Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление по слоям катализатора

    В. С. Б е с к о в, Я. М. Б у ж д а н, М. Г. С л и н ь к о, Расчет контактных аппаратов с адиабатическими слоями катализатора для окисления двуокиси серы. Хим. пром., Ali 10, 721 (1963). [c.252]

    К е р н е р м а н В. Ш. и др. Исследование процесса окисления двуокиси серы в псевдоожиженном слое катализатора,— Химическая промышленность , 1966, № 6. [c.168]

    При температуре ниже 400 °С степень окисления диоксида серы близка к 100 %, однако при этом скорость реакции даже в присутствии катализатора очень мала. Температура, при которой начинается каталитическая реакция окисления диоксида серы в триоксид, это — температура зажигания контактной массы (для данного катализатора составляет 440 °С) при меньшей температуре активность катализатора резко падает. С увеличением кислорода в газе температура зажигания несколько снижается. В связи с обогащением газа кислородом по мере прохождения слоев катализатора (за счет подачи воздуха на охлаждение) температура газа на входе в IV слой может быть снижена до 425 °С. Максимальная температура газа на выходе из слоя контактной массы не должна превышать 580—600 °С во избежание спекания массы и потери ее активности. [c.114]


    Процесс Бендера используется для очистки бензинов, керосинов и реактивных топлив от меркаптанов при содержании их в сырье не более 0,08 % (масс.). Очистка заключается в переводе меркаптанов в дисульфиды при их окислении кислородом воздуха на стационарном слое катализатора — сульфида свинца. Схема процесса Бендера приведена на рис. ХП1-7. [c.117]

    Последующие работы Горного бюро [5] показали, что вследствие изменения характера и формы каталитических гранул нет необходимости поддерживать высокие линейные скорости охлаждающего масла и возможно работать в течение длительных периодов без осложнений при весьма незначительном перепаде давления вдоль слоя катализатора. Новый катализатор состоит из стальных шариков, частично окисленных водяным паром, восстановленных и введенных в синтез путем предварительной обработки в токе газа синтеза. [c.528]

    Кривая распределения температур в слое катализатора при окислении о-ксилола. [c.10]

    Получение надежных результатов моделирования и принятия на их основе технологических решений возможно только на базе теоретически обоснованной кинетической модели процесса. Такая модель уже создана для традиционных катализаторов крекинга, которые непосредственно не принимают участия в процессе окисления и не меняют своих химических свойств [3.30]. На базе этой кинетической модели разработаны достаточно корректные двухфазные диффузионные модели окислительной регенерации на уровне зерна и неподвижного слоя катализатора. [c.68]

    Здесь (М-[0]2п)С — промежуточная форма взаимодействия углерода с окисленным участком поверхности катализатора, близкая к оксикарбиду металла. При низких температурах окисления лимитирующим этапом процесса выгорания углерода будет образование промежуточного соединения (стадия 2), а при высоких окисление катализатора (стадия 1). Соответственно при низких температурах катализа гор будет находиться в виде оксидов металлов, а при высоких — в виде фазы металла [3.36]. При этом, если лимитирующей стадией является присоединение кислорода к катализатору, он существует в начальные моменты регенерации в восстановленной форме. Окисление компонентов катализатора в этом случае может протекать в основном после выжига кокса и затрагивать только поверхность катализатора. Если лимитирующей стадией является передача кислорода коксу от катализатора, то последний будет быстро окисляться. При этом окислению будут подвергаться не Только поверхностные слои, но и объем катализатора [3.30, 3.31, [c.70]


    Окись этилена образуется при окислении воздухом этилена на серебряном катализаторе, температуре 205—315 °С и давлении 7—21 а/п в неподвижном или псевдоожиженном слое катализатора. [c.332]

    Формальдегид получают окислением метанола. В процессе, разработанном I. О., катализатором служат кристаллы серебра размером от 0,15 до 1,25 мм. Поток пара проходит через слой катализатора толщиной около 10 мм, при температуре 600 °С и избыточном давлении 0,35—0,70 ат. В других процессах используется серебряный катализатор в форме сетки. В одной промышленной установке была применена медная сетка. Используя в качестве катализатора железо, промотированное окисью молибдена, можно проводить процесс при более низких температурах (350—450 °С). [c.332]

    Выполнение реактора с насадкой в виде нескольких слоев вместо одного большого слоя обусловливается требованием регулирования температуры посредством теплообмена, а иногда необходимостью улучшить распределение газового потока или уменьшить потери давления. Большинство реакторов с неподвижным слоем снабжено устройством для теплообмена (рис. Х1-17). Широко применяются автотермические процессы, в которых осуществляется теплообмен между исходной и конечной смесями. Комбинации различных способов теплообмена могут быть применены в одном и том же аппарате (см. рис. Х1-8). Еще одним примером реактора с неподвижным слоем катализатора служат реакторы для окисления аммиака (рис. Х1-18). [c.371]

    Выжиг кокса с поверхности катализатора протекает в основном в кипящем слое катализатора. Образующаяся при этом окись углерода дожигается оставшимся в дымовых газах кислородом в верхней зоне регенератора и в циклонах. Состав продуктов сгорания определяется условиями равновесия. Окисление СО в СО2 сопровождается значительным тепловыделением и резким повышением температуры в верхней зоне регенератора, что может привести к сокращению сроков службы располагающихся там внутренних устройств и циклонов. Для подавления процесса догорания окиси углерода под днище [c.33]

    Петров И. М., К у 3 н е ц о в а Л. Ф., Статистические характеристики и устойчивость процесса окисления SO2 в контактных аппаратах с неподвижными адиабатическими слоями катализатора и промежуточными теплообменниками, Хим. пром., № И, 29 (1969). [c.186]

    На втором этапе при температуре 350-480°С из катализатора выгорает основная масса кокса. При этом кокс, локализованный в области каталитического действия металла выгорает при температуре 375°С, а кокс носителя - при температуре 440-460°С. Платина катализирует окисление, реакция идёт с выделением тепла, поэтому на этой стадии важно не допустить перегрева слоя катализатора и спекания платины. С этой целью концентрация кислорода в циркулирующем инертном газе не должна превышать 1% об. [c.54]

    К аппаратуре для контактно-каталитических и термических процессов в газовой фазе относят аппараты для процессов каталитического окисления, гидрирования, хлорирования и ряда других газовых реакций, идущих в присутствии катализатора. Контактные аппараты делят на аппараты с неподвижным и движущимся слоем катализатора. Аппараты с неподвижным слоем, в свою оче-ред >, подразделяются на адиабатные н аппараты с теплообменом. [c.202]

    Наибольший технический интерес представляет расчет окисления коиса в движущемся слое мелких зерен, так как такой слой используется в наиболее крупнотоннажных установках. Например, производительность типовых установок каталитического крекинга в кипящем слое катализатора превышает 500 тыс. т/год по сырью, а количество регенерируемого катализатора в 2—4 раза больше. [c.190]

    Цель технологического расчета — определение основных размеров реактора каталитического окисления вредных примесей, подлежащих удалению из промышленных выбросов. Кроме того, определяют скорость фильтрования и толщину слоя катализатора. [c.308]

    Высота слоя катализатора в емкостном контактном аппарате определяется кинетическими параметрами процесса с учетом гидродинамики потока. Наиболее тонкий слой становится двумерным и может заменяться сеткой из каталитического материала. Это имеет место при проведении весьма быстрых реакций во внешнедиффузионной области, например при окислении аммиака до окислов азота. [c.265]

    В трубчатых реакторах имеются хорошие условия для отвода тепла от катализатора. Это объясняется тем, что отношение поверхности теплоотдачи к объему катализатора в них весьма велико. Кроме того, в трубчатых реакторах применяют большей частью высокие слои катализатора и соответствующие им большие линейные скорости потока газа, что обеспечивает приемлемые значения констант тепло- и массопередачи. Указанные преимущества позволяют осуществлять в трубчатых реакторах сильно экзотермические процессы) например, различные реакции каталитического окисления). [c.267]


    Прямое окисление сероводорода в стационарном слое катализатора [c.98]

    При содержании сероводорода в перерабатываемом газе 3...4 %, окисление проводят в конверторе со стационарным слоем катализатора на основе оксидов переходных металлов. Оптимальная температура в слое катапизатора 260...300 С, время контакта менее 1 с. Необходимым условием проведения процесса является предварительный нагрев газа до 220...240°С. Узел подогрева может представлять собой печь прямого или косвенного нагрева, либо электрообогреватель. Степень извлечения серы в данном случае достигает 90...95 % в зависимости от технологических условий и парциального давления паров воды [5]. [c.105]

    Разработаны две модификации технологии, основанные на реакции прямого окисления сероводорода для очистки высококонцентрированных по сероводороду выбросов (реакторы с кипящим слоем катализатора) и для очистки низкоконцентрированных газовых выбросов (реакторы с блочным катализатором сотовой структуры). Установки с кипящим слоем катализатора испытаны на различных объектах в пилотном масштабе для очистки природного газа Астраханского газоконденсатного месторождения и очистки кислого газа на Уфимском НПЗ. Технологическая схема установки приведена на рис. 4.19. Основные результаты приведенных испытаний представлены в табл. [c.121]

    Результаты испытаний процесса окисления сероводорода в кипящем слое катализатора [c.123]

    Известны случаи использования в качестве катализатора восстановленной пироксидной руды, содержащей около 92% МпОг и примеси Si02, aO, MgO и др. [29]. Руда восстанавливалась в токе азото-водородной омеси или чистого водорода при температуре 350° С до образования МпО. При стехиометрическом соотношении кислорода и водорода, объемных скоростях до 1400 и температуре 250—350° С часть кислорода гидрируется, а часть связывается с контактной массой, вследствие чего в очищенном газе будет содержаться водород. Присоединяя кислород, контактная масса меняет активность и цвет, который с зеленовато-серого становится светло-коричневым. Каталитическое действие массы прекращается при насыщении кислородом, соответствующем формуле МпО,, 15. Скорость окисления руды увеличивается с возрастанием объемной скорости, если даже содержание кислорода в смеси уменьшается. Зависимость высоты окисленного слоя катализатора Я от времени контакта т выражается уравнением [c.113]

    КС. личество тепла (25000 — 31500 кДж/моль, то есть 6000—7500 ккал/ К1 кокса). Углерод кокса сгорает до СО и СО , причем их соотношение зависит от химического состава катализатора и реакционной сг особности кокса. При значительной концентрации СО возможно вс зникновение ее неконтролируемого догорания над слоем катализатора, что приводит к прогару оборудования. Введение в состав Катализатора небольших добавок промоторов окисления устраняет образование СО. При этом возрастает экзотермичность горения кокса. Тепло, выделяющееся при регенерации, частично выводится газами регенерации, а большая часть расходуется на разогрев гранул Кс тализатора. [c.130]

    Газ вводится в контактный аппарат сверху и через распределительные решетки и смесители последовательно проходит четыре слоя контактной массы. Для снятия тепла, выделяемого при окислении диоксида серы, воздуходувкой 4 через пневмозаслонки регуляторов температуры в контактный аппарат (на вход и перед каждым слоем катализатора) подается холодный воздух. Из аппарата 3 газ поступает под колосниковую решетку в нижнюю часть башни-конденсатора 7. На верх башни насосом 15 в качестве орошения подается холодная серная кислота, которая вводится из напорного бачка 8 через устройства, равномерно распределяющие кислоту по сечению башни-конденсатора. Сконденсированная в башне серная кислота через холодильник 6 выводится в сборник 14, откуда балансовый избыток кислоты отводится в резервуары готовой продукции. [c.113]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Минимальная температура, необходимая для инициирования окисления, больше зависит от катализатора, чем от природы окисляемого [4] углеводорода. При применении в качестве катализатора ванадата олова о-ксилол можно окислить даже при температуре 270°, тогда как при применении чистой плавленой пятиокиси ванадия минимальная темпсфатура окисления будет около 425°. Выделяющееся тепло реакции быстро нагревает слой катализатора до более высокой температуры. Обычно реакция контролируется путем регулировки температуры охлаждающей бани таким образом, чтобы максимальная температура, измеряемая в слое катализатора, поддерживалась постоянно в нужном интервале. Максимальные гемпературы катализатора, лежащие несколько ниже 525°, благоприятны для получения продуктов более низкой степени окисления, чем фталевый ангидрид, например альдегидов. При температурах, значительно превышающих 600°, происходит чрезмерное переокисление и реакцию становится трудно контролировать. [c.10]

    Лэлагодаря правильной организации теплообмена в промышленных реакторах синтеза аммиака на выходе из аппаратов достигается концентрация аммиака от 13 до 15% при давлении 300 ат. Это значительно выше, чем возможно при адиабатическом процессе, даже в случае равновесия. Аналогично организован процесс окисления двуокиси серы (см. рис. Х1-9)г температура регулируется при помощи внутреннего или внешнего теплообмена (рис. Х1-10). В настоящее время окисление ЗОа проводят в многослойных контактных аппаратах с промежуточным охлаждением между слоями катализатора.—Дсп. ред.] [c.362]

Рис. Х1-18. Реакторы для окисления аммиака а-конструкция Франка-Кара б-то же Парсонса (высота 80 см, диаметр 61 см, нагрузка 100 кг/чУ, в-то же I. О. (высота 6 м диаметр 5,4 м-, толщина слоя катализатора 10—15 см нагрузка 500—600 кг аммиака на 1 в час) /—пламя зажигания 2—плата-новая сетка (800 С) Л-платниовая цилиндрическая сетка (10И С) 4- о в< ек-ло 5—огнеупоры б—распределитель 7—катализатор (РеаОз+З—5% В12О3, 680—750 С)- Рис. Х1-18. Реакторы для <a href="/info/6630">окисления аммиака</a> а-конструкция Франка-Кара б-то же Парсонса (высота 80 см, диаметр 61 см, нагрузка 100 кг/чУ, в-то же I. О. (высота 6 м диаметр 5,4 м-, <a href="/info/3695">толщина слоя</a> катализатора 10—15 см нагрузка 500—600 кг аммиака на 1 в час) /—<a href="/info/1584890">пламя зажигания</a> 2—плата-новая сетка (800 С) Л-платниовая цилиндрическая сетка (10И С) 4- о в< ек-ло 5—огнеупоры б—распределитель 7—катализатор (РеаОз+З—5% В12О3, 680—750 С)-
    Для нанесения окиси ванадия необходимо выбирать абсолютно инактивный носитель, иначе значительная часть сырья окисляется до воды и СО2. Подходящим носителем для окиси ванадия является пемза. Описан также снликагелевый носитель, обработанный сульфатом калия. Одной фирмой разработан процесс окисления нафталина или ортео-ксилола в псевдокинящем слое катализатора [348]. Преимуществами процесса в псевдокипящем (флюидном) слое являются меньший расход воздуха и более эффективный отвод тепла из реакционной зоны. [c.590]

    Как уже отмечалось, поперечную диффузию, обусловленную наличием насадки, следует учитывать в связи с поперечными градиентами температур. Необходимость учета продольной диффузии при расчете реакторов существенно зависит от соотношения его длины и размера зерен. Если это отношение равно или больше 100, что обычно имеет место на практике, то влиянием продольной диффузии можно пренебречьОднако в тонких слоях эффект может оказаться значительным [9, стр. 95]. К числу реакторов вытеснения с исключительно тонкими (в указанном смысле этого слова) слоями катализатора относится аппарат, применяемый для окисления аммиака. В нем реагирующий газ проходит всего через три или четыре слоя платиново-родиевой сетки, используемой в качестве катализатора. Если бы не влияние продольной диффузии, то для 100%-ного окисления аммиака хватило бы и меньшего числа таких сеток. [c.64]

    В системе уравнений (7.16) ш — линейная скорость газового потока, отнесенная ко всему сечению слоя, м/с х = ol (х , xq , x , Хф) — вектор концентраций в потоке, кмоль/м у = ol ( , УВгО УсОг УЩ вектор концентраций на поверхности зерна катализатора, кмоль/м W = ol Wx, 0,bW -Н W , Wi - W3, -W3 -Wx + + W3) -вектор скоростей превращения компонентов, кмоль/м Wi, рости реакций дегидрирования метанола, окисления водорода и окисления формальдегида I — текущая высота слоя катализатора, м L — полная высота слоя катализатора t — время, с Г — температура в потоке. К 0 — температура зерна катализатора. К AHj, j = 1, 2, 3, — тепловой эффект /-Й реакции, ккал/моль — теплоемкость катализатора, Дж/м -К Ср — [c.313]

    Расчеты показывают, что неравномерные распределения скорости потока приводят к отклонению от режима идеального вытеснения. Так, например, при параболическом распределении скорости потока для необратимой реакции первого порядка максимальное снижение степени превращения за счет неоднородности поперечного потока скорости может составлять 11% [195]. В работе [196] предложена методика оценки влияния пространственных неоднородностей на процесс и показано, что некоторые неравнв-мерности на входе в слой катализатора можно компенсировать соответствующим запасом катализатора в слое. Так, при неравномерностях температур перед последним слоем реактора окисление ЗОз в 80з/32 от +7 до —5° требуется 20%-ное увеличение количества катализатора. Но при неравномерностях более +10° ни при каком запасе катализатора нельзя достичь заданной степени превращения. В таких случаях необходима установка перед слоем хорошего смесителя и распределителя потока. Кроме того, неоднородности влияют на устойчивость процесса [192, 196]. Опыт работы и обслуживания промышленных реакторов подтверждает, что результаты моделирования процессов могут быть не-реализованы на практике при возможных отклонениях от принятого технологического режима работы реактора. Эти отклонения обусловлены пространственными неоднородностями. Так, например, при обследовании работы пятислойных контактных аппаратов, окисления ЗОа в 80 з производительностью 360 т/сут установлено что максимальная неоднородность поля температур на входе в последние два слоя достигает 25—30°, в результате чего конверсия на 0,3—0,6% оказалась ниже расчетной [197]. [c.325]

    Соотношение (1.11) было использовано для приближенной оценки области протекания ряда промышленно важных реакций. Расчеты показали, что внеш недиффузи0 ннык транспорт существенно тор мозит окисление аммиака и метанола. Разумеется, эти расчеты являются приближенными, так как величины у в промышленных реакто рах меняются вдоль слоя катализатора поэтому расчет по средним величинам становится несколько неопределенным и для выявления роли процессов транспорта требуются специальные исследо(вания. [c.11]

    Прямое окисление сероводородсодержащего газа (2...4% сероводорода, 1...4% углеводородов С-С , остальное - диоксид углерода) проводили с использованием промышленных катализаторов (табл.4.1) на проточной лабораторной установке со стационарным слоем катализатора. Состав сырья и продуктов реакции определяли методом газожидкостной хроматографии. Окисление сероводорода может идти с образованием либо диоксида серы, либо серы. Активность катапи-заторав оценивали по суммарной конверсии сероводорода, степеням еги превращения в эпементную серу и диоксид серы, а также селективности по элементной сере [2]. [c.100]

    Проблема снижения капитальных вложений и упрощения технологии окисления высококонцентрированного сероводорода снимается при проведении процесса в реакторе с кипящем слоем катализатора. Кипящий слой катализатора позволяет осуществить эффективный теп-лосъем с зоны реакции и поддерживать режим изотермичности. [c.115]


Смотреть страницы где упоминается термин Окисление по слоям катализатора: [c.15]    [c.184]    [c.11]    [c.11]    [c.204]    [c.209]    [c.215]    [c.75]    [c.201]    [c.115]   
Технология серной кислоты (1985) -- [ c.189 ]




ПОИСК





Смотрите так же термины и статьи:

слое катализатора



© 2025 chem21.info Реклама на сайте