Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние температуры на вес азотной кислоты

    Коновалов нашел оптимальные условия нитрования углеводородов, которые заключаются в проведении реакции в запаянных сосудах при 105—140° С в течение нескольких часов с азотной кислотой уд. веса примерно 1,075. Он установил, что на скорость реакции и выходы готовых продуктов оказывают влияние концентрации азотной кислоты, температура реакции, продолжительность реакции и природа нитруемого продукта. В общем случае повышение концентрации азотной кислоты и температура усиливают реакцию. Давление также облегчает ход реакции. [c.388]


    В публикации [104] установлены условия безопасного выполнения процесса нитрования циклогексана. В работе [105] исследовано влияние концентрации азотной кислоты, температуры, давления, времени выдержки и соотношения компонентов на выход нитроциклогексана при жидкофазном нитровании циклогексана. [c.384]

Рис. 4. Влияние концентрации азотной кислоты на концентрацию растворов аммиачной селитры при использовании 97% тепла реакции нейтрализации и различной температуре НЫОз и аммиака Рис. 4. <a href="/info/813345">Влияние концентрации азотной кислоты</a> на концентрацию <a href="/info/109871">растворов аммиачной селитры</a> при использовании 97% <a href="/info/1702012">тепла реакции нейтрализации</a> и <a href="/info/133412">различной температуре</a> НЫОз и аммиака
    Влияние концентрации азотной кислоты на тепловой эффект процесса показано на рис. III-15. С повышением концентрации азотной кислоты выделяется больше тепла (при прочих равных условиях), при использовании которого испаряется больше воды и получаются более концентрированные растворы аммиачной селитры. Однако в случае использования азотной кислоты концентрацией более 58% при нейтрализации развивается высокая температура, что может привести к разложению азотной кислоты и к повышению потерь азота. [c.108]

    При прибавлении галоидов при температурах нитрования галоидалкилы диссоциируют, а образующиеся галоидводороды окисляются азотной кислотой с образованием свободных галоидов, которые и являются источником образования новых алкильных радикалов. Действительно, добавки небольших количеств хлора или брома при таких реакциях нитрования оказывают заметное положительное влияние. [c.81]

    Азотная кислота в жидкой фазе либо нитрует, либо окисляет углеводороды первому направлению реакции способствует применение разбавленной кислоты и низких температур переработки. Конечные продукты по своей природе сложны, поскольку на реакцию оказывает влияние концентрация кислоты, температура и продолжительность реакций зачастую трудно разделить и опознать различные конечные нитросоединения при комнатной температуре. [c.146]

    Эпоксидные смолы после отверждения весьма устойчивы к коррозионному действию многих химических реагентов. Опи противостоят воздействию соляной кислоты, разбавленной серной кислоты, растворов щелочей, воды и растворов неорганических солей вплоть до температуры 90° С. Из органических веществ спирты, хлорированные углеводороды, ароматические и алифатические углеводороды, а также фруктовые соки ие оказывают влияния на эти смолы. При действии серной кислоты концентрации более 50%, азотной кислоты концентрации более [c.407]


    На рис. 18.3 показано влияние условий процесса нейтрализации (концентрации азотной кислоты и температуры) на концентрацию получаемого раствора нитрата аммония. [c.263]

    Как правило, метан и его гомологи реагируют с кислородом в газовой фазе при температуре от 250° и выше, образуя наиболее устойчивые из всех возможных продуктов окисления, а именно спирты, альдегиды или кетоны, кислоты и окиси. В случае высших углеводородов всегда происходит разрыв углеродной цепи, и часто кислородсодержащие соединения с тем же числом атомов углерода, что и исходный углеводород, составляют небольшую долю общего количества полезных продуктов окисления. Из всех углеводородов наиболее трудно окисляется метан. При последовательном переходе от метана к бутану легкость окисления увеличивается. Давление благоприятствует увеличению выхода и несколько ограничивает степень окисления. Перед началом реакции обычно наблюдается индукционный период. Твердые катализаторы и присутствие водяного пара не оказывают большого влияния на течение процесса. В этом отношении следует отметить аналогию с парофазным нитрованием (гл. 6), причем важно подчеркнуть, что нитрование азотной кислотой всегда сопровождается окислением, протекающим в значительной степени. [c.69]

    Скорость гидролиза—инверсии—определяется величиной константы К при сохранении всех условий идентичными (равные температуры, концентрации и т. д.). Значение К сильно возрастает с температурой при 45 оно в 3,5 раза больше, чем при 35". Большое влияние оказывают концентрация и природа взятой кислоты. Это видно из табл. 52, где приведены значения константы инверсии К для разных кислот при 25 К для азотной кислоты принята за 100 1 г-мол кислоты растворена в 1 л Н2О). [c.535]

    Влияние условий на протекание окислительно-восстановительных процессов. Протекание окислительно-восстановительных процессов в сильной степени зависит от различных условий, прежде всего от природы реагирующих веществ, их концентрации, температуры и характера среды. Так, концентрированная и разбавленная азотная кислота по-разному восстанавливается при взаимодействии с одним и тем же восстановителем  [c.150]

    Полипропилен выдерживает действие 98%-ной серной кислоты при температуре 90 в течение 7 час., пе изменяется при 70 в 50%-ной азотной кислоте, не разрушается в концентрированной соляной кислоте и 40%-ном растворе едкого натра. Под влиянием кислорода воздуха полипропилен постепенно окисляется, особенно во время формования изделий при повышенной температуре. Окисление сопровождается возрастанием жесткости, а затем хрупкости материала. Введение в полипропилен антиокислителей (фенолы, амины) стабилизирует свойства полимера, находяш егося в расплавленном состоянии в течение нескольких часов. Длительное солнечное воздействие придает полипропилену хрупкость, ускоряя процесс окислительной деструкции. Введение в полипропилен антиокислителя и сажи позволяет повысить устойчивость полипропилена к световому воздействию. Термическая деструкция полимера наблюдается выше 300.  [c.788]

    Влияние температуры на реакцию нитрования. При нитровании ароматических соединений одним из наиболее важных условий является соблюдение температурного режима, В отдельных случаях превышение заданной температуры приводит к энергичному окислению (окисляющее действие азотной кислоты), что снижает выходы нитросоединений. В известной мере изменение температуры реакции оказывает также влияние на место вступления нитрогруппы, а также на степень нитрования например, повышение температуры при нитровании бензола приводит к увеличению в продуктах реакции количества о-динитробензола. [c.208]

    Влияние азотной кислоты и перекиси водорода при различных температурах на механические свойства резки на основе фторкаучука [c.338]

    Влияние температуры. Весьма важным фактором, играющим большую роль в процессе нитрования, является температура, при которой проводится реакция. Нитрование ароматических соединений производится при различных температурах, в большинстве случаев от О"" и до повышенных— порядка 100—ПО"", но для получения каждого нитросоединения существует своя оптимальная температура. Даже незначительное превышение этой наиболее благоприятной температуры приводит к образованию полинитросоединений и усилению окисляющего действия азотной кислоты. [c.29]

    Для выяснения влияния предварительной обработки поверхности углеродных волокон на образование и качество покрытия были проведены опыты по осаждению меди на необработанное в окислителе волокно, подвергнутое термообработке в воздушной среде при температуре 500° С в течение 1 мин, и волокно, прошедшее обработку в 65%-НОЙ НКОд в течение 5 мин. Дальнейшие сенсибилизация, активация и металлизация проводились в одинаковых условиях. В случае, если волокно не прошло окислительную обработку, часто происходит образование одной рубашки на группе элементарных волокон. На рис. 1, (см. вклейку) полученном на растровом электронном микроскопе, показана группа, состоящая из четырех элементарных волокон. При разрыве нити одно элементарное волокно было удалено из оболочки. Видно отслоение и самой оболочки, что свидетельствует о плохой адгезии покрытия к поверхности волокна. Следует также учитывать и крутку волокна, которая благодаря тесному контакту элементарных волокон между собой препятствует проникновению раствора внутрь. Характер разрыва углеродных волокон, прошедших предварительное окисление на воздухе или в растворе азотной кислоты, как правило, свидетельствует о хорошей адгезии покрытия к поверхности волокна. Анализ снимков позволяет сделать вывод о необходимости предварительной обработки углеродных волокон в окислительной среде. [c.149]


    Алифатические углеводороды, в отличие от ароматических, крайне инертны к действию азотной кислоты, и в течение многих лет попытки ввести нитрогруппу в алканы не давали положительных результатов. Только в конце прошлого столетия М. И. Коновалову удалось показать возможность получения нитроалканов прямым нитрованием алканов. Эти работы, а также исследования Ё.. В. Марковникова позволили выяснить основные закономерности реакции нитрования парафиновых углеводородов — влияние концентрации азотной кислоты, температуры, давления, строения углеводородов и других факторов. Эти работы послужили стимулом для изучения нитроалканов и нитроцикланов и были направлены на изыскание путей определения состава нефти по характеру продуктов нитрования отдельных ее фракций. Глубокие исследования нитрования парафиновых углеводородов, выполненные указанными авторами, явились по существу научной основой промышленного метода газофазного нитрования предельных углеводородов, разработанного Хэссом с сотр. [1—3 . [c.9]

    Влияние концентрации азотной кислоты, содержания добавки К2СГ2О7, а также температуры на коррозию хрома приведено в табл. 3. [c.206]

    Влияние концентрации азотной кислоты на степень разложения фосфатного сырья и скорость реакции невелико. При норме НКОз, равной стехиометрической, и температуре 50 °С степень извлечения Р2О5 при использовании азотной кислоты различной концентрации составляет [75]  [c.60]

    Для избежания двухфазной системы пробовали найти растворители, способны частично растворять углеводород и азотную кислоту. Для этой цели применялись ледяная уксусная кислота, ацетилнитрат, этил-нитрат и т. п., не говоря уже о взрывоопасности, которая появляется при применении этих растворителей необходимо указать на дальнейшее изменение этих веществ под влиянием азотной кислоты, так как она в условиях нитрования вызывает со временем изменение почти всех веществ. Даже уксусная кислота, которая является наиболее удовлетворительным растворителем из найденных до сих пор, также подвергается воздействию азотной кислоты в области температур, необходимых для нитрования. Кроме того, как установил Хэсс с сотрудниками [130], применение уксусной кислоты более благоприятствует окислению углеводородов, чем их нитрованию. [c.304]

    Действие азотной кислоты на углеводороды, много изучавшееся, все-таки не впояне выяснено и вот по каким причинам опыты нре-ясде всего ставились часто над смесями, но не над чистыми веществами, затем оказывала свое влияние одновременность многих реакций, влияние различных факторов, как температура, концентрация кислоты и т. д. [c.78]

    Иллюстрацией данного положения может послужить исследование, проведенное автором и его коллегами [21] в годы войны. Речь идет о разработке метода нитрования гексаметилентетра-мина (гексамина) с целью получения взрывчатого вещества цик-лонита (R. О. X.). Мелкие кристаллы гексамина добавляли к 97—100%-ной азотной кислоте при соответствующей температуре. Кинетика реакции была неизвестна, но было обнаружено, что суммарный выход, полученный в лабораторном реакторе периодического действия, весьма чувствителен к соотношению гексамина и азотной кислоты в реакционной смеси. По-видимому, это связано с влиянием эффективной концентрации нитрующей среды. По мерс протекания реакции расходуется азотная кислота и выделяется вода. При этом происходит постепенное растворение и взаимодействие все новых и новых количеств твердого гексамина при непрерывном разбавлении кислоты. Логичное объяснение экспериментальных наблюдений дает гипотеза, согласно которой мгновенный выход, т. е. выход на каждую вновь добавляемую порцию гексамина, почти полностью определяется мгновенной концентрацией кислоты. [c.124]

    На возникновение коррозиониого растрескивания металлов и на его интенсивность оказывают большое влияние характер агрессивной среды, ее концентрация, температура, структурные особенности металла и др. Наибольшее число разрушений аппаратов из углеродистых и низколегированных сталей наблюдается в растворах щелочей, азотнокислых солей, влажном сероводороде. Известны также отдельные случаи разрушения этих сталей в азотной кислоте, смеси азотной кислоты с серной кислотой и других средах. [c.102]

    Чтобы избежать образования взрывчатых смесей, на каждый моль азотной кислоты вводят по меньшей мере 2 моля углеводорода. Окисляющая парафин азотная кислота восстанавливается в окись азота, которую легко перевести обратно в НМОд. В результате этого выход нитропроизводных парафинов, считая на прореагировавшую кислоту, может достигать 90%. Большинство из испытанных до сих пор катализаторов вызывают только ускорение реакции окисления. Повышение температуры увеличивает скорость нитрования, благоприятствует образованию первичных нитро-производных за счет вторичных и третичных и повышает выход продуктов расщепления углеродного скелета. Следует указать на аналогию в отношении влияния температуры, которая существует между парофазным нитрованием и парофазным хлорированием парафинов (гл. 5). При постоянной продолжительности реакции кривая зависимости степени превращения от лемпературы проходит через максимум. При температурах ниже оптимальной происходит в значительной степени пиролиз нитропарафинов. Реакция нитрования парафинов весьма экзотермична, поэтому, чтобы предотвратить местные перегревы, которые могут вызвать процессы, не поддающиеся управлению, в промышленных условиях заданную температуру поддерживают с точностью 1 °- [c.91]

    Азотная кислота обладает сильно выраженными окислительными свойствами. Она разрушает животные и растительные ткани, окисляет почти все металлы и неметаллы. Образование тех или иных продуктов взаимодействия зависит от концентрации НЫОз, активности простого вещества и температуры (стр. 264). На рис. 183 показано влияние концентрации НЫОз на характер образующихся продуктов ее восстановления при взаимодействии с железом. Достаточно разбавленная кислота в основном восстанавливается до ЫН4ЫО3 с повышением ее концентрации становится более характерным образование ЫО концентрированная НЫОз восстанавливается до ЫОа- [c.400]

    Все три металла имгют отрицательные нормальные потенциалы и должны были бы растворяться в разбавленных кислотах с выделением водорода. Однако на поведение их в кислотах большое влияние оказывает состояние поверхности окисно-нитридная пленка сдвигает потенциал в сторону положительных значений. Так, в 1 н. H S04 или НС1 потенциал титана равен потенциалу благородного металла (+0,26 В). Поэтом) ри комнатной температуре титан не растворяется в азотной и фосфорной кислотах любой концентрации и в разбавленных серной и соляной. При растворении в концентрированных соляной и серной кислотах образуются фиолетовые растворы солей Ti (И1). Азотная кислота, способствующая образованию защитной пленки, пассивирует титан, и он не растворяется в смесях концентрированных кислот серной и азотной, соляной и азотной. Плавиковая кислота и фториды разрушают защитную пленку, поэтому титан растворяется в плавиковой кислоте, а также в любых других кислотах, к которым добавлены фториды (выделяется водород). При нагревании растворяется во всех кислотах, которые действуют в этих условиях как окислители. Устойчив к действию растворов различных солей, органических кислот, влажного хлора, но недостаточно стоек против их расплавов. В морской воде его стойкость сравнима со стойкостью платины. [c.213]

    Водная абсорбция. В производстве азотной кислоты окислы азота поглощают водой из газов, образующихся при окислении аммиака. В этих газах окислы азота присутствуют в виде окиси азота N0, двуокиси азота NOj, трехокиси азота N2O3 и четырех-окиси азота N3O4. Находящаяся иногда в газах в небольших количествах закись азота N,0 не оказывает заметного влияния иа поглощение. Трехокись азота присутствует в газах в заметных количествах лишь при низких температурах и значительных давлениях обычно ее содержанием можно пренебречь. [c.74]

    Катализаторы не нащли широкого применения в реакции нитрования. Однако при нитровании ароматических соединений азотной кислотой в присутствии солей ртути проявляется своеобразное каталитическое влияние ртути, обусловливающее образование оксинитросоединений. Так, при действии на бензол 50—55%-ной азотной кислоты в присутствии азотнокислой ртути при 50"" получается 2,4-динитрофенол с выходом 85% при более высокой температуре в качестве основного продукта реакции получается пикриновая кислота  [c.49]

    В случае легко нитрующихся ароматических колец можно применить 68%-ную азотную кислоту с d = 1,42 или дымящую 98%-ную азотную кислоту с d = 1,49. Бесцветную дымящую азотную кислоту получают вакуумной перегонкой при температуре ниже О °С при 25 °С опа краснеет из-за присутствия окислов азота. Безв0дную азотную кислоту (d = 1,51) приготавливают перегонкой дымящей азотной кислоты из равного объема серной кислоты [6]. Обычно применяют нитрующую смесь HNO3 и H2SO4 (используют обычные кислоты для случаев легко протекающего нитрования и дымящие кислоты для трудно нитруемых соединений или для введения нескольких нитрогрупп). Иногда выбор сделать трудно. Для контроля за количеством нитрующего реагента и для сведения к минимуму количества накапливающейся воды в системе лучше всего применять смесь нитрата калия и серной кислоты. Конечно, вода непосредственного влияния на процесс нитрования не оказывает, поскольку это необратимая реакция, но она влияет на выбор типа нитрующего агента. Наиболее мощный нитрующий агент должен [c.480]

    ВЛИЯНИЕ ТЕМПЕРАТУРЫ И КОНЦЕНТРАЦИИ АЗОТНОЙ КИСЛОТЫ НА КОРРОЗИЮ НЕР>1<АВЕЮ11]ИХ АУСТЕНИТНЫХ И ФЕРРИТНЫХ СТАЛЕЙ [c.21]

    В данной работе исследовали влияние температуры и концентрации азотной кислоты на коррозионное поведение аустенитных и ферритных сталей. Были исследованы следующие стали и сплавы ESU (эпектро-шпаковый переплав) - 1.4306 - S (X2 rNi 1911) 1,4335 [c.22]

    Обстоятельное исследование парофазного нитрования пропана и бутана азотной кислотой провел в 1952 г. Бахман с сотрудниками [122—125], установивпгай, что в результате реакции нитрования, наряду с нитросоединениями, получаются и кислородсодержащие соединения и непредельные углеводороды. При температуре 425 (оптимальная температура) и времени контакта 1,6 сек. конверсия достигает 36%. Этими авторами было изучено влияние добавок кислорода и галоидов на выход и состав продуктов нитрования бутана [123] и пропана [124, 125]. Было найдено, что добавка двух молей Оа на моль HNOg не меняет оптимальной температуры (425°) нитрования бутана, увеличивает выход нитропродуктов в расчете на пропущенную HNOg, но понижает выход в расчете на превращенный бутан. Было также найдено, что при последовательном введении 1, [c.270]

    Таким путем возникают нитросоединения с числом атомов углерода, соответствующим нитруемому парафину. Для обът яснения образования нитросоединений с меньшим числом атомов углерода Мак-Клирли и Дегеринг допускают дальнейшее расщепление радикалов под влиянием высоких температур и последующее нитрование продуктов пиролиза двуокисью азота или азотной кислотой. [c.280]

    В работе [52] исследовали кинетику растворения ниобиевых сплавов путем периодического, через каждые 24 ч, взвешивания (до 72—144 ч) при испытаниях в закрытых контейнерах при давлении 15 атм, а также при 185° С (только 24 ч). В качестве агрессивных сред использовали кипящие серную, соляную и фосфорную кислоты. Испытания в азотной кислоте не проводили, так как согласно литературным данным в азотной кислоте ниобий абсолютно стоек при любых температурах и концентрациях. На рис. 64 показана стойкость ниобиевых сплавов в кипящей серной кислоте различной концентрации. Расположение кривых позволяет оценить влияние легирования на коррозионную стойкость ниобия в этой среде. Очевидно, что все исследованные элементы (Ti, V, Zr, Mo), кроме Та, оказывают неблагоприятное влияние на стойкость ниобия. Стойкость ниобия в кипящей соляной кислоте может быть оценена по предельной концентрации этой кислоты, которая, как установлено, равна 16%. Тантал, как бьшо показано (см. рис. 45), абсолютно стоек в кипящей соляной кислоте до концентрации 30%. Взвешивание с точностью до 10 г практически не фиксирует уменьшения массы сплава МЬ + 15ат. %Тав кипящей 20%-ной НС1. [c.68]

    Процесс получения концентрированной азотной кислоты — сложный го-могенио-гетерогеииый процесс, иа скорость которого оказывают влияние кинетические и диффузионные факторы. Лимитирующая стадия процесса кисло-тообразования меняется в зависимости от концентрации азотной кислоты в растворе, давления и температуры [80, 87]. [c.106]


Смотреть страницы где упоминается термин Влияние температуры на вес азотной кислоты: [c.368]    [c.196]    [c.101]    [c.520]    [c.77]    [c.425]    [c.16]    [c.28]    [c.43]    [c.93]    [c.113]    [c.77]    [c.106]   
Справочник по основной химической промышленности Издание 2 Часть1 (0) -- [ c.362 , c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние температуры и концентрации азотной кислоты на коррозию нержавеющих аустенитных и ферритных сталей

Пахомов, Е. М. Зарецкий и И. Я. Клипов. Влияние температуры и концентрации растворов азотной кислоты на стационарные потенциалы нержавеющих сталей типа



© 2025 chem21.info Реклама на сайте