Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олигомеры содержание

    Смесь олигомеров Содержание ОН-групп, М, [c.41]

    Эпок- сидный олигомер Содержание групп, ммоль/р Содержание ОН-групп, ммоль/г  [c.51]

    Тип олигомера Содержание ОН-групп, % (масс ) Мп 1п Состав по функциональности  [c.248]

    Олигомер Содержание металла, % е при 20 °с xg 6 -10 при 20 С Епр. МВ/м, при 20 °С Ру. Ом м хар> [c.87]

    Исследования, проведенные с твердым фосфорнокислым катализатором, показали, что олигомеризация пропилена при концентрации его свыше 3,1 моль на 20 г катализатора проходит как реакция первого порядка [87]. Опыты с фосфорной кислотой на силикагеле [88] показали, что доля димеров и тримеров увеличивается с повышением содержания воды. Результаты эти истолковываются так на первой стадии происходит отложение пропилена на кислом катализаторе и образование сложных эфиров фосфорной кислоты, которые затем реагируют с пропиленом. В результате образуются ионы карбония, которые присоединяются к другим молекулам олефина или путем отдачи одного протона стабилизируются на анионах фосфорной кислоты при этом выделяются олигомеры. [c.249]


    Проведя поиск корней полученных уравнений, найдем, что при 700 К Кь = 0,29, а при 800 К Л э = 0,69. В соответствии с приведенными выше соотношениями, далее найдем содержания олигомеров. Например, содержание тримера в равновесной смеси при 700 К Л Дз=4,5-0,29 =0,11. Получим следующие данные  [c.254]

    Насыщенный хемосорбент (нижняя фаза из Е-1) вначале поступает на колонну-дегазатор К-2, где выделяются физически растворенные углеводороды С4, которые возвращаются в процесс. Стабилизированный поток направляется на колонну-регенератор К-3. В нижнюю часть этой колонны подается острый дар, играющий одновременно роль теплоносителя и разбавителя. В колонне К-3 происходит гидролиз изобутилсерной кислоты и дегидратация ТМК. Из нижней части колонны выходит 45— )%-ная кислота, которая подвергается упарке под атмосферным давлением или под вакуумом в концентраторе К-4 (содержание кислоты доводится до начального— 60— 65%). Выходящие с верха колонны пары, содержащие кроме изобутилена воду, ТМК, олигомеры и унесенную кислоту, промываются горячим водным раствором щелочи в скруббере К-5 и частично конденсируются в теплообменнике Т-3, откуда конденсат поступает в отстойник Е-3. Жидкая фаза из Е-3, представляющая собой водный раствор ТМК с примесью олигомеров, направляется на колонну выделения ТМК (на схеме не показана), откуда ТМК возвращается в регенератор К-3. Пары изобутилена из емкости -5 проходят дополнительную водную отмывку в скруббере и поступают во всасывающий коллектор компрессора Н-3. Сжиженный продукт подвергается осушке и ректификации, после чего используется по назначению. На практике извлечение изобутилена проводится как в две, так и в три ступени. Вместо насосов-смесителей Н-1 и Н-2 могут применяться реакторы с мешалками, в том числе типа Вишневского, а также смесители инжекционного типа. Существенную сложность представляет узел концентрирования серной кислоты, аппаратура которого изготавливается нз тантала, графита, свинца или хастеллоя (в % (масс.) N1 — 85 Л — И Си — 4]. Остальное оборудование практически полностью изготовляется из обычной углеродистой стали. [c.299]

    Сведения по термодинамике реакций олигомеризации олефинов в литературе весьма ограниченны. В основном они относятся к равновесию в реакциях димеризации олефинов с образованием а-олефинов. Данные о содержании димеров в равновесных газовых смесях в интервале температур 300—600 К приведены в табл. 10.1. Как видно из этой таблицы, при температурах до 500 К равновесные смеси содержат в основном более 50% димеров. При содимеризации олефинов выход олигомеров при тек же условиях еш,е выше. Так, для реакции содимеризации этилена с пропиленом в 1-пентеи при температурах 300—600 К и атмосферном давлении расчетным путем получены следующие данные  [c.320]


    Возможность применения гомогенных катализаторов в гидроочистке пока показана только на примере жидкофазного гидрирования пропилена и бутенов, а также более тяжелых олигомеров пропилена — гептенов и др. В исходных фракциях Сз и С4 может содержаться до 60% диеновых и ацетиленовых углеводородов. В полученном же продукте содержание олефинов не превышает 2%, ацетилена — 5-10 %- [c.229]

    По традиционной технологии сырье растворяют в ксилоле или сольвенте, причем содержание мономеров в полученном растворе не должно превышать 30 %. Это позволяет более гибко управлять качеством смолы чем однороднее по молекулярной массе молекулы олигомера, тем выше качество смолы. Разбавление снижает вязкость среды и облегчает диффузию [c.317]

    Кроме того, содержания азота в олигомерах, папример с концевыми карбонильными группа-мп (1 < /г -< 7), также существенно отличаются, что позволяет ориентировочно оценить молекулярную массу олигомера ио содержанию азота. Если экспериментально определенная масса совпадает с найденным содержанием азота для олигомера с концевыми С = 0-группами, естественно, что ИК-спектр такого образца пе будет содержать полос, характерных для колебаний ЫНз-групп (3100—3400 см ), н должен иметь поглощение, характерное для С = 0-групп (1680 см ). По совокупности полученных результатов определяют концевые группы в олигомере. [c.53]

    Влияние количества мономерных звеньев в цепи олигомера из диацетила и гидразина на содержание [c.54]

    Величина Т а определяется по наклону прямолинейного участка. Для определения значения Гзь необходимо строить дополнительный график зависимости логарифма разности значений Л между криволинейным и прямолинейным участками. По наклону получаемой прямой 2 вычисляется Тгь- Относительные содержания протонов в фазах (населенности ра и рь) соответственно равны Л1/Л0 и (Ло—ЛО/Ло. По мере дальнейшего прохождения реакции в отверждаемой композиции возникают три фазы с различной молекулярной подвижностью. Наличие третьей фазы проявляется в том, что вместо прямой 2 на рис. 15.10 получается график, аналогичный кривой 1. Обработка этого графика, как и в случае двухфазной системы, позволяет определить населенность третьей фазы Рс и времена релаксации Ггь и Т с- Время спин-спиновой релаксации третьей фазы Ггс наиболее короткое и близко к Тг отвержденного олигомера. Населенность этой фазы рс соответствует относительному содержанию сшитого олигомера. [c.230]

    Сетчатые структуры в полимерах могут образовываться и по принципиально иному пути, без предварительного получения несвязанных друг с другом макромолекул. Этот путь заключается в образовании разветвленных, а затем сетчатых структур при ступенчатых реакциях синтеза полимеров из мономеров или олигомеров с концевыми функциональными группами при их содержании не менее трех хотя бы в одной из реагирующих молекул мономера или олигомера. Получающиеся при этом сетчатые структуры, как правило, являются более совершенными и лучше описываемыми количественно по сравнению с сетками, образующимися при соединении друг с другом (сшивании) макромолекул полимера. [c.294]

    Кубовый остаток колонны 11 представляет собой адиподинитрил— сырец, содержащий до 94% основного вещества, и олигомеры акрилонитрила. Товарный адиподинитрил выделяют из этой смеси вакуумной перегонкой при остаточном давлении 1,3 кПа в перегонном аппарате 13, В приемник 15 поступает адиподинитрил с содержанием основного вещества более 99%. [c.216]

    Постепенное повышение температуры плавления связано с увеличением содержания линейных олигомеров, имеющих более высокую температуру плавления, чем чистый дигликольтерефталат. При охлаждении расплав затвердевает при более низких температурах, что указывает на его способность переохлаждаться. [c.52]

    При анализе переэтерификата главным образом определяют содержание непрореагировавших метоксигрупп, дигликольтерефталата, содержание и состав олигомеров, содержание диэтиленгликоля и ацетальдегида. [c.52]

    Лаки на основе поливинилформаля и поливинилформальэтила-ля используют главным образом ак электроизоляционные (для эмалирования проводов). В их состав вводят и фенолоформальде-гидный резольный олигомер. Содержание пленкообразуюших в этих лаках составляет 20—22%. В качестве растворителей обычно используют ди- и трикрезолы, а также этилцеллозольв, хлорбензол и ксилол. Вследствие специфики технологического процесса нанесения лаковой изоляции (высокая скорость протягивания проволоки через сушильную камеру) отверждение покрытий проводят при высокой температуре (300—500 °С). [c.360]

    Реакциочио-споеобный продукт Моль фенола на моль хлорида Температура процесса, °С Выход олигомера, % Содержание ОН-группы, % Температура каплепаде-ния, С Молекулярная масса Скорость отверждения с 15% уротропина при 160 С, с Литература [c.35]

    Помимо rt-аллилникельгалогенидов в качестве катализаторов полимеризации 1,3-диеновых углеводородов могут быть использованы я-аллильные комплексы и других переходных металлов. Чистые я-аллильные комплексы родия образуют гране-1,4-полибутадиен, а комплексы ниобия, титана и хрома — полибутадиен с высоким содержанием 1,2-звеньев [32, 49, 50]. Бис(я-аллил)ко-бальтгалогениды и трис(я-аллил)урангалогениды дают цис-, 4-полибутадиены [49, 51]. Бис(я-аллил)никель в присутствии бис(я-аллилникельхлорида) превращает бутадиен в циклические олигомеры с молекулярной массой 500—600 [52]. [c.104]


    При производстве новолачных олигомеров с использованием аппаратов идеального вытеснения (рис. 34) фенол и формалин из мерников / и 2 подают в емкость 4 для приготовления реакционной смеси. В эту же емкость из аппарата 3 подается раствор щавелевой кислоты. Полученная реакционная смесь перекачивается в расходную емкость 5, а из нее — в напорную емкость 6, откуда самотеком поступает в многосекционный реактор 7, соединенный с наклонным обратным холодильником Я. В первой секции реактора смесь нагревается до 70—80 "С, а затем — за счет тепла экзотермической реакции доводится до кипения, которое поддерживается в течение всего времени пребывания смеси в реакторе. Эмульсия олигомеров из реактора поступает в отстойник 9, в котором после охлаждения примерно до 60 °С разделяется на два слоя нижний— олигомерный и верхний — водную фазу. Из отстойника олигомеры с влажностью 15—18% и содержанием свободного фенола около 16% поступают в трубную сушилку //, а водная фаза — на обес-феноливание. Высушенные олигомеры подаются в стандартизаторы 12, а затем на охлаждающий барабан 14, с которого срезаются ножом, и направляются на упаковку. Пары, выходящие из трубной сушилки 11, конденсируются в холодильнике 13. Конденсат собирают в вакуум-сборниках 15, а затем перекачивают насосом в мерник 15, из которого вводят малыми добавками в исходное сырье (или направляют на термическое обезвреживание — сжигание). [c.56]

    Фенолоформальдегидные новолачные олигомеры выпускаются различных марок. Это твердые термопластичные продукты от светлого до темно-коричневого цвета, плотностью 1,2 Мг/м с температурой плавления 100 —120 °С. Новолаки не отверждаются при длительном хранении при нагревании до 180°С. Для получения неплавких технических продуктов в новолачные олигомеры вводят 10—15% уротропина. Температура размягчения олигомера, средний молекулярный вес и скорость отверждения зависят не только от соотношения фенола и формальдегида, но и от длительности конденсации и термической обработки. Увеличение содержания формальдегида (но не более 28 г на 100 г фенола), продолжительности конденсации и температуры термообработки приводит к пбвышению температуры размягчения и молекулярного веса олигомера. Новолачные олигомеры хорошо растворяются в спирте и ацетоне. Фенолоксиленольные смолы плавятся при более низкой температуре, обладают большей текучестью и лучшей способностью пропитывать наполнитель. [c.56]

    Свойства текстолита. Текстолит выпускается в виде листов различной толщины (от 0,2 до 100 мм) размером 1000X1500 мм. Свойства его зависят от типа ткани, содержания олигомера, условий прессования. Так, текстолит на основе тяжелых тканей имеет большую ударную вязкость, чем на основе легких тканей. Прочность его повышается также с увеличением числа слоев ткани в единице толщины материала. При недостаточном содержании смолы понижается прочность склеивания слоев ткани. Текстолит имеет высокие физико-механические показатели (особенно разрушающее напряжение при сжатии и ударную вязкость), но эти показатели ухудшаются в условиях повышенной влажности. Текстолит может длительное время выдерживать температуру 90—105 °С при работе под нагрузками. [c.66]

    Катализатор — трипропилалюминий— используется в виде раствора в олигомерах пропилена. Синтез 2-метил-1-пентена проводится при давлении 20 ЛШа и вре мени пребывания в реакторе 1 около 40 мин. Степень превращения пропилена составляет 70—80% выход фракции димеров в расчете на прореагировавший оле фин около 97%, содержание 2-метил-1-пентена во фракции не менее 90%. На выходе из реакторного блока, состоящего из двух реакторов, реакционная смесь дросселируется до давления, близкого к атмосферному, конденсируется в теплообменниках 2 и поступает в систему разделения. Первой операцией является отде-ление катализатора и олигомеров на испарительной колонне 5. Кубовая жидкост из колонны возвращается в реактор, пройдя колонну 4, из которой выводится из- быточное по балансу количество олигомеров, в основном 2,4-диметил-1-гептена. Погон колонны 3 направляется на систему колонн 5—7, где из него последй вательно отгоняется возвратная ППФ, промежуточная фракция и, наконец, 2-метил-1-пентен. [c.379]

    Анализируемый водный раствор, содержащий несколько олигомеров полиэтилеигликоля, в их числе олигомер с молекулярной массой 20 000 (содержание каждого олигомера 0,2 г/л) и Na l (0,01 моль/л). [c.61]

    В 60-е годы в Советском Союзе были построены крупно-тоннажные установки олигомеризации по типовому отечественному проекту для переработки бутан-бутиленовой (ББФ), пропан-пропиленовой (ППФ) фракций или ик смесей, выделяемых из нефтезаводских газов. Первоначально в качестве сырья процессов использовали смешанные ППФ и ББФ. Позднее, когда продукты процессов начали применяз ь в каче-сгве сырья для нефтехимии, данные фракции стали перерабатывать только раздельно, так как новые потребители олигомеров предъявили жесткие требования к содержанию в них индивидуальных углеводородов. До последних лет продукты практически всех отечественных установок олигомеризации использовались только в качестве сырья нефтехимии. [c.12]

    Возникает вопрос о токсичности полученнных материалов. Масс--спектральныи анализ ароматической части АСМОЛ-1 и битума ЕН-1У (см. рис. 3 и табл. 5.3) свидетельствует, что содержание канцерогенной тетра- и пентаароматики, в частности, содержание пиренов в АСМОЛ-1 и БН-1У, примерно одинаково (4,1- ,2 об.). Следовательно, АСМОЛ- по санитарно-гигиеническим характеристикам близок к нефте-битумам и повышенной опасности по канцерогенности при эксплуатации не представляет. По данным УфШ санитарии и гигиены асфальто-смолистые олигомеры относятся к малотоксичным веществам (1У класс токсичности). [c.59]

    Продукты олигомери- зации Высокие ОЧИ и ОЧМ, низкое содержание серы Ограниченные ресурсы сырья, высокая себестоимость  [c.343]

    Определена роль прокатки и содержания наполнителя при получении полимерграфитовых композиций на основе как ПВХ-пластизоля, так и полисульфидного олигомера на проводящие свойства композиций. Показано, что при увеличении содержания ТРГ с 4,8 до 17 масс.% в полимерграфитовых композициях проводимость возрастает с 0,1 до 7 ом см для ПВХ-пластизоля и с [c.80]

    На базе концепции деформационного герметизатора разработаны герметизирующие материалы на основе гидрофобизированного графита и олигомерного связующего. Применение углеводородных и фторсодержащих олигомеров в качестве матрицы позволило существенно увеличить прочностные характеристики композита и стойкость к воздействию термоокислительных сред. Формирование на поверхности изделия олигомерного слоя повыщаст гидрофобность композита и способствует формированию устойчивых слоев переноса на рабочей поверхности сопряженного металлического контртела. Разработаны составы герметизирующих материалов с упрочняющими фрагментами углеграфитовых и етеклянных волокон с активированной поверхностью. Рещена задача расчета напряженно-деформированного состояния полосы из углеродного материала в зависимости от типа, содержания и пространственной ориентации армирующих волокон. Получены аналитические зависимости для определения напряжений в заданном сечении армированного композита. Разработаны составы модифицированных материалов на основе гидрофобизированного фафита с заданным сочетанием прочностных (Оаж, о ) и деформационных (ц, 8) характеристик. Для обеспечения надежной герметизации запорной арматуры предприятий нефтехимического комплекса разработаны уплотнительные комплекты для всей номенклатуры применяемого оборудования. Уплотнительные комплекты обеспечивают стабильную эксплуатацию запорной арматуры при температуре эксплуатации рабочей среды до 773 К, при давлениях до 50 МПа в течение не менее 10000 часов без специального обслуживания. [c.173]

    Адсорбция из растворов олигомеров — полимеров со сравнительно небольшой молекулярной массой (от 300 до 5000) —происходит в соответствии с их химическим строением. На рис. 18.4 показано разделение олигобутадиенов и их моно- и диоксипроизвод-ных со средней молекулярной массой около 1200 на колонне с широкопористым силикагелем при градиентном элюировании с постепенным увеличением содержания полярного компонента метилэтилкетона в н-гептане. Первым из такой колонны при элюировании чистым н-гептаном выходит олигобутадиен, вторым при добавлении в н-гексан 5% метилэтилкетона выходит монооксиолигобутадиен и третьим, при содержании в н-гептане 15% метилэтилкетона, — диоксиолигобутадиен. Этот пример показывает, что методом адсорбционной хроматографии можно разделять синтетические олигомеры по типу и числу функциональных групп в их макромолекулах. [c.337]

    Влияние соотношения ЭД-20 и КА на содержание эпоксидных и гидроксильных групп в полученньпс олигомерах [c.93]

    Краски, модифицированные маслами. Использование фенольных олигомеров, модифицированных маслами, приобретает все большее значение для антикоррозионных грунтовок, применяемых при окраске кораблей и лодок. Аналогичные многослойные покрытия применяют и при окраске других транспортных средств. Например, лакокрасочные покрытия для железнодоронагых вагонов могут состоять из грунтовки на основе эпоксидной смолы, промежуточного слоя из фенольной смолы (модифицированной смесью уретанового масла и алкидной смолы) и верхнего слоя на основе смеси уретанового масла и алкидной смолы [34]. Алкил- и арил-фенольные смолы можно смешивать с высыхающими маслами [2]. Из растительных масел предпочитают использовать тунговое, иногда льняное или касторовое. Содержание фенольной смолы в композиции (в зависимости от реакционной способности) составляет от 25 (резолы) до 100% (новолаки). Реакцию с маслами новолачной смолы, состоящей из -грег-бутилфенола, /г-октилфенола или я-фенилфеиола проводят в условиях, позволяющих предотвратить гелеобразование. Для этого половину смолы растворяют в масле и в течение 60 мин нагревают до 190°С, далее добавляют остальную смолу и всю массу нагревают прн 230—240°С до прекращения газовыделения (пенообразования), а затем еще 30 мин для окончательного завершения реакции. После охлаждения модифицированную смолу разбавляют уайт-спиритом и ароматическими растворителями. Для ускорения сушки на воздухе в состав композиции вводят кобальтовые или свинцовые сиккативы и добавки, обеспечивающие получе1те гладких покрытий. Такие покрытия ие дают отлипа при температуре окружающей среды в течение 6—16ч (в зависимости от содержания тунгового масла). [c.204]

    СТИ (РТФ), характеризует относит, содержание в о.шго-мерах молекул, различающихся по кол-ву и природе реакцн-онноспособных Групп. Для олигомеров, содержащих молекулы одинаковой функциональности, полидисперсносп по функциональности = 1 (/ и — средпсмассо [c.492]

    Какие же другие функции кроме нейтрализации зарядов ДНК выполняют гистоны Первоначально считали, что эти белки могут играть, роль репрессоров генов аналогично тому, как это происходит у бактерий. Однако экспериментального подтверждения это предположение не получило. Гистоны, по-видимому, образуют своеобразный комплекс с нитями ДНК. Сравнительно недавно с помощью электронного микроскопа были получены микрофотографии, на которых видно, что хрома-типовые волокна имеют регулярно повторяющееся строение, напоминая нитки бус. Диаметр бусинки (или у-телец, или нуклеосом) составляет 7—10 нм, а длина свободной нитки между бусами равна 2—14 нм. (рис. 15-35] [290—294]. Содержание ДНК в бусинках велико. Данные, полученные методом дифракции нейтронов, свидетельствуют о том, что в у-частицах нить ДНК намотана вокруг гистонового олигомера-(рис. 15-36) [295]. Гистоны Н2а, Н2в, НЗ и Н4 обнаруживаются почти в одинаковом количестве — на каждые 100 пар оснований в ДНК приходится по одной молекуле каждого из гистонов. В растворе был получен октамер, содержащий по две субъединицы гистонов каждого типа [296]. [c.302]

    Орг. масса угля с содержанием С 70-85%, обычно применяемого для гидрогенизации, представляет собой самоассо-циированный мультимер, состоящий из пространственно структурированных блоков (олигомеров). Блоки включают макромолекулы из атомов углерода, водорода и гетероатомов (О, N. 8), что обусловливает неравномерное распределение электронной плотности, поэтому в блоках осуществляется донорно-акцепторное взаимодействие, в т. ч. образуются водородные связи. Энергия разрыва таких связей не превышает 30 кДж/моль. Различают блоки с мол. м. 200-300, 300-700 и 700-4000, р-римые соотв. в гептане (масла), бензоле (асфальтены) и пиридине (асфальтолы). Внутри блоков макромолекулы связаны метиленовыми, а также 0-, N- и 8-содержащими мостиками. Энергия разрыва этих связей в 10-15 раз больше энергии разрыва блоков. При Г.у. в первую очередь происходит разъединение блоков. Послед, деструкция блоков требует повыш. т-ры, присутствия активного Нд. Для получения из угля жидких продуктов необходимо наряду с деструкцией осуществить гидрирование образующихся низкомол. непредельных соединений. [c.555]

    Полимер синтезигруют обычио иа том же предприятии, на к-ром производят волокно. В получаемом поли-е-капро-амиде содержится до 10% низкомол. соед. (в осн. мономер и его низшие олигомеры). Присутствие их в полимере затрудняет послед, формование волокна и отрицательно сказывается на его св-вах. Поэтому для удаления низкомол. соед. полимер подвергают т.наз. демономеризации-ва-куумироваиню расплава или водной обработке полимерного гранулята, к-рый затем (содержание воды 7-10%) сушат в токе нагретого азота, предварительно очищенного от кислорода (содержание О2 не должно превьппать 0,0003%). Кол-во остаточной влаги зависит от условий формования волокна и мол. массы полимера. Содержание низкомол. соед. в готовом полимере, как правило, не превышает 1-2%, влажность составляет 0,05-0,1%. [c.605]

    Процесс проводят по периодической или непрерьганой технол. схеме при 240-270 С и 1,5-2,5 МПа. Содержание в П. низкотемпературной водорастворимой фракции (К. и его олигомера) достигает 5-11%. [c.630]

    Наиб, полно функциональность олигомеров и полимеров отражает распределение по типам функциональности (РТО) - аналог ф-ции ММР, количественно характеризующее относит, содержание макромояе л с разл. числом и типом функц. групп. Наиб, универсальный метод количеств, анализа РТО полимеров - высокоэффективная жидкостная хроматография (ВЭЖХ) в колоночном или тонкослойном вариантах. [c.217]

    При обозначении марок Э. указывают содержание SiOj Э.-32, Э.-40, Э.-50 содержат соотв. 32, 40 и 50% ЗЮг (по массе). В наиб, кол-вах производят Э.-40 (ЭТС-40) -олигомер, ср. состав к-рого соответствует ф-ле (R0)3Si[0Si(0R)2]40Si(0R)3, содержит (41 1)% SiOj, 10-15% тетраэтоксисилана, не более 0,5% НС1. [c.503]

    В продукте этерификации парами перегретого этиленгликоля в основном Содержатся линейные олигомеры полиэтилентерефталата, вплоть до пентамеров и гексамеров, при очень незначительном (не более 4%) содержании мономерного дигликольтерефталата. Это объясняется тем, что этерификация в каждый момент времени осуществляется при значительном избытке терефталевой кислоты. [c.31]

    Состав и количество продуктов побочных реакций также не являются постоянными и изменяются в зависимости от выбранных параметров процесса. Как показано на рис. 3-18, содержание ацетальдегида в сконденсированном метиловом спирте и избыточном этиленгликоле повышается по мере протекания переэтерификации, причем в большей степени в этиленгликоле, т. е. практически после завершения реакции переэтерификации. Это позволяет считать, что ацетальдегид в условиях реакции переэтерификации образуется не в результате дегидратации этиленгликоля, а главным образом в результате частичной деструкции терефталатов с оксиэтилэфир-ными группами по механизму термической деструкции. Экспериментально было подтверждено [1251, что при раздельном нагревании метанола и этиленгликоля в присутствии катализаторов переэтерификации даже в более жестких температурных условиях ацетальдегид не обнаруживается. В присутствии же дигликольтерефталата, а особенно олигомеров, ацетальдегид образуется в заметных количествах. Для системы с катализатором ацетатом марганца образование ацетальдегида за 30 мин при 197 °С характеризуется следующими данными  [c.51]


Смотреть страницы где упоминается термин Олигомеры содержание: [c.189]    [c.201]    [c.58]    [c.399]    [c.15]    [c.53]    [c.205]    [c.399]    [c.561]   
Синтактические полиамидные волокна технология и химия (1966) -- [ c.230 , c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Олигомеры



© 2025 chem21.info Реклама на сайте