Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки и углекислота

    Хромопротеиды. Под этим названием известны протеиды, которые представляют собой сочетание белков с окрашенными веществами. Из хромопротеидов наиболее изучен гемоглобин— красящее вещество красных кровяных шариков. Гемоглобин, соединяясь с кислородом, превращается в оксигемоглобин, который, отдавая свой кислород другим веществам, снова превращается в гемоглобин. Значение гемоглобина в жизни человека и животных очень велико. Он играет роль переносчика кислорода от легких к тканям. Образовавшийся в легких оксигемоглобин кровью разносится по телу и, отдавая свой кислород, способствует протеканию в организме окислительных процессов. Кроме того, гемоглобин вместе с плазмой крови осуществляет регуляцию величины pH крови и перенос углекислоты в организме. [c.392]


    Рибофлавин в больших концентрациях и в растворах с низким значением pH более устойчив к действию света, чем при низких концентрациях в щелочных условиях. Аскорбиновая кислота, чайный танин способны замедлять разрушение рибофлавина. Рибофлавин устойчив к кислотам, брому и к таким окислителям, как перекись водорода и концентрированная азотная кислота. Хромовая кислота окисляет его до аммиака, углекислоты и азота [61. Рибофлавин в естественных источниках сырья связан в значительной части с белком связь эта расщепляется проТеолитическими ферментами [181. [c.109]

    В соответствии с нормами питания человек должен ежедневно получать с пищей 60 —120 г полноценного белка в рационе сельскохозяйственных животных на каждую кормовую единицу нужно не менее 110 г полноценного белка. Для поддержания жизненных функций организма, построения клеток и тканей необходим постоянный синтез различных белковых соединений. Если растения и большинство микроорганизмов способны синтезировать все белковые аминокислоты из углекислоты, воды, аммиака и минеральных солей, то человек и животные не могут синтезировать [c.7]

    С биологической точки зрения собственно процесс выращивания пентозных дрожжей можно разделить на две ступени. В первой активируются дрожжеподобные грибки, т. е. сахар и другие питательные вещества проникают внутрь клеток. В присутствии кислорода усиливается дыхание дрожжей. Начинается также активирование ферментов, особенно дыхательных. В результате образуются продукты обмена веществ дрожжевых клеток сахар превращается в воду и углекислоту. При этом освобождается энергия, за счет которой начинается синтез белка из азотистых веществ среды. Но видимое почкование дрожжеподобных грибков в этот период не наблюдается. Во второй ступени начинается собственно размножение дрожжеподобных грибков. Этот процесс связан с усилением энергетических процессов в клетке. Благодаря дыханию интенсивно выделяется углекислый газ. Наряду с сахаром, дрожжеподобные грибки усваивают кислоты и их соли, а также азотистые вещества, фосфор, калий, железо, марганец и другие соединения, необходимые для нормальной физиологической деятельности клетки, для построения ее протоплазмы, клеточных оболочек и т. д. Вследствие этого почкование усиливается и накапливается дрожжевая масса. Таким образом, в результате сложных ферментативных процессов из питательных веществ среды синтезируются белки, витамины, гормоны и другие ценные соединения. [c.571]


    Особенно четко потребность в восстановителе проявляется, если основным или единственным источником углерода для конструктивных процессов служит СО2 — предельно окисленное углеродное соединение. Для превращения углекислоты в структурные компоненты клетки и клеточные метаболиты необходимо ее восстановление до уровня углеводов, белков, липидов. Это же справедливо и при использовании в качестве источника углерода органических соединений, более окисленных, чем вещества тела, например ацетата. [c.281]

    Всосавшиеся из кишечника аминокислоты в органах и тканях подвергаются различным превращениям. Часть используется для синтеза белков органов и тканей, ферментов, некоторых гормонов, гема, креатина и т. д. Аминокислоты, не использованные для синтеза различных соединений, подвергаются распаду с образованием аммиака, углекислоты и воды. [c.206]

    Использование принципов катализа, осуществляемого в живой природе,-позволило бы перестроить по-новому целые отрасли химической промышленности и расширило бы ресурсы для сельского хозяйства. В перспективе технического использования биохимических процессов находятся проблемы фиксации атмосферного азота, синтеза белков и жиров, использование углекислоты воздушного бассейна для органического синтеза. [c.196]

    Энергия большинства живых существ получается за счет специфических окислительных процессов, в которых углеводы, жиры и белки полностью деградируют до углекислоты, аммиака или мочевины. Эти процессы легко протекают при обычных температурах в водных средах, реакция которых близка к нейтральной. [c.282]

    Одним из методов синтеза меченых соединений является биосинтез. Биосинтез широко используется при введении метки в сложные органические вещества природного происхождения (белки, углеводы и т. п.). Простейшим примером является получение меченой глюкозы и других углеводов в процессе фотосинтеза. Освещенные зеленые листья живого растения по мещают в атмосферу меченной по углероду (С) углекислоты. Затем сахар экстрагируют из растений и очищают, используя обычные химические и биохимические процедуры. [c.176]

    Белки злаков. Свойство пшеницы давать муку, способную превращаться в хлеб, обусловлено особым характером белков богатого крахмалом эндосперма семян этого злака. Клейкие эластичные свойства этих белков придают тесту единственное в своем роде свойство удерживать углекислоту, образующуюся в процессе брожения, что обусловливает хорошо известную губчатую структуру хлеба. [c.445]

    Сложные ферментативные системы. Некоторые реакции не могут быть осуществлены только одним ферментом, а нуждаются в системе нескольких ферментов, согласованных друг с другом и работающих совместно. Такими сложными ферментативными процессами являются, папример, спиртовое брожение и гликолиз в мышцах, ассимиляция углекислоты в зеленых листьях, синтез амилозы и амилопектина, переваривание белков и т.д. Сложным ферментативным процессом, характеризующимся сотрудничеством нескольких ферментов и коферментов, является окисление, в результате которого производится энергия, связанное с дыханием животного организма. Известны многие, но далеко ие все стадии этого сложного процесса. [c.801]

    Кровь является полидисперсной системой, имеющей сложный химический состав и своеобразные физико-химические свойства. Кровь позвоночных, как известно, имеет устойчивую величину pH, равную 7,4 0,05. Постоянная величина концентрации водородных ионов в крови поддерживается различными буферными системами бикарбонатной, фосфатной, гемоглобиновой, белками плазмы. Осмотическое давление крови меньше, чем мочи. Белки и углекислота, присутствующие в крови, облегчают растворение в ней различных веществ. Будучи гетерогенной системой, кровь при прохождении через хроматографическую колонку или через толщу бумаги подвергается одновременно процессам фильтрования, сорбции, ионного обмена и распределения, т. е. физико-механическому, физико-химическому и чисто химическому разделению. [c.342]

    Количество и состав основных продуктов фотосинтеза зависят от физиологического состояния растения и окружающей среды. В большинстве случаев преобладающая часть фиксированной углекислоты обнаруживается в виде углеводов (сахарозы и крахмала). Переход углерода в аминокислоты и белки отражает до некоторой степени условия азотного питания растения. При низком парциальном давлении углекислого газа основным продуктом фотосинтеза является гликолевая кислота. [c.282]

    Метод определения основан на осаждении хлора азотнокислым серебром в присутствии азотной кислоты. Избыток азотнокислого серебра оттитровывают роданистым аммонием в присутствии железоаммиачных квасцов, являющихся индикатором. Помимо солей, в крови содержится много органических веществ (белки, углеводы, жиры и др.), которые могут осаждаться, образуя соединения с серебром, а в некоторых случаях восстанавливать его до металла. Поэтому определение хлора в присутствии органических веществ крови вести нельзя и их удаляют окислением (путем нагревания с марганцовокислым калием). Органические вещества при этом окисляются до углекислоты и воды, а марганцовокислый калий восстанавливается частью до двухвалентного марганца, частью— до темнобурой перекиси марганца. Избыток перекиси марганца восстанавливают до солей двухвалентного марганца при помощи глюкозы, которая не мешает определению. Реакции осаждения хлора и титрования избытка азотнокислого серебра идут по следующим уравнениям  [c.247]


    Ацидоз возникает вследствие того, что мясная пища бо-. гата фосфатами и серой (в белках). Сера в процессе обмена окисляется до серной кислоты и в результате получается перевес кислотных остатков фосфорной и серной кислот над неорганическими катионами. Растительная пища, наоборот, содержит много неорганических катионов в виде солей органических кислот. Так как последние окисляются в организме до углекислоты и воды, то в моче преобладают основания. [c.272]

    Интенсивность включения углекислоты в различные соединения сильно меняется в зависимости от спектрального состава света. При выращивании растений на коротковолновом (синем) свете наблюдалось усиление образования азотистых соединений, прежде всего аминокислот и белков, а синтез углеводов ослаблялся. Если растения выращивали на свету длинноволновой части спектра, резко усиливалось образование углеводов. [c.139]

    Хромопротеиды — соединения, состоящие из белка, связанного с тем или иным окращенным соединением небелкового характера. К наиболее изученным хромопротеидам относятся соединения хлорофилла с белком, играющие важную роль в процессе фотосинтеза, а также гемоглобин человека и животных, с помощью которого осуществляется перенос кислорода и отчасти углекислоты кровью. [c.222]

    Установлено участие ферментов в синтезе и распаде живой материи, в процессе обмена веществ. Способность живых организмов сжигать (окислять) в своем теле пищевые вещества с образованием более простых и менее богатых энергией конечных продуктов обмена (в частности, углекислоты и воды) также связана с наличием в клетках белков — ферментов. [c.8]

    Имеются также указания, что в окислительном превращении пировиноградной кислоты, начиная с момента образования уксусной кислоты, точнее, ацетильного радикала, находящегося в связанном состоянии (стр. 260), участвует ферментная система, в состав коферментной группы которой входит пантотеновая кислота (стр. 262). Эти данные имеют, по-видимому, наиболее общее значение, так как окислительный распад уксусной кислоты до углекислоты и воды представляет собой последний этап в образовании конечных продуктов обмена белков, жиров и углеводов. [c.169]

    Аминокислоты, которые не были вовлечены в процессы синтеза тканевых белков или их специфических производных (например, некоторых гормонов гипофиза, щитовидной железы, надпочечников и т. п.) и оказались, таким образом, неиспользованными, подвергаются необратимым процессам распада до конечных продуктов. Конечными продуктами распада аминокислот в организме являются аммиак, мочевина, углекислота и вода. [c.337]

    Кефир принадлежит к продуктам спиртового брожения молока. Он готовится из молока (коровьего, козьего, овечьего) путем прибавления кефирных грибков. При кефирном брожении молочный сахар образует молочную кислоту и этиловый спирт. Часть белков молока тоже подвергается гидролизу. Для лечебных целей приготовляют кефир одно-, двух- и трехдневный. Однодневный кефир густой и содержит мало углекислоты и спирта, а трехдневный — жидкий и содержит значительно больше спирта. Жир молока при кефирном брожении не изменяется. [c.451]

    Важнейшую группу хромопротеидов составляют сложные белки, простетическая группа которых содержит пиррольные кольца. К таким хромопротеидам относятся соединение хлорофилла с белком, играющее важную роль в усвоении углекислоты растениями гемоглобин человека и животных, при помощи которого осуществляется перенос кислорода и отчасти углекислоты кровью миоглобин — дыхательный пигмент мышечных клеток позвоночных и беспозвоночных животных ряд ферментов, участвующих в окислительных процессах (цитохромы, каталаза, пероксидаза). [c.63]

    Зона сильнейшего загрязнения (полисапроб-ная). В этой зоне протекают гнилостные процессы анаэробного типа, так как здесь вода богата остатками погибших растений и животных — белками, жирами, клетчаткой и продуктами их разложения. Здесь развиваются организмы, стойкие к повышенным дозам органического вещества, сероводорода, углекислоты и метана. Число бактерий — до миллиона в 1 мл. [c.294]

    В учебном пособии описаны основные биохимические методы исследования органических азотистых вещесхв, белков, ферментов, витаминов, углеводов, жиров и жироподобных веществ, спиртов, альдегидов, органических кислот и дубильных веществ. Рассмотрен весовой метод определения углекислоты при дыхании зерна и комплексный метод определения водорастворимых, легкоокисляющихся сульфгидрильных соединений и восстановленного глюта-тиона. Особое внимание уделено исследованию процесса гликолиза (брожения) с применением оригинальной автоматически записывающей аппаратуры. [c.2]

    Огурцы ( u umis sativus L.)—общеизвестный пищевой продукт. Сок содержит 95—96% воды, 0,09% жира, 0,96% углекислоты, 0,05% серы, 0,44% фосфорной кислоты, 0,4—0,9% белка. Витаминами беден (8— 2 мг на 100 г). Содержит неизвестного состава антибиотик. Огуречный сок издавна применяется как средство народной медицины в косметической промышленности в качестве эффективного средства. Считается, что он оказывает хорошее действие на кожу, придает ей матовый оттенок и здоровый вид, однако, чем объяснить это свойство огуречного сока, пбка не выяснено. [c.118]

    Приготовление хлеба начинается с замеса для получения однородного по всей массе теста. Его продолжительность 7— о мин для пшеничного хлеба и 5—7 мин для ржаного хлеба. 0 это время происходят сложные, в первую очередь, коллоидные 0роцессы набухание муки, слипание ее частичек и образование ассы теста. В них участвуют все основные компоненты теста белки, углеводы, липиды, однако ведущая роль принадлежит белкам Белки, связывая воду, набухают, отдельные белковые макромолекулы связываются между собой за счет разных по энергии связей и взаимодействий и под влиянием механических воздействий образуют в тесте трехмерную сетчатую структуру, 0олучнвшую название клейковинной. Это растяжимый, эластичный скелет или каркас теста, во многом определяющий его физические свойства, в первую очередь упругость и растяжимость. В этот белковый каркас включаются крахмальные зерна, продукты деструкции крахмала, растворимые компоненты муки и остатки оболочек зерна. На него оказывают воздействие углекислота и поваренная соль, кислород воздуха, ферменты. В дальнейшем, в ходе брожения теста, клейковинный каркас постепенно растягивается. Основная часть теста представлена крахмалом, часть зерен которого повреждена при помоле. Крахмал также связывает некоторое количество воды, но объем его при этом увеличивается незначительно. Кроме твердой (эластичной) в тесте присутствует и жидкая фаза, содержащая водорастворимые (минеральные и органические) вещества, часть ее связывается нерастворимыми белками при их набухании. При замесе тесто захватывает и удерживает пузырьки воздуха. Следовательно, после замеса тесто представляет собой систему, состоящую из твердой (эластичной), жидкой и газообразной фаз. [c.107]

    Многие химические вещества вступают во взаимодействие с различными жидкостями и тканями организма (соединения металлов с белками образуют альбуминаты, алкалоиды — комплексные соли и т. п.) химические вещества органической природы подвергаются в организме многочисленным превращениям (метаболизм), протекающим по 4 основным типам окисление, восстановление, гидролиз и синтез с отдельными биохимическими компонентами организма (с глюкуроновой кислотой, с остатком серной кислоты). При этом количество превращений, протекающих по 3 первым типам, очень велико, по 4-му типу — ограничено большинство веществ подвергается превращениям в организме в две фазы. В первой фазе протекают реакции окисления, восстановления и гидролиза, а во второй — синтеза. Для некоторых веществ характерной является лишь одна фаза. Примером может служить метаболизм этилового алкоголя до ацетальдегида, уксусной кислоты и углекислоты. В процессе метаболизма в подавляющем большинстве случаев образуются менее токсичные вещества, а в отдельных случаях, наоборот, менее токсичные вещества переходят в более токсичные (например, тиопентал превращается в этаминал). Примеры метаболизма различных ядовитых веществ приводятся в специальной части учебника. [c.31]

    По способу питания микробы подразделяют на три группы аутотроф-ные, которые необходимую для жизнедеятельности энергию получают при фотосинтезе (усвоение углекислоты) или хемосинтезе (окисление серы, аммония, нитритов, железа (II) и др.) гетеротрофные (сапрофиты), требующие для построения своего организма готовых органических веществ (гнилостные микробы, плесневые грибки дрожжи, актиномицеты) паратрофные (паразиты), нуждающиеся в живом белке (все болезнетворные микробы). [c.185]

    Полисапробная зона характерна для свежезагрязненной воды, где протекают начальные этапы разложения органических соединений. Полисапробные воды содержат большое количество органических веществ, в первую очередь белков и углеводов. При разложении этих веществ в большом количестве выделяются углекислота, сероводород, метан. Вода бедна кислородом, поэтому химические процессы носят восстановительный характер. Резко выраженные неблагоприятные условия среды ведут к ограничению числа видов в растительном и животном населении водоема. Основными обитателями являются бактерии, количество которых достигает сотен миллионов в I мл воды. Очень много серобактерий и инфузорий. Все обитатели полисапробной зоны по способу питания относятся к консуйентам (потребителям), или иначе гетеротрофам. Они нуждаются в готовом органическом веществе. Продуценты (производители), т. е. автотрофы, к которым относятся зеленые растения, создающие органическое вещество из минеральных соединений, здесь совершенно отсутствуют. [c.156]

    Каждый из нас легко отличит растение от зверя или птицы. Обычно нетрудно даже решить, какому организму-растительному или животному-принадлежит отдельная клетка, хотя здесь могут быть и проблематичные случаи. Но по мере более глубокого проникновения внутрь клетки, при исследовании ее цитоплазмы, органелл и, наконец, индивидуальных химических компонентов на первый план начинают выступать уже Не различия, а черты сходства между двумя царствами живой природы. Лишь с помошью весьма тонких методов можно отличить растительные митохондрии, ядра и рибосомы от соответствующих животных органелл, а многие компоненты растительных и животных клеток, такие, например, как микротрубочки, практически неразличимы. Специфика растительной и животной жизни проявляется не в таких фундаментальных особенностях молекулярной организации живого, как репликация ДНК, биосинтез белков, процессы фосфорилирования в митохондриях нли конструкция клеточных мембран,-скорее оиа связана с более спе-циажзированкыми функциями клеток и тканей Большая часть различий между обоими царствами возникла в ходе эволюционной дивергенции, для которой отправными точками послужили два фундаментальных события приобретение способности связывать углекислоту в процессе фотосинтеза (см. гл. 9) и появление жесткой клеточной стенки у предков современных растений. Отдаленные последствия второго из указанных событий и будут предметом обсуждения в этой главе. [c.160]

    Метод, а) Гидролиз и деметилирование. 500 мг белка помещают в круглодонную реакционную колбу на 100 мл и добавляют 10 мл перегнанной HI (уд. в. 1,7), содержащую 1% КН2РО2. В колбу кладут кусочки пористой тарелки и соединяют ее с обратным холодильником. Реакционная колба имеет боковой отвод, через который можно пропускать над кипящей жидкостью ток очищенной углекислоты или азота. Ток газа регулируют [c.211]

    Карбгемоглобин — очень нестойкое соединение. В легочных капиллярах он легко диссоциирует с отщеплением углекислоты. в переносе угольной кислоты большую роль играют и другие белковые вещества крови. При взаимодействии угольной кислоты с щелочными солями белков крови (про-теинатами) образуются бикарбонаты и свободные белки  [c.234]

    Высокое содержаниа метана в газе обусловливается распадом жиров и белков. Углеводы ают газ с большим содержанием углекислоты. [c.329]

    Выяснилась тесная связь пантотена с реакцией ацетилирования в животном организме. Как известно, при реакции ацетилирования остаток уксусной кислоты — ацетильный радикал (СН3СО—) присоединяется к ацетилируемому соединению. Таким путем происходят, например, превращения ароматических аминов в соответствующие ацетилированные производные в печени и холина в ацетилхолин в ткани мозга. Оказалось, что в состав коферментной группы, осуществляющей указанную реакцию ацетилирования (коэнзим А), входит пантотеновая кислота. Коэнзим А участвует в переносе не только ацетильного, но и других кислотных (ацильных) радикалов, образуя соответствующие ацилкоэнзимы А (ацетил-, бутирил-, сукцинил-коэнзим А и т. п., стр. 274 и 307). В окислительном превращении пировиноградной кислоты, начиная с момента образования уксусной кислоты, точнее, ацетильного радикала, находящегося в связанном состоянии (стр. 275), также участвует коэнзим А, в который входит пантотеновая кислота (стр. 274). Эти данные имеют, по-видимому, наиболее общее значение, так как окислительный распад уксусной кислоты до углекислоты и воды представляет собой последний этап в образовании конечных продуктов обмена белков, жиров и углеводов. [c.176]

    Было также установлено, что связывание СОа в капиллярах большого круга происходит ые только путем взаимодействия углекислоты с щелочными солями белков, в частности щелочными солями гемоглобина, но и совершенно другим путем. Как оказалось, СОз может присоединяться и к гемоглобину прямо через свободные аминогруппы посредством карбаминовой связи, образуя карбгемоглобин  [c.466]

    Блох [67] установили, что лишь очень небольшое количество азота мочевины, введенной с пищей, включается в аммиак мочи и в белки. Однако в опытах с С -мочевиной было найдено, что мочевина быстро превращается в углекислоту [68, 69]. Расщепление мочевины до углекислоты и аммиака катализируется бактериями, присутствующими в желудке, кишечнике и других частях тела (например, в верхних дыхательных путях) [69]. Добавление заменимых аминокислот, ионов аммония или мочевины к рациону, состоящему из 10 незаменимых аминокислот, дает лучший эффект, чем повышение количества самих незаменимых аминокислот. Из этого можно заключить, что незаменимые аминокислоты в общем медленнее превращаются в продукты обмена, необходимые для роста [70] следовательно, возможны такие экспериментальные условия, при которых ионы аммония будут оказывать более благоприятное влияние на рост, чем смесь незаменимых аминокислот. Как упомянуто выше, некоторые аминокислоты, необходимые для обеспечения роста и азотистого равновесия, могут быть частично замещены заменимыми аминокислотами. Так, у молодых крыс цистин может покрывать от /е ДО /з потребности в метионине [30, 31], а тирозин может восполнить около половины потребности в фенилаланине [32]. Возможность замены метионина гомоци-стеином зависит от наличия в пище витамина В12 и фолевой кислоты или донаторов метильных групп. Возможно, что будут найдены такие условия, при которых рост будет поддерживаться и в отсутствие некоторых других незаменимых аминокислот. Результаты исследований, в которых определялись рост и азотистое равновесие, свидетельствуют лишь о том, что данные функции не обеспечиваются процессами синтеза in vivo. [c.127]


Смотреть страницы где упоминается термин Белки и углекислота: [c.15]    [c.196]    [c.206]    [c.198]    [c.801]    [c.790]    [c.386]    [c.326]    [c.343]    [c.465]   
Химия и биология белков (1953) -- [ c.47 , c.87 , c.88 , c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Углекислота



© 2025 chem21.info Реклама на сайте