Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность молекул

    Увеличение скорости реакции с повышением температуры вызывается главным образом а) увеличением средней кинетической энергии молекул б) возрасчанием числа активных молекул в) ростом числа столкновений  [c.105]

    Адсорбироваться на металлических поверхностях могут и неполярные насыщенные молекулы углеводородов. Адсорбция в данном случае происходит под влиянием поляризации неактивных углеводородных молекул электрическим полем металлической поверхности. Прочность и устойчивость такой адсорбированной пленки мала. Интересно, что если добавить в жидкость, состоящую из неполярных углеводородных молекул, незначительное количество (около 0,1%) поверхностно-активного вещества, то на поверхностях будет образовываться достаточно прочный граничный слой, состоящий из монослоя поверхностно-активных молекул и нескольких слоев строго ориентированных неполярных молекул углеводородов растворителя (рис. 32). [c.60]


    Поверхностно-активные молекулы, попадая на твердую поверхность, занимают всю свободную поверхность за счет способности перемещаться (мигрировать). Перемещаясь, молекулы проникают в микротрещины на поверхности раздела зерен, в незаполненные узлы кристаллической решетки. При этом значительно понижается свободная поверхностная энергия твердого тела, что в свою очередь приводит к облегчению пластического течения в поверхностном слое. Это действие поверхностно-активных веществ известно как эффект адсорбционной пластификации. [c.61]

    Чем объясняется повышение скорости реакции при введении в систему катализатора а) уменьшением энергии активации б) увеличением средней кинетической энергии молекул в) возрастанием числа столкновений г) ростом числа активных молекул  [c.104]

    Что же произойдет, если в воду добавить немного мыла и потом ее взболтать Как только появятся пузыри, обволакивающая их водяная пленка будет заполнена поверхностно-активными молекулами мыла. Для поддержания такой пленки нужно меньше энергии, чем если бы она состояла только из молекул воды. Больше того, если мы захотим уменьшить площадь такой пленки, нам придется вытеснить из нее молекулы мыла, а это не так просто. Поэтому на поверхности мыльного раствора остается слой мыльных пузырей — пена. Этим и пользуются дети, когда разводят в воде мыло, чтобы пускать мыльные пузыри. [c.180]

    Адсорбция из жидкой среды поверхностно-активных молекул и [c.58]

    Цепные реакции. Это сложные реакции, протекающие по особому механизму через ряд последовательных простых реакций с участием активных частиц, которыми могут быть активные молекулы, обладающие избытком внутренней энергии, свободные атомы и радикалы или нестабильные ионы. [c.230]

    Хорошие результаты дают поверхностно-активные- присадки, добавленные в углеводородную среду. В этом случае на поверхности твердых частиц адсорбируются поверхностно-активные молекулы присадки и как бы увеличивают сопротивление при движении твердых частиц. [c.94]

    Взаимодействие фтора с водородом протекает со взрывом даже на холоду, образование НВг из простых веществ происходит лишь при достаточном нагревании, а образование HI — при столь сильном нагревании, что значительная часть его термически разлагается. Об уменьшении окислительной активности молекул галогенов с увеличением порядкового номера элемента свидетельствует также сопоставление их стандартных электродных потенциалов. [c.299]

    При этом активность молекул воды, адсорбированных на поверхности металла, будет значительно снижена. [c.293]


    Поскольку число столкновений огромно, а большинство реакций протекает медленно, очевидно, что не каждое столкновение приводит к реакции. Вероятно, при соударениях реагируют только те молекулы, которые обладают избыточной энергией, превышающей некоторую критическую величину, называемую энергией активации. Обычно эти активные молекулы составляют лишь очень незначительную долю от общего их числа. По ряду соображений полагают, что отдельные молекулы газа отличаются друг от друга скоростью теплового движения и, следовательно, своей кинетической энергией. Это будет справедливо в том случае, если столкновения молекул являются более или менее упругими, так как после упругих соударений одни молекулы будут увеличивать свою скорость, а другие—уменьшать. [c.39]

    Инициирование. Эту ступень реакции трудно объяснить, но, вероятно, благодаря наличию активных молекул в системе возникают цепи свободных радикалов [12] [c.69]

    Обрыв цепи мол<ет происходить различными путями. При квадратичном обрыве цепей, который будет рассматриваться ниже, валентнонасыщенные молекулы полимера образуются в результате столкновения двух растущих цепей или растущей цепи с активной молекулой мономера. [c.49]

    Через А здесь обозначены все активные молекулы, независимо от числа молекул мономера, входящих в их состав, т. е. от степени полимеризации [c.50]

    Как показывает Н. И. Черножуков, результаты, связывающие зависимости скорости окисления от концентрации О2, были получены с дистиллятами глубокой очистки. В тех же случаях, когда испытывалось масло нормальной очистки, такой зависимости не обнаруживали. Очевидно, скорость реакции окисления определяется не столько концентрацией О2, сколько наличием и возможностями зарождения активных молекул субстрата и развитием цепи реакции. Если в масле нет веществ, тормозящих процесс окисления, т. е. масло очищено, то повышение концентрации кислорода увеличивает скорость окисления за счет большей возможности столкновения молекул кислорода с активированными молекулами субстрата. Когда же количество активированных молекул в окисляемом продукте мало и энергия их поглощения веществами, тормозящими реакцию, невелика, концентрация кислорода уже не оказывает существенного влияния на скорость окисления. [c.16]

    В ходе химической реакции непрерывно убывает число активных молекул, превращающихся в продукты реакции. Если скорость реакции значительно меньше скорости молекулярнокинетической активации, относительное число активных молекул будет сохраняться постоянным и максвелл-больцмановское распределение не будет искажено. Если же реакция протекает достаточно быстро и скорость ее сравнима со скоростью активации, относительное число активных частиц будет убывать, т. е. будет происходить так называемое выгорание активных частиц. Это явление имеет большое значение для интерпретации быстрых процессов — взрывных и разветвленных цепных. [c.130]

    С понижением давления время между столкновениями возрастает и может превысить время жизни активной молекулы (тст. тл ). Тогда большинство молекул, не успевая дезактивироваться, претерпят превращение, т. е. [c.164]

    Активация и для мономолекулярных реакций является результатом соударений, т. е. является бимолекулярным процессом. Благодаря тому, что с усложнением строения молекулы время жизни активного комплекса за счет перераспределения энергии столкновения по внутренним степеням свободы молекулы возрастает, скорость реакции оказывается пропорциональной не числу столкновений, а доле активных молекул в реагирующей системе, которая в свою очередь прямо пропорциональна общему числу реагирующих молекул. Отсюда выполнение кинетического закона первого порядка. [c.164]

    Теория Касселя. Кассель предложил модель молекулы как совокупность X осцилляторов, обладающих одинаковой частотой колебаний V, Число осцилляторов 5 для п-атомной молекулы равно Зп — 6. Осцилляторы квантованы и могут отдавать или воспринимать друг от друга энергию, только кратную hv. Способной к мономолекулярному распаду считается только такая молекула, на определенной колебательной степени свободы которой сосредоточено га квантов, т. е. энергия, равная тку. Вероятность распада активной молекулы принимается пропорциональной вероятности определенной концентрации квантов на одном из осцилляторов  [c.170]

    В этой схеме можно выделить три группы реакций. В первую группу входит первичная реакция диссоциации хлора под действием света — реакция зарождения цепи. Характерной особенностью реакции (I) является то, что в результате нее возникают активные центры — атомы С1. Следует отметить, что активными центрами могут быть свободные атомы, как в рассматриваемой реакции, а также радикалы или химически активные молекулы, обладающие избытком внутренней энергии. [c.196]


    Кроме того, активный продукт может гибнуть, как было ска-.зано выше, в результате соударений активных молекул со стенками сосуда. Ежесекундное число случаев гибели на стенках [c.225]

    Скорость химической реакции возрастает в присутствии катализатора. Действие катализатора объясняется тем, что при его участии возникают нестойкие промежуточные соединения активированные комплексы), распад которых приводит к образованию продуктов реакции. При этом энергия активации реакции понижается и активными становятся некоторые молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие катализатора. В результате общее число активных молекул возрастает и скорость реакции увеличивается. [c.93]

    С ростом температуры число активных молекул возрастает. Отсюда следует, что и скорость химической реакции должна увеличиваться с повышением температуры. Действительно, при возрастании температуры химические реакции протекают быстрее. [c.175]

    Соотношение между количеством активных молекул в присутствии и в отсутствие катализатора показано на рис, 67. [c.178]

Рис. 67. Влияние катализатора на число активных молекул Рис. 67. <a href="/info/26056">Влияние катализатора</a> на <a href="/info/9463">число активных</a> молекул
    Поверхностно-активные молекулы, попадая в микротрещины поверхностей трения и достигая мест, где ширина зазора равна размеру одной-двух молекул, стремятся своим давлением расклинить трещину (рис. 33). Это явление известно под названием адсорбцион-но-расклинивающего эффекта, что также впервые было обнаружено и изучено акад. П. А. Ребиндером. Подсчитано, что давление на стенки трещины может достигать до 1000 кПсм . Адсорбционно-рас-клинивающее действие поверхностно-активных молекул также приводит к облегчению пластических деформаций в поверхностном слое и к понижению прочности металла. При трении металлов это приводит к лучшей приработке деталей и снижению величины силы трения. Однако адсорбционно-расклинивающее действие может приводить к увеличению износа трущихся пар за счет облегчения процессов диспергирования поверхностных объемов металла. [c.61]

    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    Действие добавок, возвращающих реакцию к мопомоле-кулярной, с помощью схемы Линдемана объясняется тем, что молекулы добавленного вещества, сталкиваясь с возбужденными молекулами реагирующего вещества, дезактивируют последние, возвращая их в исходное нереакционноспособное состояние, а сталкиваясь с невозбужденными молекулами, они их, наоборот, активируют. Интересно, что молекулы добавляем мых газов увеличивают скорость мономолекулярной реакции до величины, характерной для высокого давления, но не дают возможности превысить эту величину. Следовательно, роль их неспецифична и заключается лишь в поддержании равновесной, по максвелл-больцмановскому распределению, концентрации активных молекул реагирующего вещества. Доля участия молекулы в переносе энергии при мономолекулярном распаде зависит от ее химической природы и в общем возрастает с ростом молекулярного веса и числа атомов в молекуле. Ниже приведена относительная эффективность (т]эф.) дей  [c.166]

    В маслах и смазках поверхностно-активными элементами, образующими граничный слой, являются полярные молекулы с отчетливо выраженной ассимметричной структурой. Полярными группами в молекуле являются ОН СООН Г 1Нг, N02 или атомы О, 8, N. С1 и др. Поверхностная активность молекулы зависит от величины ее дипольного момента, характеризующего асимметрию распределения положительных и отрицательных электрических зарядов в молекуле и относительных размеров полярных групп и неполярной части молекулы. [c.133]

    Е результате этих процессов концентрация активных мол кул [А ] поддерживается постоянной, соответствующей мак велл-больцмановскому распределению. Когда реакция fie протекает, доля активных молекул не зависит от давления (кок-центрации), а число их прямо пропорционально давлению (ко1-центрации), поскольку с изменением давления пропорционал -но меняются и скорости активации и дезактивации. При наличии химической реакции концентрация активных частиц будет убывать и вследствие их распада  [c.163]

    При установившемся процессе постоянство ко1щентрации активных молекул будет определяться условием  [c.163]

    Активные молекулы А имеют определенное среднее время жизни Та, обусловленное вероятностью превращения А в конечные продукты. В зависимости от соотношения между та и временем между столкновениямп Тст., уравнение (VI, 3) можно представить в двух предельных формах. При высоких давлениях столкновения настолько часты (тст. <тл ), что почти все молекулы А дезактивируются, не успевая прореагировать, т, е. [c.164]

    Для характеристики цепных процессов важное значение имеют понятия длины цепи и длины ветви. Длина цепи, как указывалось, равна числу реакций (циклов), возникающих вследствие первичного вступления в реакцию одной молекулы промежуточного продукта. Чаще всего промежуточный продукт представлен атомами илн радикалами, которые следует считать молекуламн особого вида. Вступление одной молекулы промежуточного продукта в первую реакцию (или в первый цикл) дает J среднем ы новых молекул промежуточного продукта. Вступив снова в реакцию, они дают молекул того женродук-та и т. д. Для простых, не разветвленных цепных реакций, значение (U может быть только меньше или равным единице, так как величина ы одновременно есть вероятность того, что нераз-ветвленная цепь не обрывается на данном звене, а образует в этом звене одну новую активную молекулу, которая дает начало новому звену. [c.205]

    Масштабный множитель т в экспоненциальных функциях типа (VIII, 87) принято называть перуодом индукции-, Uq — концентрация активных молекул в начальный момент времени t=0. [c.226]

    Ехли реакция идет в газах, находящихся под малым давлением, с участием возбужденных молекул, то возникшие активные молекулы могут дезактивироваться путем испускания света до того, как они столкнутся с реагирующими молекулами. При фотохимическом разложении аммиака квантовый выход зависит от температуры. При изменении температуры от 20° до 500° С величина у изменяется от 0,2 до 0,5. Это объясняется следующими обстоятельствами. Первичный процесс поглощения фотона сопровождается отщеплением одного из атомов водорода  [c.233]

    Как показывает последний пример, скорость химической реакции очень сильно возрастает при повышении температуры. Это связано с тем, что элементарный акт химической реакции протекает не прп всяком столкповептг реагирующих молекул реагируют только те молекулы активные молекулы), которые обладают достаточной энергией, чтобы разорвать или ослабить связи в исходных частицах и тем самым создать возможность образования новых молек л. Поэтому калсдая реакция характеризуется определенным энергетическим барьером для его преодоления необходима энергия активации — некоторая избыточная энергия (по сравнению со средней энергией молекул при данной температуре), которой должны обладать [c.91]

    Молекулы для того, чтобы их столкйовение было эф -фективным, т. е. привело бы к образованию нового вещества. С ростом температуры число активных молекул быстро увеличивается, что и приводит к резкому возрастанию скорости реакции. [c.92]

    В состав колец могут входить атомы кислорода, азота и серы. Ниже, в разд. Д, вы увидете, что кольца, состоящие из пяти атомов углерода и одного атома кислорода, образуют основу одного из классов биологически активных молекул - углеводов. [c.216]

    Таким образом, к реакции должны приводить лишь эффективные столкновения частиц, число которых составляет малую долю от общего числа столкновений. Эффективными будут столкновения между активными частицами. Аррениусу не удалось объяснить природу активных молекул и см(.1сл предэксноненциального множителя А. Молекулярнокинетическое истолкован ие уравнения Аррениуса былодано Алексеевым, который предложил активными считать молекулы, обладающие повышенным запасом энергии. [c.339]


Смотреть страницы где упоминается термин Активность молекул: [c.197]    [c.218]    [c.49]    [c.50]    [c.715]    [c.171]    [c.225]    [c.92]    [c.175]    [c.179]    [c.86]    [c.340]   
Практикум по физической химии (1950) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегат мицеллы молекул поверхностно-активных веществ

Адсорбция на подвижных границах раздела. Уравнение Гиббса Поверхностно-активные и инактивные вещества. Адсорбция полярно-аполярных молекул

Азот активный свойства молекул

Активное состояние молекул

Активность ионов и молекул

Активность молекул с сопряженной

Активность молекул с сопряженной системой двойных связей, относительная

Активность радикалов и молекул

Активность, единицы число на молекулу фермент

Активные столкновения молекул

Аррениус активные молекулы

Аррениус активные молекулы для измерения электропроводности

Аррениус активные молекулы катализ скорость реакции

Аррениус активные молекулы температура сосуд

Биологическая активность и строение молекулы

Биологически активные молекулы, методы выделения и характеризации

Весы Ленгмюра. Определение размера молекул поверхностно-активного вещества

Витаминная активность и строение молекулы

Влияние на адсорбцию па границе раствор — газ строения и размера молекулы поверхностно-активного вещества. Правило Траубе

Водородные связи в биологически активных молекулах

Д у б и н и н, К- М. Н и к о л а е в, Н. С. И о л я к о в. Молекулярно-ситовое действие промышленных активных углей с различной микропористой структурой в статике и динамике адсорбции паров веществ с относительно крупными молекулами

Диацетоновый коэффициенты активности ионов и недиссоциированных молекул в растворах

Диссимметричные молекулы с оптически активными реагентами

Жданов, Е. И. Котов. Механизм локального взаимодействия молекул-индикаторов с активными центрами декатионированных цеолитов

Зависимость активности оптической от строения молекул

Зависимость гормональной активности от химического строения молекул

Изменение энергии (изобарного потенциала) молекул при растворении. Коэффициенты активности f0 молекул

Изучение участия активных форм кислорода в процессах УФ-модификации белковых молекул

Использование стереоспецифического катализа для определения абсолютной конфигурации молекул оптически активных соединений

Исследование влияния строения молекул ПАВ на их поверхностную активность. Определение параметров адсорбционного слоя

Какого рода молекулы проявляют оптическую активность

Калий иодистый, коэффициент активности молекул

Квантово-механическое рассмотрение оптической активности и спиральная модель молекулы

Квантовохимический подход к прогнозированию активности гетерогенных катализаторов. Методы расчета электронной структуры молекул и твердых тел

Концентрация активных молекул

Коэффициенты активности веществ, адсорбированных из водного раствора углеродными материалами, и взаимодействие молекул в адсорбционной фазе

Коэффициенты активности единые молекул

Коэффициенты активности нейтральных молекул

Коэффициенты активности нейтральных молекул в водных растворах солей

Магний бромистый, коэффициент активности средний молекул

Механизм сорбции органических молекул и ионов на активном центре

Молекула активированная активная

Молекула активная по Гиншельвуду

Молекула структура и физиологическая активность

Молекулы активные

Молекулы активные

Натрий азотнокислый, высаливание нейтральных молекул активности бромистоводородной кислоты и гидрата окиси, натрия

Ограничение ассоциации адсорбированных молекул ПАВ при адсорбции их активными углями из мицеллярных растворов и вид изотерм адсорбции

Оптическая активность и деформация молекул

Оптическая активность модель молекулы

Опыт 33. Состояние ионов и молекул в зависимо9ти от полярности растворителя. Сольваты молекул йода — 78. Опыт 34. Химическая активность сольватов молекул иода

Опыт 95. Ориентация молекул поверхностно-активного вещества в насыщенном поверхностном слое (модельный опыт)

Относительная активность положений в молекулах тиофеновых соединений и количественное соотношение изомеров, образующихся при электрофильном замещении

ПАВ поверхностно-активные вещества строение молекул

Поверхностная активность вещества и длина молекулы

Поверхностно-активные вещества диссоциация молекул в раствор

Поверхностно-активные вещества ориентация молекул в адсорбционном

Поверхностно-активные вещества размер молекул, определение

Полин Поверхностная активность и размеры ориентированных молекул на разных поверхностях раздела

Положительно активные молекулы и их физические свойства

Простой случай присутствие оптически активных молекул одного типа

Рассмотрены структурно-химические исследования гетероциклических (шестичленных) соединений, многие из которых являются биологически активными веществами. Проанализированы конформации циклов, влияние заместителей на характер связей в циклах и их конформацию, упаковка молекул в кристалле, связь строения этих веществ с их свойствами Технический редактор М. С. Лазарева

Реакции диссимметричных молекул с оптически активными реагентами. Расщепление

Регенерация активных молекул

Рекомбинация радикалов и реакции активных частиц с молекулами

Связь между максимальной плотностью заполнения адсорбционного пространства активных углей и вандерваальсовскими раз- мерами молекул, адсорбированных из водного раствора

Симметрия молекул и оптическая активность

Строение молекул оптически активных

Строение молекул сульфенамидных ускорителей и их активность

Строение молекул тиазодозых ускорителей и их активность

Строение молекулы тиурамсульфидов и их активность

Теоретические представления о механизме химических реакций Гипотеза активных столкновений молекул

Теория активных молекул. Энергия и источники активации

Теплота образования активных молекул

Уббелоде Продолжительность жизни активных молекул в газофазных реакциях

Учет внутреннего поля при олределении спектральных характеристик молекул и оптической активности

Физика химически активной плазмы в условиях колебательной неравновесное молекул

Химическая активность молекул



© 2024 chem21.info Реклама на сайте