Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модуль сшивания

    Уравнения (2) и (3) лежат в основе всех современных представлений о высокоэластическом состоянии полимеров. Они позволили объяснить важнейшие черты высокоэластической деформации — малое значение (0,1 10 МПа) модуля Юнга резин, рост его с повышением температуры и с ростом степени сшивания эластомеров. [c.48]


    Сшивание макромолекул при облучении облегчается тем, что возникший при отрыве водорода свободный радикал может передавать неспаренный электрон вдоль цепи, отчего увеличивается вероятность его нахождения по соседству с таким же свободным радикалом другой макромолекулы. На определенной стадии облучения молекулы полимера оказываются химически связанными (сшитыми) в общую сетчатую структуру. Полимер теряет способность растворяться в обычных для него растворителях, резко возрастают его механические свойства (модуль, твердость, прочность и др.). [c.248]

    Кинетическая теория высокоэластичности позволяет установить связь между равновесным модулем и степенью сшивания к [c.507]

    Если равновесный модуль Е о определяется в области плато высокоэластичности, то он увеличивается с ростом густоты пространственной сетки, а расчетные значения v хорошо согласуются с экспериментальными. Такая зависимость модуля упругости от степени сшивания встречается наиболее часто и считается нормальной. В этом случае плотность пространственной сетки может быть оценена по данным акустических измерений. Очевидно, что в области плато высокоэластичности динамический модуль и скорость звука будут возрастать при увеличении степени сшивания. [c.508]

    Приведенные в литературе, а также полученные нами данные свидетельствуют об уменьшении плотности и модуля упругости в области стеклообразного состояния с увеличением плотности сшивания [1, 54, 70], Плотность эпоксидных полимеров [c.68]

    Существует тесная взаимосвязь между различными механическими свойствами и процессом разрыва полимеров. Поэтому целесообразно хотя бы в общих чертах коснуться не только прочности, но и других механических свойств. Важными характеристиками полимера являются его статический и динамический модули, которые определяются главным образом межмолекулярным взаимодействием, ориентацией, кристалличностью, степенью поперечного сшивания, разветвленностью цепных молекул. Этими же факторами в значительной мере определяется хрупкость. Ударная вязкость сильно зависит от содержания низкомолекулярной части полимера, при ее повышении ударная вязкость уменьшается. Пластичность, как правило, увеличивается при добавлении веществ, присутствие которых делает надмолекулярную структуру менее плотной. [c.58]

    Факторы, влияющие на один из параметров, определяющих поверхность свойств , влияют также на форму поверхности в целом и на границы, которые отвечают условиям разрущения. Например, изменение степени поперечного сшивания влияет на вид поверхности, а следовательно, на модуль упругости, на 0р, 8р и Тр. Исчерпывающее изучение прочности при данных условиях деформации сводится, таким образом, к изучению всей поверхности, а не только ее граничной области. [c.73]


    Значение равновесного модуля используется для оценки плотности сетки химических связей, кроме того оно дает представление о влиянии степени сшивания на прочность материала, так как значения разрушающего напряжения также размещаются на равновесной кривой напряжение — деформация. [c.201]

    Таким образом, кинетическая теория высокоэластичности приводит к интересному и практически важному результату равновесный модуль упругости прямо пропорционален степени поперечного сшивания (или обратно пропорционален Мс). [c.82]

    Одним из наиболее важных результатов кинетической теории высокоэластичности является приведенная выше линейная зависимость равновесного модуля упругости при высокоэластической деформации от степени поперечного сшивания. [c.88]

    Важнейшей характеристикой сетчатых полимеров является степень поперечного сшивания. Кинетическая теория высокоэластичности (см. гл. 3) позволяет установить связь между равновесным модулем Eq и степенью сшивания v  [c.273]

    Для установления связи между акустическими свойствами сетчатых полимеров и степенью поперечного сшивания воспользуемся соотношениями типа (7.34а) и (7.41). Тогда в случае непрерывного спектра времен релаксации выражение для дина.мического модуля Юнга можно представить [4] в виде  [c.274]

    В этом случае из акустических измерений по соотношениям (7.71) или (7.72) может быть оценена плотность пространственной сетки. Очевидно, что в области плато динамический модуль и скорость звука будут возрастать при увеличении степени сшивания. Так как в области плато высокоэластичности о=1—10 МПа, а в стеклообразном состоянии 102- -10 МПа, то очевидно, что в последнем случае величиной Ео в формуле (7.75) можно пренебречь, и основной вклад в Е будут вносить второй и третий члены правой части выражения (7.75). Здесь воз.можны два случая. [c.275]

    Тогда основной вклад в Е будет вносить третий член правой части (7.75), и динамический модуль упругости будет уменьшаться с увеличением плотности пространственной сетки. Следовательно, формула (7.75) позволяет объяснить и аномальную зависимость динамического модуля упругости от степени сшивания. Такая зависимость может наблюдаться в стеклообразном состоянии или в области перехода из стеклообразного в высокоэластическое состояние. [c.276]

    Зависимость электрической прочности от температуры может измениться после соответствующей обработки полимера. Например, при облучении полиэтилена происходит сшивание материала, в результате возрастает модуль упругости в области повышенных температур, что приводит к увеличению пр при этих температурах, тем более заметному, чем выше доза облучения (рис. 72) [4, с. 72]. [c.133]

    В то же время сшивание влияет на модуль упругости набухших образцов иначе, чем сухих. Из рис. 9.39 видно, что при увеличении степени сшивания увеличивается наклон участков в зоне упругой и вынужденно-эластической деформаций. Диаграмма полностью сшитого, нерастворимого в воде образца (кривая 3) имеет точку перегиба, соответствующую величине предела вынужденно-эластической деформации этого образца и расположенную выше, чем у слабо сшитого, частично растворимого в воде. [c.229]

    По-видимому, изменение модуля связано с повышенной эффективностью сшивания перекисью дикумила компонентов с большим содержанием бутадиена. [c.91]

    Этот вывод, конечно, основывается на предположении об отсутствии разрывов цепей в процессе реакции сшивания. Дело в том, что сшивание не оказывает заметного влияния на модуль упругости, но существенно снижают набухание. Однако такое аномальное отсутствие согласия между значениями модуля упругости и относительным набуханием можно объяснить необычным поведением этих блоксонолимеров при набухании. Как уже отмечалось [2], это связано с эффектом запаздывания набухания в присутствии специфического растворителя для эластомерной фазы, т. е. изооктана, что затрудняет достижение равновесного набухания. [c.112]

    Когда изучается действие излучения на полимеры, уже вулканизованные другими способами, измерения модуля могут быть также полезны, по крайней мере качественно. Очевидно, что уменьшение т означает преобладание деструкции, а возрастание т — преобладание сшивания до сих пор такой подход ие был [c.75]

    С хим. точки зрения В.-соединение ( сшивание ) гибких макромолекул каучука в трехмерную пространств, сетку (т. наз. вулканизационную сетку) редкими поперечными хим. связями. Образование сетки происходит под действием спец. хим. агента или (и) энергетич. фактора, напр, высокой т-ры, ионизирующей радиации. Поперечные связи ограничивают необратимые перемещения макромолекул при мех. нагружении (уменьшают пластич. течениеХ но не изменяют их способности к высокоэластич. деформации (см. Высокоэластическое состояние). Степень сшивания (густоту сетки поперечных связей) характеризуют равновесными модулями растяжения или сдвига, к-рые определ5цот при сравнительно небольших деформациях, равновесным набуханием в хорошем р-рителе, а также содержанием макромолекул, оставшихся в сшитом образце вне сетки (золь-фракция). [c.434]


    Свойства П. во многом определяются типом полимера-основы, относительным содержанием твердой и газовой фаз, параметрами морфологич. структуры (формой, размером, строением и ориентацией ячеек). Эти же факторы влияют на характер деформации и механизм разрушения П. под действием статич. или динамич. нагрузок. С увеличением степени сшивания полимера возрастают модуль упругости, формоустойчивость при повыш. т-рах, но уменьшается относит, удлинение и ухудшаются эластич. св-ва П. Для многих П., полученных свободным вспениванием, характерна анизотропия св-в так, и могут быть на 20-40% больше вдоль направления течения композиции при вспенивании, чем в перпендикулярном к нему направлении. [c.456]

    Значение модуля и ход кривой модуля позволяют сделать выводы об агрегатном состоянии и о структуре полимерных образцов. С помощью динамических исследований можно также определить степень кристалличности, степень сшивания, химическую неоднородность, а также отличить статистические сополимеры от блок-со-плимеров. Метод торсионных колебаний удобен для исследования полимеров, которые содержат пластификаторы или наполнители (рис. 28 и 29). [c.100]

    Высокоэластическая деформация—особый вид упругой деформации, присущий только полимерам. Она характеризуется малым модулем упругости (1—10 кгс1см ) и большими механическими обратимыми деформациями. У пространственно-структурированных полимеров (резин), получаемых при поперечном сшивании линейных макромолекул, высокоэластические свойства проявляются в наиболее чистом виде, так как узлы сетки препятствуют течению материала. Поэтому резина восстанавливает свою форму после разгрузки, как упругие твердые тела. [c.72]

    Равновесный модуль зависит главным образом от стеиени поперечного сшивания (вулканизации). Величина неравновесной части динамического модуля практически не зависит от степенн вулканизации . Таким образом, вулканизацией можно изменять величину динамического модуля, не изменяя внутреннего трения резины. Неравновесная часть модуля, как и внутреннее трение, суш,ественно зависит от числа полярных групп в цепн каучука и количества активного наполнителя, т. е. от характера и интенсивности межмолекулярного взаимодействия. Влняние наполнителя на динамический модуль сказывается в изменении Е при практически неизмененном Еоа- [c.217]

    Помимо ориентации и поперечного сшивания эффективным примером повышения прочности является графитизация — нагревание полимерного материала в среде инертного газа до тех пор, пока в результате отщепления атомных группировок от основных цепей не образуются связи С—С, характерные для графита. Так, фирма Union arbide сообщила о получении волокна Торнелл [626, с. 3] посредством контролируемого пиролиза целлюлозных материалов. Значение Ор для такого волокна составляет при комнатной температуре 280 МПа, модуль упругости — 3500 МПа, плотность — около 1500 кг/м . Волокна обладают достаточной гибкостью, что позволяет получать прочные и нехрупкие полимерные материалы. [c.297]

    Измерения модуля сдвига можно использовать для определения степени сшивания густых сеток, например, сильно сшитых серных вулканизатов бутадиен-стироль-ного каучука (СКС) или НК [29 37, с. 88—97]. При изменении температуры в области плато высокоэлас-тичности для тетрафункциональных сшивок теоретическое положение G=V 7 выполняется достаточно точно. [c.28]

    Резниковским [94, 95], а позднее и другими авторами [96—98] было показано, что увеличение концентрации поперечных связей приводит к повышению динамического модуля за счет увеличения его равновесной составляющей. Имеются различные суждения о влиянии степени поперечного сшивания на внутреннее трение. Некоторые авторы [94, 99, 100] приходят к выводу, что внутреннеё трение практически не меняется с увеличением концентрации поперечных связей другие [96, 101] считают, что внутреннее трение уменьшается, тогда как третьи [102, 103] обнаружили слабо выраженный минимум, проявляющийся при несколько меньшей густоте сетки, чем та, при которой достигается максимальная величина динамического модуля. Суммируя эти данные, следует признать, что с ув еличением концентрации поперечных связей модуль внутреннего трения падает или остается неизменным [87], поскольку в процессе вулканизации межмолекулярное взаимодействие и гибкость цепей полимера мало меняются вплоть до облает очень густых сеток, а доля пластических деформаций при этом уменьшается. В области очень густых сеток, когда длина цепи между узлами становится соизмеримой с длиной кинетического сегмента, внутреннее трение в вулканизатах резко увеличивается [95]. Соответственно, с повышением степени поперечного сшивания эластичность по отскоку увеличивается и затем падает при перевулканиза-ции [104]. [c.102]

    Применимость формул (7.71) и (7.72) для определения степени полеречного сшивания неоднократно лроверя-лась путем солоставления значений V, рассчитанных по формулам (7.71) и (7.72), и значений V, найденных химическим методом или рассчитанных по составу реа-к-ционной смеси с учетом степени конверсии реакционно-способных групп. Оказалось, что если равновесный модуль Ео определяется в области плато высокоэластично-сти, то значения V, найденные ло формулам (7.71), (7.72), хорошо согласуются с соответствующими значениями, полученными другими методами [4], даже для таких полимеров, как отвержденные эпоксидные смолы, которые обладают достаточно густой пространственной сеткой, В настоящее время, по-видимому, невозможно строго оценить границы применимости соотношений (7,71) и (7.72) для плотных полимерных сеток. Тем не менее (Мо Кно утверждать, -что для всех органических полимеров равновесный модуль, измеренный в области плато высокоэластичности, увеличивается с ростом густоты пространственной сетки. Такая зависимость модуля упругости от степени сшивания встречается наиболее часто и считается нормальной. [c.274]

    На рис. 47 представлена кинетика твердения (по нарастанию пластической прочности) жидкого стекла с модулем 1,5 при введении в качестве отвердителя порошка р-2Са0-5102, а также изменения концентрации кальция в жидкой фазе. Переход кальция в раствор осуществлялся в этом случае сразу с максимальной скоростью, минуя первый, второй, третий периоды гидратации, и в дальнейшем только ослабевает. Кальций в растворе связывается силикатными ионами, но прочность начинает нарастать, когда скорость образования агрегатов за счет сшивания кальцием силикатных ионов с образованием связок . 51—О—Са—О—51 и выпадения этих агрегатов в виде твердой фазы существенно возрастет. Поэтому концентрация кальция в растворе сначала замедляется в своем росте, а затем начинает уменьшаться, т. е. растворимые формы в процессе твердения играют роль про- ежуточных соединений. Максимальная концентрация Са выступает как величина, при которой скорость перехода Са в раствор равна скорости его выпадения в твердую фазу. Эта последняя скорость определяется концентрацией и модулем жидкого стекла. Скорость перехода кальция в раствор, если она лимитируется адией диффузии, будет мало зависеть от природы кальцийсо- Ржащих твердых фаз и станет сильно зависеть от их природы ограничении процесса растворения химическими стадиями, [c.121]

    Изменения ТМК сшитых пленок АБЦ хорошо согласуются с изменениями механических свойств пленок. На рис. 9.81 приведены кривые дефор-мации пленок АБЦ с С3он=1-02, полученных из ацетоновых растворов и сшитых в различной степени. Там же приведена кривая деформации сшитой пленки после обработки ацетоном для удаления непрореагировавшего АБЦ. Удаление последнего приводит к увеличению модуля жесткости (угол наклона начального прямолинейного участка возрастает) и уменьшению деформации. Удивительно, что предел прочности пленок при растяжении практически не изменяется. Можно предположить, что это связано с противоположным влиянием химической пластификации и сшивания. Деформация пленг<и, имеющей очень низкое содержание связанного формаль- [c.267]

    В то время как модуль упругости лишь слегка изменяется при химическом сшивании, прочность при растяжении снижается весьма заметно. Следовательно, хотя число химических сшивок, образованных перекисью, не очень велико в сравнении с числом уже имеющихся узлов физической сетки (зацеплений), эти фиксированные сшивки должны образовывать места концентрации напряжений, которые не могут передавать усилия на поли-стирольпые домены столь же эффективно, как зацепления цепей. [c.112]

    Как видно из рис. 12, значение = О °С у незатвердевшего образца НТ435 благоприятно для стабильности системы при хранении в обычных условиях (практически сшивания не про-исходит), что обеспечивает низкое значение модуля, необходимое для качественного нанесения адгезивного покрытия при 25 °С и выше. В дополнение к оценке следует указывать оптимальную схему отверждения, при которой весь процесс осуш,ествляется при температурах ниже температуры деструкции образцов (Г = 200 °С). Итак, на основании рассмотрения целого ряда взаимосвязанных хемореологических характеристик термореактивных адгезивов можно рекомендовать оптимальные условия их хранения, нанесения и отверждения. На основании изучения хемореологических характеристик системы может быть-частично подавлен (за счет выбора продолжительности отверждения, температуры и давления в процессе реакции) нежелательный процесс кавитации и образования пустот. Основная особенность процесса отверждения смолы — изменение Т д до (Т )г со — показана на рис. 13 в виде серии теоретических кривых, которые хорошо согласуются с экспериментальными данными, полученными методами ДСК и ТМА. Оба исследованных адгезива после отверждения при температуре Т )г=и, > 185 С становятся по своим свойствам совершенно эквивалентными. [c.97]

    Отверждение эпоксифеиольных конструкционных адгезивов включает одновременно протекающие реакции полимеризации и сшивания, приводящие к образованию трехмерной сетки химических связей [1]. Процесс отверждения полиимидных адгезивов обусловлен внутримолекулярной имидизацией, что вызывает превращение вязкоупругого материала в твердый. Несмотря на принципиальное различие молекулярной природы процессов отверждения двух сравниваемых типов смол, в их хемореологи-ческом поведении наблюдаются черты поразительного сходства. На рис. 11 сопоставляются температурные зависимости модуля [c.114]

    Наиболее заметные изменения свойств полимеров, вызванные действием ионизирующих излучений, обусловлены реакциями сшивания и деструкции. Вообше говоря, результаты сшивания полезны, Б то время как результаты деструкции нежелательны. Когда сшивание преобладает над деструкцией, образцы полимеров заметно изменяют свою растворимость, механические свойства и поведение при нагревании. Невулканизованяые каучукообразные полимеры становятся, по крайней мере частично, нерастворимыми в органических растворителях, хотя сохраняют способность набухать в них, приобретают увеличенную прочность и эластичность, характерные для вулканизатов. Разновесный модуль, равный нулю для несшитых каучуков, приобретает конечное значение при некоторой минимальной дозе, характерной для данного типа цепной структуры и обратно пропорциональной молекулярному весу (см. гл. IV, стр. 89 и сл.). Статистическая теория [50] приводит к соотношению  [c.74]

    При том же значении дозы, при котором равновесный модуль впервые начинает отличаться от нуля, в полимере впервые возникает нерастворимая фракция (гель), количество которой продолжает расти с дозой. В точке гелеобразования и после нее полимер при нагревании и размягчении не переходит в вязкотекучее состояние он становится неплавким. Так, полиэтилен обычно теряет кристалличность и размягчается при 110—115° при этом он теряет способность поддерживать напряжение и теряет форму уже под действием собственного веса. Прессованная полиэтиленовая бутыль, например, деформируется и расплывается в бесформенную массу при температурах выще 110—115°. Изделия из полиэтилена, облученные - -лучами или быстрыми электронами, при дозах более 10 мегафэр становятся неплавкими и переходят при температурах ПО—-115° не в вязкотекучее, а в резиноподобное состояние. Они сохраняют свою форму даже при 300°, хотя потеря кристалличности у них происходит примерно при тех же температурах, что и у необлученных материалов. На рис. 17 демонстрируется вид полиэтиленовых бутылей, получивших дозы О, 5, 10 и 20 лгегафзр от электронов с энергией 800 кв, а затем прогретых 15 мин. при 135°. Доза 5 мегафэр дает заметный эффект. Однако требуется по крайней мере 10 (желательно даже 20) мегафэр для получения хорошей термостабильности в данных конкретных условиях. Все эти изменения являются результатом образования сплошной пространственной сетки. Условия создания такой сетки мы рассмотрим более подробно в следующей главе. Если разрывы цепей превалируют над сшиванием, так что сплошная пространственная сетка не образуется, то действие излучений на физические свойства вначале менее заметно, чем при образовании пространственной сетки, но затем проявляется в уменьшении прочности и появлении хрупкости полимера. Политетрафторэтилен теряет свою прочность при облучении - -лучами или электронами. При дозе 10 мегафэр это становится заметно даже при поверхностном осмотре. При дозе 100 мегафэр и выше политетрафторэтилен теряет всю свою прочность и легко крошится. Деструкция растворимых полимеров, например полиметилметакрилата, сопровождается непрерывным уменьшением вязкости растворов, но это не является однозначным критерием деструкции, так как [c.77]

    Чарлзби и Хэнкок [21] исследовали влияние сшивания на модуль упругости образцов полиэтилена, определенный методами изгиба, колебаний и растяжения. Полученные результаты [c.113]

    Мы уже видели в перечне, приведенном на стр. 64, что в полистироле, подвергающемся действию облучения электронами с энергией 800 кэв в отсутствие кислорода, происходит в основном сшивание, а предыдущее обсуждение показало, что эффективность сшивания невелика вследствие защитного действия бензольных колец. Зисман и Бопп [18] нашли, что полистирол является наиболее устойчивым из всех пластиков по отношению к действию излучения атомного реактора. Оказалось, что после воздействия 13-10 нейтрон/см (что эквивалентно 5850 мегафэр) получается только небольшое увеличение модуля упругости и только небольшое уменьшение прочности на разрыв и удлинения. Наблюдалось некоторое потемненир. ио даже [c.134]

    Зисман и Бопп [3] наблюдали, что в найлоне, облученном в ядерном реакторе, при 25° наблюдается увеличение модуля упругости и разрывной прочности. Удлинение и прочность на удар уменьшаются. При 10 э нейтрон/см величина модуля достигает значения, которое больше чем вдвое превышает начальное. Эти результаты можно объяснить только сшиванием. [c.191]


Смотреть страницы где упоминается термин Модуль сшивания: [c.110]    [c.298]    [c.40]    [c.162]    [c.124]    [c.173]    [c.82]    [c.58]    [c.233]    [c.277]    [c.165]    [c.181]    [c.184]   
Расчеты и конструирование резиновых технических изделий и форм (1972) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Динамический модуль упругости и степень поперечного сшивания

Модуль

Сшивание



© 2024 chem21.info Реклама на сайте