Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободная энергия см также

    Следовательно, в термодинамическом отношении вполне закономерен переход при коксовании высокомолекулярного исходного нефтяного сырья с большим запасом свободной энергии в низкомолекулярные газообразные и среднемолекулярные дистиллятные фракции и в кокс, обладающие меньшими запасами свободной энергии. Также закономерен и переход при высоких температурах неупорядоченной структуры кокса в графитовую кристаллическую структуру с нулевым значением свободной энергии. Как на предельный случай подобного превращения можно сослаться на превращение в естественных условиях материнского высокомолекулярного органического вещества весьма сложного состава и структуры, из которого образовалась нефть в недрах земли, в природный газ, который почти нацело состоит из метана, и в природный графит, характеризующийся более совершенной кристаллической структурой, чем искусственный. [c.46]


    Коллоидные растворы представляют собой гетерогенные системы, что и служит одной из причин их неустойчивости. Они обладают большой свободной энергией и в соответствии со вторым законом термодинамики будут стремиться к равновесному состоянию, характеризующемуся разделением системы на две фазы, имеющие минимальные межфазовые поверхности и, следовательно, минимальную свободную поверхностную энергию. Отсюда становится понятным, что стабилизаторы, адсорбируясь на дисперсной фазе и снижая тем самым величину свободной энергии, также будут способствовать устойчивости системы. [c.135]

    Из первого и второго законов термодинамики вытекают соотношения, которые в принципе позволяют вычислять характеристики равновесий при химических реакциях. Однако осуществление таких вычислений требует знания некоторых экспериментальных данных изменения энтальпии реакции при определенной температуре, например 298 К, теплоемкостей участников реакции в зависимости от температуры, константы равновесия (или свободной энергии) также при определенной температуре. Энтальпии и теплоемкости называются термическими величинами. Их измерения относительно просты и осуществляются с помощью калориметров. Значительно более трудным является определение констант равновесия, особенно для высокотемпературных металлургических реакций. Между тем развитие химии и металлургии в начале текущего столетия требовало разработки способов расчета равновесий. Поэтому было важно найти методы расчетов, основывающиеся лишь на экспериментальных данных о термических величинах. Решение задачи стало возможным в результате открытия нового принципа — третьего закона термодинамики. [c.41]

    В изученных системах наблюдается отрицательное отклонение от закона Рауля, выраженное тем сильнее, чем выше молекулярный вес парафиновых фракций и чем ниже температура. Избыточное изменение свободной энергии также отрицательно и увеличивается по абсолютной величине с повышением молекулярного веса парафинов и с понижением температуры. Следовательно, степень термодинамической необратимости изученных растворов больше, чем у идеальных растворов такого же состава, что свидетельствует о взаимодействии между молекулами парафиновых углеводородов и бензола. Далее, образование растворов происходит с уменьшением энтропии. Приведенные факты позволяют заключить, что характерная для высокомолекулярных парафинов в жидком состоянии гексагональная структура, [c.209]


    По аналогии с понятием конформационная свободная энергия [9], определяющим избыток свободной энергии данной конформации по отношению к конформации, обладающей минимальной свободной энергией, значение АС можно определить соответственно термином структурная свободная энергия (также по отношению к структурному изомеру, обладающему минимальной свободной энергией). Константа равновесия этой реакции определяется уравнением [c.64]

    Здесь и далее в соответствии с новой международной терминологией по термодинамике, вместо выражения свободная энергия употребляются термины энергия Гиббса и энергия Гельмгольца . В тех случаях, когда выражение свободная энергия не требует конкретного указания на отнесение их к системе при постоянном давлении или при постоянном объеме (например, линейные соотношения свободной энергии ), также применяется термин энергия Гиббса . [c.65]

    Гиббс также показал, что с изменением концентрации веществ, образующих эту систему, свободная энергия системы до некоторой степени меняется. Поэтому если свободная энергия, определенная при стандартных значениях концентраций, для А+В ненамного отличается от свободной энергии С+О, то даже небольшие изменения концентрации могут привести к тому, что свободная энергия А+В окажется больше или меньше, чем свободная энергия С+О. В такой системе направление реакции определяется соотношением концентраций, но и в том, и в другом направлении реакция пойдет самопроизвольно. [c.113]

    Упражнение 111,20. Считая газы идеальными, найдите равновесную концентрацию СО2 в реакции 2С0 — СО — С =0 при 1000° К и атмосферном давлении. Свободные энергии образования СО, Oj и С прп этой температуре равны соответственно —76 062, —138 078 и —2771 кал/моль. Покажите также, что если X — равновесная мольная доля Oj, то величина (1 — х)/х пропорциональна давлению. [c.59]

    Эта величина названа так в честь американского ученого Дж, Уилларда Гиббса (1839—1903) —одного из основателей современной химической термодинамики, Энергию Гиббса часто называют также свободной энергией или изо- алчным потенциалом. [c.172]

    Рентгеновские лучи, гамма-лучи, поток нейтронов и другие излучения большой энергии также вызывают в веществе глубокие физикохимические изменения и инициируют разнообразные реакции. Так, при действии ионизирующих излучений кислород образует озон алмаз превращается в графит оксиды марганца выделяют кислород из смеси азота и кислорода или воздуха образуются оксиды азота в присутствии кислорода ЗОг переходит в 50з происходит разложение радиолиз) воды, в результате которого образуются молекулярные водород, кислород и перекись водорода. Возникающие при радиолизе свободные радикалы (-Н, -ОН, -НОз) и молекулярные ионы ( НзО , -НзО ) способны вызывать различные химические превращения растворенных в воде веществ. [c.203]

    Уравнение (7.4) можно получить из (7.2) из условия, что свободные энергии образования химических веществ изменяются от температуры также линейно  [c.11]

    Очевидно, что при термолизе углеводородного сырья будут разрываться в первую очередь наиболее слабые связи и образовываться продукты преимущественно с меньшей свободной энергией образования. Таким образом, термодинамический анализ позволяет прогнозировать компонентный состав и подсчитать равновесные концентрации компонентов в продуктах реакций в зависимости от условий проведения термических, а также каталитических процессов. Однако, компонентный состав и концентрации продуктов химических реакций в реальных промышленных процессах не всегда совпадают с результатами термодинамических расчетов. [c.15]

    В любой момент определенная доля атомов Вг, принимающих участие в реакции, будет замещаться атомами Н, но общее число радикалов Н -Ь Вг в цепной реакции не изменяется. В результате реакции Вг-ЬНг- -НВг-ЬН образуется больше атомов водорода, чем при диссоциации Н2 2Н, т. е. в первом случае быстрее достигается квазиравновесное состояние . Кроме того, в первой системе выделяется большее количество свободной энергии. Выделяющаяся в реагирующей системе энергия расходуется на образование избыточного количества атомов Н, превышающего равновесную концентрацию при термодинамическом равновесии с Нг. Избыток свободной энергии в реагирующей системе может быть использован, в частности, для получения сверхравновесных концентраций других веществ. Это также характерно для цепных реакций. [c.292]

    Поверхность раздела между двумя жидкостями обычно обладает положительной свободной энергией. Межфазное поверхностное натяжение на границе раздела двух жидкостей также положительно. Условием полной смешиваемости жидкостей является выполнение требования, чтобы межфазное натяжение было отрицательным или равным нулю. В таком случае молекулярные силы не будут препятствовать смешению жидкостей, так как каждая из них притягивает молекулы другой с такой же или с большей силой, чем сила, с которой каждая жидкость притягивает свои собственные поверхностные молекулы. В этом случае молекулы свободно перемещаются из одной жидкости в другую. На поверхности раздела жидкость — жидкость молекулы ориентируются таким образом, чтобы энергия их взаимодействия была максимальной [210]. [c.192]


    Из этих же примеров следует также, что сам по себе факт убыли свободной энергии не позволяет сделать каких-либо заключений о скорости реакции. [c.99]

    В случае химических реакций, также протекающих при постоянных температуре и давлении, Д2 в уравнении (12) эквивалентна изменению свободной энергии реакции, АН — тепловому эффекту реакции при постоянном давлении, а А8 — изменению энтропии. [c.102]

    Сравнивая математические операции, выполняемые при комбинировании уравнений химических реакций, а также и соответствующих величин А 2, можно заметить, что эти операции совершенно идентичны. Следовательно, для того чтобы рассчитать свободную энергию какой-либо химической реакции, необходимо подобрать две или большее количество таких химических реакций (с известными значениями А 2), из которых посредством простых арифметических действий можно было бы скомбинировать уравнение интересующей нас химической реакции. [c.117]

    При выполнении подобного рода расчетов чрезвычайно большое значение имеют уравнения (2) и (4), а также и уравнение, связывающее онстанту равновесия и свободную энергию процесса, [c.128]

    Позже Франклин [121, положив в основу метод Питцера, а также-более точные данные о термодинамических функциях, составил новые-таблицы значений свободной энергии структурных групп углеводородов и некоторых других органических соединений, содержащих кислород, (спирты, альдегиды, кислоты и др.), азот и серу. [c.204]

    Для термодинамического вычисления равновесия, выполняемого при исследовании, необходимо знать значение теплоты сгорания с максимальной точностью, так как теплота образования НгО и СОг велика по сравнению с теплотой образования углеводородов. Необходимо также знать с особой точностью значения теплоты для вычисления свободной энергии и энтропии. Необходимо также с особой тщательностью выбирать значения из литературы, так как многие определения были проведены до появления современного лабораторного оборудования наиболее падежные данные для чистых углеводородов приведены Россини, сотрудничавшим в Американском нефтяном институте [295]. [c.201]

    Известно довольно много бинарных систем, в которых жидкость может самопроизвольно внедряться в твердое тело по сплошным беспористым границам зерен и оставаться там практически неограниченное время. Это явление подробно изучалось на некоторых металлических системах, а также при контакте воды с каменной солью [303, 304], карбонатными и силикатными породами [245]. Условие образования и устойчивости жидких прослоек, разделяющих твердые поверхности, было впервые высказано Фарадеем и затем строго сформулировано Гиббсом [305]. В металловедении оно использовалось, в частности, Смитом [306]. Это условие, термодинамически очевидное, требует уменьшения свободной энергии при замене поверхности контакта твердых тел Т1 и Т2 поверхностью их соприкосновения с жидкостью  [c.99]

    Итак, движущая сила реакции, проводимой при постоянных давлении и температуре, измеряется изменением свободной энергии продуктов по сравнению с реагентами. Если изменение свободной энергии отрицательно, реакция протекает самопроизвольно если изменение свободной энергии положительно, реакция протекает самопроизвольно в противоположном направлении если же изменение свободной энергии равно нулю, реагенты и продукты находятся в равновесии. Изменение свободной энергии складывается из двух составляющих AG = АН — TAS. Значительное уменьшение энтальпии, означающее выделение теплоты, благоприятствует протеканию реакции. Но следует учитывать и другой фактор. Значительное возрастание энтропии при образовании продуктов из реагентов также благоприятствует реакции. При обычных температурах энтропийный фактор, как правило, невелик, и поэтому AG и АН имеют одинаковые знаки. В таких случаях самопроизвольные реакции оказываются экзотермическими. Но возможны и другие варианты, когда энтальпийный и энтропийный факторы действуют в противоположных направлениях, и может случиться, что энтропийный член оказывается преобладающим. Это относится главным образом к реакциям, в которых происходит превращение твердого или жидкого вешества в газы или растворы. [c.75]

    Можно распространить представление об активности, а следовательно, об изменениях свободной энергии и о константах равновесия на твердые и жидкие вещества, а также на компоненты растворов, если определить активность любого вещества как отношение концентрации этого вещества к его концентрации при условном стандартном состоянии. При вычислениях констант равновесия такое стандартное состояние, очевидно, должно совпадать со стандартным состоянием, для которого табулированы термодинамические данные, если мы хотим вычислять из этих данных. В табл. 17-1 указаны стандартные состояния, используемые для вычисления значений свободной энергии, которые приведены в приложении 3. [c.97]

    На рис. 17-4 изображены графики зависимости теплоты реакции, АН, и изменения свободной энергии, AG°, от температуры. Разность между этими величинами, АЯ° — AG°, в любой точке равна TAS°. Если оба графика, для АЯ° и для AG°, приближенно представить прямыми линиями, то произведение TAS° окажется пропорциональным Т, следовательно, AS° также приближенно не зависит от температуры. Экстраполяция графиков для АН° и AG° в сторону низких температур показывает, что они пересекаются в точке абсолютного нуля. При О К выполняются соотношения TAS° = О и АЯ° = AG°. [c.110]

    Аддитивны ли свободные энергии электродных полуреакций Всегда ли аддитивны потенциалы электродных полуреакций Укажите условия, при которых свободные энергии и потенциалы электродных полуреакций должны быть аддитивны, а также условия, при которых они не аддитивны. [c.195]

    Приведенная здесь таблица содержит данные о стандартных энтальпиях (АЯ") и свободных энергиях (AG°) образования соединений из элементов в их стандартных состояниях, выраженные в килоджоулях на моль, а также термодинамические (вычисленные из третьего закона), или абсолютные, энтропии (S") соединений в джоулях на кельвин на моль все эти данные относятся к температуре 298 К. Фазовое состояние соединения указывается следующим образом (г.)-газ, (ж.)-жидкость, (тв.)-твердое вещество, (водн.) - водный раствор в некоторых случаях указывается также кристаллическая форма твердого вещества. Соединения расположены в таблице по номерам групп главного элемента, при установлении которого металлам отдается предпочтение перед неметаллами, а О и Н рассматриваются как наименее важные элементы. [c.448]

    Вследствие большого отрицательного значения АН,. А Р (уменьшение свободной энергии) также должно быть отрицательным. Смеси паров фтора и Ф-гептана сильно взрывают в искровом разряде, как установил Кэйди. Поэтому можно ожидать, что фторуглероды будут гореть во фторе, и наоборот, фтор будет гореть во фторугле-родах, если поджечь струю, выходящую из сопла. Следовательно, при работе со фторуглеродами в присутствии свободного фтора необходимо применять меры предосторожности. [c.47]

    Впоследствии близкие взгляды были высказаны и другими исследователями, например Конвеем и Бокрисом, Впджем, Трассати и др. Этими и некоторыми другими авторами была отмечена необходимость учета конкурентной адсорбции воды и водорода. Свободная энергия адсорбции воды точно неизвестна по ориентировочным подсчетам Бокриса она для металлов первой группы близка к 100 кДж-моль . Выяснилось также, что для ряда металлов, адсорбирующих водород, перенапряжение не уменьшается, а растет с увеличением энергии связи М—Н (Рютчи, Делахей, Парсонс). Эти металлы образуют подгруппу второй группы, по классификации Антропова, в которой преобладающим оказывается эффект увеличения энергии активации рекомбинации или электрохимической десорбции с ростом эшфгии связи М—Н. Минимальное [c.412]

    Фотосинтез — единственный из всех типов химических реакций (терм ических, каталитических, ферментативных, радиационных и фо— тохимических), позволяющий при мягких термобарических параметрах б o фepы осуществить невероятную, с точки зрения термодинамики химическую реакцию, протекающую с увеличением свободной энергии. Он обеспечивает прямо или косвенно доступной химической энергией все земные организмы и, как будет показано ниже, является источником образования горючих ископаемых. Обратный фотосинтезу процесс представляет собой знакомую всем нам химическую реак1,,ию горения твердых, жидких и газообразных горючих ископаемых с выделением большого количества энергии. Следовательно, растительный и животный мир, а также органические горючие ископаемые Земли есть не что иное как аккумулированная энергия Солнца На современном этапе эволюции Земли ежегодно в результате фотосинтеза образуется 150 млрд. т органического вещества, усваивается 300 млрд. т СО и выделяется около 200 млрд. т свободног о кислорода. Благодаря только фотосинтезу в первичной атмосфере Земли появился кислород, возник озоновый экран, создались условия для биологической деятельности. При гибели организма происходит обратный процесс [c.43]

    Г. К. Бореоковым [178] подробно рассмотрено влияние двух структурных факторов — индекса граней и размера кристаллов — на каталитические свойства металлов. Предполагается, что причиной небольших различий в удельной каталитической активности различных граней металлических катализаторов является реконструкция поверхности металла. Отмечается, что различия в каталитических свойствах различных граней сложно применить на практике из-за трудности приготовления стабильных катализаторов с преимущественным развитием определенных граней, обладающих более высокой свободной энергией поверхности, чем у наиболее устойчивых структур. Однако возможна искусственная стабилизация каталитически активных граней путем введения добавок. Отмечается также, что основной причиной изменения удельной каталитической активности нанесенных металлических катализаторов с размером кристаллов меньше 3 нм является, по-виднмому, взаимодействие частиц металла с носителем. [c.253]

    Подсчеты изменений свободной энергии реакций синтеза показывают, что при температурах 200—325° возможно достигнуть высоких равновесных выходов всех парафинов, олефинов и спиртов, за исключением метанола. Равновесные выходы для нафтенов и ароматических углеводородов имеют меньшие значения, чем для парафинов. Расчеты показывают также, что равновесные степени превращения (при синтезе углеводородов выше j) растут с увеличением рабочего давления при постоянной температуре в пределах 200—400°. Образование заметных количеств ацетилена термодирамически невозможно при обычных условиях синтеза (250—325°, 1—50 ат). Парафины и олефины, получающиеся в синтезе, имеют преимущественно нормальное строение, а олефины являются глав- [c.520]

    Для большого числа газообразных углеводородов и их производных, а также для многих неорганических газов стандартные свободные энергии и теплота образования при различных температурах найдены и сведены в таблицы. Метод, посредством которого были определены эти показатели, представляет интерес с различных точек зрения. Рассматриваемые закономерности носят характер фундаментального соотношения между термодинамическими характеристиками реакций и компонентов реакций. Следовательно, эти закономерности применимы к любым реакциям в той же мере, что и к реакциям образования. Добавим, что в ряде случаев можно будет получить достаточно полные термодинамические характеристики веш естБа, но надо будет привести их в удобный вид, испо.тьзуя те же закономерности. [c.362]

    Цепные процессы следует отличать от каталитических и ав-токаталитических, хотя развитие последних также носит циклический характер. Одно из основных отличий каталитических реакций от цепных — отсутствие реакции зарождения Ш51га , ТЗ 1< как один из промежуточных продуктов К присутствует в числе исходных веществ и носит название катализатора. Кроме того, для цепных реакций характерны реакции,.обрыва цепей. Отличительной особенностью цепных реакций являетсяЗ,Щ . Т что в них одна реакция, протекающая саиопройзвольно с уменьшением свободной энергии, может своим течением вызвать другие реакции, идущие с увеличением свободной энергии. [c.197]

    Все три описанные выше реакции протекают, несмотря на необходимость поглощения при этом теплоты, потому, что их продукты обладают большей внутренней неупорядоченностью, чем исходные реагенты. Пары воды характеризуются большей неупорядоченностью и, следовательно, имеют большую энтропию, чем жидкая вода. Гидратированные ионы NH4 и I имеют большую энтропию, чем кристаллический NH4 I. Газообразные NO2 и О2 обладают большей неупорядоченностью и имеют большую энтропию, чем твердый N2O5. Химическая система стремится не только к состоянию с минимальной энергией или энтальпией, но также к состоянию с максимальной неупорядоченностью (вероятностью, или энтропией). На этом основании следует ввести новую функцию состояния, называемую свободной энерг ией, G. [c.68]

    Стандартное изменение свободной энергии зависит от температуры. Во всех проводившихся нами расчетах свободной энергии предполагалось, что температура равна 298 К, хотя иногда вместо ДСгдв мы писали просто АС°. Однако свободная энергия реакции газов, все компоненты которой имеют, например, парциальные давления 1 атм, различна при 1000 и 298 К. Следовательно, константа равновесия также должна изменяться в зависимости от температуры. Ниже будут рассмотрены примеры такой зависимости. [c.96]

    На этом примере можно убедиться, что для получения от электрохимического элемента даже столь небольшого напряжения, как 1 В, в нем должна протекать реакция с большим изменением свободной энергии. Поскольку свободные энергии реакций обладают свойством аддитивности (вытекаюшим из первого закона термодинамики), нет ничего удивительного в том, что э.д.с. электрохимических элементов также аддитивны, как уже указывалось в разд. 19-2. [c.174]

    Вот почему термодинамические потенциалы, обладающие экстремальными свойствами (энтропия 3, свободные энергии Гельмгольца Г и Гиббса О), а также химический потенциал л в том виде, как они определены выше, являются потенциалами для процессов равновесных (ква-зиравновесных). Для процессов слабонеравновесных и умеренно неравновесных они сохраняют свойства экстремальности, но должны строиться по-другому, и, строго говоря, становятся псевдопотенциалами, а для процессов сильно неравновесных они утрачивают свойства локальной экстремальности вообще. [c.103]

    Изменения катализатора при воздействии реакционной смеси и каталитической реакции приводят к дополнительному уменьшению свободной энергии и увеличению энтропии системы в целом, В то же время энтропия собственно катализатора (подсистемы) уменьшается, а свободная энергия возрастает. Это положение становится очевидным уже из того, что, в рассмотренной системе при исключении катализа должен пойти самопроизвольный процесс К Кт. Другими словами, катализатор в таких системах играет роль своеобразной энергетической ловушки, в которой накапливается также отрицательная энтропия . Здесь просматривается интересная аналогия с биологическими системами, неотъемлемая функция которых — порождение отрицательной энтропии и свободной энергии за счет протекающих в организме процессов переработки питательных веществ [79]. Можно сказать, что в каталитических системах существует механизм молекулярной селекции, обусловленной устойчивостью различных активных состояний. Цапомним, что устойчивость активного состояния (соединения) в каталитической реакции тем выше, чем больше оно удалено от равновесного и чем больше, следовательно, его запас свободной энергии и отрицательной энтропии [80]. [c.303]


Смотреть страницы где упоминается термин Свободная энергия см также: [c.307]    [c.155]    [c.46]    [c.189]    [c.62]    [c.86]    [c.160]    [c.160]    [c.269]    [c.92]    [c.28]    [c.29]    [c.122]   
Химическая термодинамика Издание 2 (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение свободной энергии в метаболических реакциях также Свободная энергия

Свободная энергия

Свободная энергия также Энергия

Свободная энергия также Энергия свободная

Энергия также Свободная, Солнечная, Тепловая энергия

Энтропии и теплоемкости углеводородов, а также энтропии, теплоты и свободные энергии их образования из элементов при

также Механическая энергия, Перенос энергии, Поток энергии, Световая энергия, Свободная энергия, Солнечная



© 2025 chem21.info Реклама на сайте