206]

    Комплексонаты палладия и родия используют для спектрофотометрического, объемного и полярографического, а ком-плексонат иридия — для спектрофотометрического определения. [c.61]

    Спектрофотометрическое определение родия при помощи бромистого олова (242, 243]. Комплексные хлориды родия взаимодействуют с раствором бромистопо олова в бромистоводородной кислоте с образованием интенсивной желтой окраски. Реакция более чувствительна, чем с хлористым оловом, но окраска менее устойчива. [c.170]

    Определение родия при помощи -нитрозодиметиланилина [234]. Реакция с п-нитрозодиметиланилнном весьма чувствительна (до 0,0015 мкг КЬ/.адл). При спектрофотометрическом определении родия необходимо строго соблюдать все условия, указанные в методике. [c.171]

    Методы абсорбционного спектрального анализа. Аб сорбционный спектральный анализ основан на изучени] спектров поглощения анализируемого вещества. Разли чают спектрофотометрический и фотометрический ме тоды абсорбционного анализа. Спектрофотометрически метод основан на измерении поглощения света опреде ленной длины волны (монохроматического излучения, которая соответствует максимуму кривой поглощени исследуемо о вещества, Такого рода измерения поглощ ния света осуществляются в специальных приборах, н зываемых спектрофотометрами, в которых используе ся всегда монохроматический поток световой энерги получаемый при помощи оптической системы, называ< мой монохроматором. [c.316]

    НОГО поглощени я, которое в этих случаях оказывается замаскированным рассеянием, т. е. установление закона, аналогичного закону Бугера, чрезвычайно актуальна в частности, она важна для аналитических работ в инфракрасной области. Здесь зачастую вещество может быть получено лишь в твердом виде, и исследование ведется на порошках, причем считается, что спектральная кривая отражения такого порошка может быть отождествлена с искомой кривой истинного поглощения вещества частиц. Если это предположение приблизительно оправдывается относительно Лмакс, т. е. в чисто спектрометрических задачах (см. выше), то в отношении других параметров кривой (ширины, структуры) оно, вследствие наличия рассеяния, никоим образом не имеет места. Поэтому в спектрофотометрических задачах применение этого метода нуждается в специальных оговорках. Определение истинного поглощения в такого рода случаях представляет собой весьма сложную задачу. [c.16]

    Сугавара и Каннамори [20] определили в природных водах фосфор путем выделения его в виде фосфомолибдата последний экстрагировали смесью н-бутанола и хлороформа, затем разлагали щелочью и освободившийся молибден количественно определяли спектрофотометрически в виде рода-нидно-молибденового комплекса в объеме 5 мл. Авторы минимально определили 0,02 мкг Р, что соответствует - -0,7 мкг Мо [5]. Погрешность определения <5%. Определению могут мешать У, V и Т1, но обычно их содержание в природных водах незначительно и практически они не влияют на определение молибдена. [c.161]

    Реакция с тиоянтарной кислотой. Вагнер и Ио [39] предложили способ спектрофотометрического определения родия при помощи тиоянтарной кислоты. Образование комплекса родия с тиоянтарной кислотой происходит при кипячении в течение 40 мин. анализируемого водного раствора и свежеприготовленного 0,05 М раствора тиоянтарной кислоты. Состав комплекса неизвестен. Максимум светопоглощения для растворов с pH 1—б находится при 340 ммк [c.221]

    Количественно И. определяют весовым методом в виде металла с использованием в качестве осадителя 2-меркантобензотиазола (тиомочевины). Осадок прокаливается до металла в токе водорода (И. можно также выделять в осадок в виде гидроокиси, сульфида или хлориридата аммония). Спектрофотометрически И. может быть определен измерением интенсивности сине-фиолетовой окраски, получаемой при действии па раствор соли 1г(1У) при нагревании смеси хлорной, фосфорной и азотной к-т. Потенциометрич. методы определения И. основаны на титровании раствора хлориридата восстановителями Си2С12, гидрохиноном, аскорбиновой кислотой. Отделение неблагородных металлов от И. можно производить гидролитич. осаждением из растворов, содержащих платиновые металлы в виде комплексных нитритов, а также с помощью ионообменных смол типа КУ-2. От Р1 1г может быть отделен гидролитич. осаждением в присутствии бромата. Р(1 количественно отделяется от 1г осаждением диметилглиоксимом. Отделепие НЬ от 1г достигается восстановлением родия солями Т1 (III), осаждением родия меркаптобензотиазолом в присутствии восстановителей и с помощью нитритно-суль-фидного метода. [c.164]

    Применение для определения поглощающих веществ. В табл. 24-1 перечислены некоторые наиболее часто встречающиеся органические хромофорные группы. Если молекула содержит несколько таких групп с сопряженными ненасыщенными связями, поглощение смещается в видимую область спектра. Любое органическое соединение, содержащее одну или несколько таких групп, в принципе можно определить спектрофотометрически в литературе имеется много примеров подобного рода. [c.148]

    Первая установка такого рода, позволяющая регистрировать времена реакции порядка миллисекунд, была создана Хартриджем и Рафтоном [4]. Она сконструирована таким образом, что отпадает необходимость в непосредственном измерении времени реакции, однако это достигается ценой расхода большого количества реактивов. Установка состоит из приспособления для быстрого смешивания и длинной трубки, через которую реакционная смесь непрерывно течет с большой скоростью (метод постоянного потока). Наблюдения за реакцией осуществляются в нескольких точках по длине трубки, что соответствует различным значениям времени реакции. Более широкое применение при исследовании ферментативных реакций нашел разработанный позже метод Чанса [5, б], получивший наименование метода остановленного потока. Преимущество его состоит в том, что он требует меньших количеств фермента однако регистрирующее устройство в приборе Чанса должно быть столь малоинерционным, чтобы его постоянная времени была меньше, чем у исследуемой химической системы. В настоящее время измерения методом остановленного потока чаще всего производят следующим образом растворы фермента и субстратов из шприцев одновременно впрыскивают в смесительную камеру, после чего смесь поступает в измерительную кювету, где поток резко останавливается и начинаются спектрофотометрические измерения. Вся процедура продолжается при благоприятных условиях примерно 1 мс и требует лишь небольших объемов растворов. Техника и теория струйных методов описаны в книгах Чанса [7], Рафтона [8], Кэлдина [9] и Гутфрейнда [10]. [c.183]

    По указанным выше причинам приведенные в этих таблицах данные, касающиеся влияния примесей, могут быть истолкованы по-разному. В некоторых случаях авторы методов проверяли влияние благородных и неблагородных металлов, входящих в состав природных материалов, а в других проверяли влияние металлов, выбранных произвольно. При определении платины или палладия в присутствии сравнительно малых количеств родия или иридия вал<ны сведения об их влиянии. То же самое можно сказать и о влиянии меди, никеля и железа. К сожалению, в большей части спектрофотометрических методов не проверено влияние свинца, который применяют при пробирном способе концентрирования платиновых металлов. Иногда прн разработке спектрофотометрического метода проверяют влияние большего числа примесей, чем это необходимо. Длинный список немешающих катионов не представляет ценности, поскольку многие из этих катионов редко сопутствуют платиновым металлам. Не представляет ценности также проверка влияния примесей без учета предшествующих определению стадий, а также способов растворения. Нужно надеяться, что авторы новых методик проверят влияние меди, никеля, железа, хрома, платиновых металлов, золота, серебра и свинца и приспособят новые спектрофотометрические методики для определения платиновых металлов в природных и промышленных продуктах. Тогда в них не будет излишних данных. [c.140]

    Тиомалеиновую кислоту можно применять для спектрофотометрического определения родия, а также палладия. Вагнер и Йо [641] получили в растворе с pH 1—6 при нагревании на кипящей водяной бане в течение 40 мин желтое комплексное соединение родия с реагентом с максимумом светопоглощения при 340 ммк. Реагент не поглощает света в области длин волн выше 290 ммк. Комплексное соединение устойчиво не менее недели. Закон Бера выполняется при концентрациях родия порядка 1,2—10 мкг/мл. Этот метод наиболее пригоден в области концентраций родия 2—7 мкг/мл. Состав окрашенного комплекса не установлен. Авторы [641] указали, что растворяли пробу соответствующим методом, подразумевая под этим использование и дымящей серной кислоты. Однако данных, подтверждающих это, не приведено. Утверждение о том, что определению родия с тиомалеиновой кислотой почти не мешают примеси, также не подтверж 1,0но опытными дэнны]ми. Удовлетворительные резуль-таты определения 4 мкг/мл родия в присутствии платины(IV), иридия (IV), золота, рутения(III) и осмия(VI) в количествах, гораздо меньших 1 мкг/мл, нельзя рассматривать как доказательство возможности определения родия в присутствии этих элементов, поскольку на практике относительное содержание родия в смесях с этими элементами очень мало. Авторы [641] предложили также удовлетворительный метод одновременного определения родия и палладия при помощи тиомалеиновой кислоты. [c.197]

    Для спектрофотометрического определения 24—160 мкг/мл родия можно применять EDTA [646]. Образующиеся при pH 3,27—5,70 желтые растворы характеризуются максимумом светопоглощения при 350 ммк. Окрашенные растворы получают при прибавлении к хлориду родия 2—3-крятного избытка реагента и нагревании в течение 3 час. Метод был использован при оценке полноты разделения родня и иридия. Платиновые металлы мешают определению родия. [c.199]

    Для спектрофотометрического определения палладия в интервале концентраций 0,5—2,5 мкг/мл используют соли олова(И). Вызывает удивление, что до настоящего времени этот давно известный реагент, открывающий палладий, платину, родий и золото, мало применялся для количественного определения. Княжева [659] применяла хлорид олова (II) для определения палладия и платины в материалах, содержащих серебро. Метод заключается в одновременной экстракции эфиром продуктов реакции хлорида олова(II) с палладием и платиной, разрушении соединения палладия гипофосфитом натрия и визуальном колориметрическом определении платины. В эталонные растворы платины добавляют такое количество палладия, чтобы они были окрашены так же, как и анализируемый раствор платины и палладия. Розовую окраску комплекса палладия стабилизируют хлоридом меди(II). Образующийся хлорид серебра не мешает определению. Метод имеет ограниченное примеиение в частности, его можно использовать при анализе серебряных корольков. Колориметрирование нельзя проводить при искусственном свете. Кроме того, методу присущи трудности, обычные при определении элементов по разности. [c.222]

    Индийские исследователи [155] разработали схему последовательного концентрирования платиновых металлов с помощью ДФТМ для спектрофотометрического определения всех шести металлов. В разбавленном растворе соляной кислоты палладий и осмий образуют комплексы с ДФТМ при комнатной температуре, платина, родиа,и рутений — при нагревании. В горячем ацетатном буферном растворе реагируют Р1, КЬ, Йи, 1г. Состав соединений М Ь для Pd 1 2, Оз 1 2, НЬ, Ни, Гг 1 3 (ацетатная среда). Определены константы диссоциации комплексов. Все соединения, кроме соединения рутения, экстрагируются хлороформом, комплекс рутения извлекается метилизобутилкетоном. Предложены способы выделения и определения каждого платинового металла из их синтетической смеси. [c.40]

    Известно, что перевод родия в раствор для последующего спектрофотометрического определения из его неорганических п органических соединений проще всего осуществляется минерализацией по Кьельдалю действием кипящей серной кислоты [178, т. 2, с. 187 385]. При разложении с концентрированной серной кислотой в качестве окислителей использовали азотную и хлорную кислоты, так как многолетние наблюдения показали, что добавление незначительных количеств азотной и хлорной кислот существенно ускоряет окисление ЭОС. Изучение условий минерализации показало, что продолжительность минерализации родийорганических соединений в зависимости от размера пробы, состава и строения анализируемого вещества и использованного окислителя колеблется от 15 мин до 1 ч. Во время разложения раствор необходимо часто перемешивать, чтобы избежать местного перегревания и выпадения осадка сульфата родия на стенках колбы Кьельдаля. Критерием полноты разложения является образование прозрачного желтого раствора сульфата родия (интенсивность окраски меняется в зависимости от содержания родия). [c.196]

    Перевод родийсодержащих продуктов минерализации в определяемую форму — хлорид родия(1П)—выполняют непосредственно Б колбе Кьельдаля двукратным кипячением с хлороводородной кислотой. В полученном растворе родий определяют спектрофотометрически. Для спектрофотометрического определения родия используют как неорганические, так и органические реагенты. Число последних сравнительно невелико, а методы отличаются малой чувствительностью и избиратель- [c.196]


Смотреть страницы где упоминается термин Родий спектрофотометрическое: [c.266]    [c.87]    [c.738]    [c.62]    [c.94]    [c.79]    [c.203]    [c.209]    [c.32]    [c.362]    [c.196]    [c.197]   
Аналитическая химия благородных металлов Часть 2 (1969) -- [ c.2 , c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометрические



© 2025 chem21.info Реклама на сайте