Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная изменения при образовании химической связи

    Изменение химических свойств элементов в группах имеет ряд интересных закономерностей. Номер группы соответствует наибольшей степени окисления элементов (см. 5.4). Д. И. Менделеев характеризовал значение высшей валентности элементов на основании их соединений с кислородом. Значение валентности по кислороду по группам возрастает от 1 до 8. Значение валентности по водороду имеет максимум для IV группы. В сумме обе валентности, начиная с IV группы, дают 8 (например, СОа и СН4, UO, и НС1). Номер группы, таким образом, указывает число электронов атомов элементов, которые могут участвовать в образовании химических связей, определяет диапазон валентных возможностей атомов элементов. В этом физический смысл номера группы в периодической системе. [c.90]


    Справа выписано число неспаренных внешних электронов и формулы соответствующих водородных соединений. Валентность, согласно изложенному, должна равняться этому числу неспаренных электронов. Мы видим, что в полном соответствии с опытными данными водород, литий, фтор и натрий — одновалентны, кислород — двухвалентен, азот — трехвалентен. Атомы инертных газов гелия и неона не образуют молекул, так как все их электроны спарены, поэтому их валентность равна нулю. Противоречие мы наблюдаем лишь для атомов Ве, В, С, для которых возможны и другие валентности (указанные в скобках). Но это противоречие только кажущееся и объясняется тем, что мы привыкли считать, что свободные атомы, образуя химическую связь, обязательно сохраняют строение своих электронных оболочек. Но не существует никаких причин, по которым это должно быть только так атом, образуя связь, уже не является свободным, и его электронная конфигурация может и должна — в большей или меньшей степени) измениться. Поэтому необходимо принимать во снимание те изменения энергии, которые могут возникнуть при образовании химической связи. [c.71]

    На рис. 5.9 приведена разность между электронной плотностью основного состояния Нз и электронной плотностью, со< ответствующей электрону, равнораспределенному между двумя водородными 15-орбиталями. Этот рисунок иллюстрирует изменение электронной плотности при образовании химической связи. Видно, что электрон смещается в область между двумя ядрами. Это та область, где на электрон воздействует наибольшее притяжение со стороны ядер. Уменьшение потенциальной энергии электронов отчасти компенсируется увеличением их кинетической энергии, но в целом именно потенциальная энергия является доминирующей, и поэтому полная энергия понижается. [c.78]

    Может возникнуть вопрос, правомерно ли составлять волновую функцию электрона, находящегося в молекуле, из волновых функций электронов в свободных атомах. Однако такое приближение не является слишком грубым по двум причинам. Во-первых, состояние электронов в молекулах не очень сильно отличается от их состояния в атомах об этом свидетельствует сравнительно небольшое изменение энергии электронов при образовании химической связи. Так, полная энергия электронов в двух свободных атомах водорода равна —2Х [c.184]

    Может возникнуть вопрос, насколько правомерно составлять волновую функцию электрона, находящегося в молекуле, из волновых функций электронов в свободных атомах. Такое приближение не является слишком грубым по двум- причинам. Во-первых, состояние электронов в молекулах не очень сильно отличается от их состояния в атомах, об этом свидетельствует сравнительно небольшое изменение энергии электронов при образовании- химической связи. Так, полная энергия электронов для двух свободных атомов водорода равна —2-13,6 =—27,2 эВ, а изменение энергии при образовании молекулы Нг (энергия связи) составляет 4,5 эВ. Подобное соотношение характерно и для других молекул. Оно обусловлено тем, что образование связи сравнительно мало влияет на движение электронов вблизи ядер атомов, где взаимодействие электронов и ядер велико. Во-вторых, изменение электронных облаков при переходе от атомов к молекуле в некоторой мере учитывается выбором с помощью вариационного метода определенных значений коэффициентов с. [c.100]


    Реакция переноса протона является более сложной, так как при этом происходит разрыв и образование химических связей, т. е. изменение химической структуры реагирующих частиц. Данная реакция включает стадию сближения и определенной ориентации реагирующих частиц друг относительно друга. Затем должны произойти переориентация диполей среды и изменение конфигурации внутримолекулярных классических степеней свободы реагентов, после чего одновременно изменяется электронное состояние реагирующих частиц, происходит туннелирование протона и соответствующее изменение квантовых внутримолекулярных степеней свободы реагентов. Наконец, диполи среды приобретают конфигурацию, соответствующую конечному состоянию реакции, и реагирующие частицы расходятся. [c.87]

    Образование химических связей в многоатомных молекулах сопровождается не только сдвигом электронной плотности и изменением формы орбиталей, но и изменением распо- [c.44]

    В заключение заметим, что если бы мы удаляли из какой-либо энергетической зоны кристалла несколько электронов, то удаление первого, второго, третьего и т. д. электрона сопровождалось бы неодинаковым изменением полной потенциальной энергин системы. В связи с этим валентная зона и зона проводимости изображаются иногда в виде целой системы энергетических уровней (рис. 17). При таком способе изображения зоны на каждом энергетическом уровне не может находиться больше двух электронов, которые должны обладать противоположной ориентацией спинов. Последнее соответствует тому, что на один участвующий в образовании химической связи электрон не может приходиться меньше двух элементарных объемов. Неполное заполнение энергетических уровней валентной зоны указывает на присутствие в ней дырок, т. е. ненасыщенных химических связей. Разобранная выше диаграмма бывает удобна при рассмотрении движения электронов по валентной зоне кристалла. Следует, однако, отметить, что она не дает никакой дополнительной информации и поэтому в дальнейшем не используется. [c.82]

    Природа адсорбционной связи и изменение электронных характеристик твердого тела. Образование химических связей при 2-814 33 [c.33]

    Для объяснения изложенного выше целесообразно рассмотреть деформацию кристаллической решетки при различных размещениях дефектов промежуточных атомов и вакансий. Известно, что существует пропорциональность между длиной связи и ее порядком - числом электронных пар, участвующих в образовании химической связи между атомами углерода. Основываясь на этом, авторы работы [17] оценили величину деформации кристаллической решетки графита для различного наиболее вероятного с геометрической точки зрения размещения в межслоевом пространстве промежуточных атомов. Ниже представлено изменение величины деформации решетки углерода в зависимости от положения в ней промежуточных атомов [17]  [c.24]

    Переходные элементы отличаются от элементов главных подгрупп тем, что они образуют много стабильных соединений, которые имеют неполностью заполненные оболочки электронов. Эти электроны занимают орбитали, которые в первом приближении являются -орбиталями свободных атомов. Для первого ряда переходных элементов валентные электроны занимают З -орбитали, однако 4 - и 4р-орбитали имеют энергии, очень близкие к энергиям 3 /-орбиталей, и несомненно они играют важную роль в образовании связей. Более детально их роль будет обсуждена позже в данной главе. Однако, рассматривая изменения энергий только -орбиталей, которые происходят при образовании химических связей, можно понять, как будет видно, многие свойства комплексов, в частности спектроскопические и магнитные. [c.250]

    Как известно, в химии для воздействия на ход химических реакций пшроко используется введение в реагирующие молекулы тех или иных заместителей Эти заместители могут, во-первых, совершенно изменить стереохимические свойства реагента, а, во-вторых, привести к перестройке электронной оболочки молекулы В гл 3, где обсуждался характер химической связи, отмечалось, что распределение электронной плотности следует за распределением в пространстве молекулы кулоновского потенциала, создаваемого положительно заряженными ядрами Достаточно ясно, что при введении заместителя этот потенциал в наибольшей степени будет меняться в области пространства, прилегающей к этому заместителю и включающей его Величина изменения будет прямо пропорциональна заряду атома, если замещается один атом, или суммарному заряду замещающей атомной группы При этом надо учитывать экранирующую роль не принимающих участие в образовании химической связи внутренних элекгронов атома-заместителя или атомной группы Понятно поэтому, что в наибольшей степени исходная электронная оболочка будет деформироваться при введении сильно полярного (заряженного) заместителя Значит, именно исследование влияния полярных заместителей может позволить заметить наиболее значимые эффекты и установить как бы верхнюю границу влияния любого заместителя, что и определяет особый интерес к этому вопросу Если полярный заместитель располагается в непосредственной близости от реакционного центра, то он может совершенно радикально изменить его свойства Никаких универсальных закономерностей здесь выявить нельзя и надо отдельно рассматривать каждый конкретный случай Влияние удаленных заместителей более мягкое , и при изучении его можно выявить некоторые общие моменты [c.177]


    Конечно, основной вклад в образование химической связи дают ближние взаимодействия резкое снижение энергии системы начинается вместе с переносом заряда с лиганда на катион Процесс электронного обмена дпя лигандов-аналогов происходит практически одинаково и не зависит от удаленных заместителей Тем не менее и полевой эффект при введении заместителей приводит к заметным изменений прочности связи металл-лиганд [c.186]

    Вид спектра поглощения обусловлен состоянием электронов внешних орбиталей, участвующих в образовании химической связи. Например, спектральные свойства органических молекул обычно систематизируют в соответствии с типом валентных электронов электроны, образующие ординарную связь, называются а-электронами, образующие двойную связь — я-электрона-ми. Различным типам электронов свойственны различные электронные переходы, обусловливающие возникновение спектров с характерными полосами поглощения в том или ином его участке. Воздействие окружающей среды, например растворителя, также вызывает различные изменения в спектре в зависимости от типа присутствующих валентных электронов. [c.22]

    Сближающиеся ядра ато.мов должны, в принципе, отталкиваться друг от друга, в результате чего энергия системы будет повышаться. Значит, понижения энергии системы можно достигнуть двумя путями либо за счет более сильного притяжения электронов к ядрам (как к своему , так и к чужому ), нежели в свободных атомах, либо за счет их перераспределения между взаимодействующими атомами таким образом, что атомы приобретут заряд и станут притягиваться оди к другому. В любом случае понижение энергии системы связано с изменением состояния электронов при образовании связи между атомами. Следовательно, для выяснения причин образования химической связи надо посмотреть, как изменяется со- [c.121]

    Известно, что при образовании химической связи между атомами происходит перераспределение электронной плотности в соответствии с относительными значениями их электроотрицательности. Это приводит к характеристическому изменению энергий связи электронов в атоме и сдвигу фотоэлектронных линий в РФЭ-спектре, так называемому химическому сдвигу. По величине этого сдвига можно судить о химическом окружении атомов определяемого [c.263]

    Подавляющее большинство методов квантовой химии опирается на валентное приближение. Дело в том, что между валентными и внутренними (остовными) электронами атомов существуют различия как но орбитальной энергии, так и по пространственной локализации. В образовании химической связи играют роль только Самые верхние заполненные электронами АО и, в некоторой мере, также вакантные АО. Это позволяет упростить расчет, решая уравнение ССП лишь для валентных электронов. Внутренние электроны атомов рассматриваются как неполяризуемые остовы, а взаимодействие между валентными и остовными электронами молекулы описывается приближенными способами [20]. В рамках валентного приближения уравнения ССП МО ЛКАО (11.13) сохраняют свой смысл с тем изменением, что при вычислении матричных элементов крд в качестве к следует использовать оператор  [c.32]

    Высокая теплота адсорбции дает право считать, что процесс сопровождается большим изменением изобарного потенциала. Освобождение значительного количества энергии делает возможной диссоциацию молекул кислорода на атомы и адсорбцию их с образованием химических связей, что оказывается энергетически выгодным. При этом электроны металла оттягиваются к атомам кислорода, которые превращаются в отрицательно заряженные частицы, в пределе в анионы 0 . [c.81]

    Не имея еще опоры в физическом учении о строении вещества, что стало возможным только на определенном этапе развития электронных представлений, химики уже попытались перестроить фундамент структурной теории и стереохимии, отказавшись от постулата тождественности валентностей, или единиц сродства, потребляющихся при образовании химической связи. Еще на заре теории химического строения, в середине бО-х годов, в работах Бутлерова и особенно Марковникова можно найти трактовку механизма взаимного влияния атомов как качественного изменения единиц сродства, а следовательно, и тех связей, в которых они участвуют. По поводу проявления элементами (в данном случае углеродом) различной валентности в результате взаимного влияния атомов, Марковников писал Собственно... сродство, оставшееся свободным, изменяется только качественно..., но в этом случае качественное изменение как бы совпадает с количественным [2, с. 70]. [c.39]

    Характер изменения 0рбитапы1ых энергий валентных электронов при образовании химической связи [c.212]

    Изотопный эффект в электронно-колебательно-вращательных уровнях энергии и спектрах двухатомных молекул. Если в молекуле АВ одно или оба ядра замещйются их изотопами, то электрическое поле ядер, в котором находятся электроны, обусловливающие образование химической связи, не меняется. Следовательно, энергия электронного состояния молекулы, рассматриваемая как функ- ция расстояния ч между ядрами или как функция q — изменения межъядерного расстояния по сравнению с его равновесным значением, не должна изменяться при замещении в молекуле АВ одного или обоих ядер их изотопами, т. е. при переходе к молекуле A< )BW. [c.359]

    Возникновение гибридных, т. е. смешанных электронных орбита-лей, происходит в тех случаях, когда в образовании химических связей атомом А принимают участие электроны с различными, но не очень сильно отличающимися друг от друга энергетическими состояниями. Такому условию удовлетворяют 5- и р-электроны одного и того же уровня. Так, например, в процессе образования связей возбужденными атомами бериллия (1з 2з2р), бора (ls 2s2p ) и углерода (15 252р ) принимают соответственно участие один 5- и один р- электрон (Ве), один х- и два р-электрона (В) и один 5-и три р-электрона (С). Так как орбитали 5- и р-электронов различны по форме, то предварительной стадией образования химических связей атомами этих электронов является образование гибридных орбиталей, форма которых является результатом взаимного изменения форм орбиталей 5- и р-электронов, из которых они образовались. Такио гибридные орбитали характеризуются симметричной направленностью относительно центра атома и способностью к максимальному взаимному перекрыванию общих электронных орбиталей при последующем их взаимодействии с электронными орбиталями элемента-партнера. [c.53]

    Эффективные заряды. При образовании химической связи электронная плотность около атомов меняется. Это изменение можно учесть, ириписав атому некоторый эффективный заряд б (в единицах заряда электрона). Эффективные заряды, характеризующие асимметр1гю электронного облака, условны, так как электронное облако делокализовано и его нельзя разделить между ядрами. [c.72]

    Аналогичные соображения былн высказаны Швабом [268] и Миньоле [256], Поскольку полоса проводимости принадлежит ко всей совокупности электронов проводимости металла, маловероятно, чтобы подобные сильные изменения теплот хемосорбции вызывались переходом электронов на разрешенные уровни или уходом с заполненных уровней в процессе их освобождения или захвата при образовании химических связей на поверхности металла. Именно по этой причине Темкиным [276] было введено представление о поверхностном электронном газе. Он шредполагает, что у поверхности металла существует двумерный электронный газ, который ведет себя совершенно независимо от нормального трехмерного электронного газа. Исходя из того, что этот двумерный электронный газ подчиняется тому же принципу запрета и обладает тем же статистическим распределением, что и нормальный трехмерный газ, Темкин выводит следующее выражение для is.Q . [c.144]

    Характеристика элементов. Бром и иод имеют менее выраженный неметаллический характер, чем хлор. По мере перехода вниз но подгруппе в образовании химических связей все большую роль начинают играть внз тренние с1- и даже [-орбитали. Это сказывается на устойчивости электронов и выражается в отсутствии степени окисления + 7 как у Вг, так и у I. Самое близкое сходство в свойствах проявляют элементы подгруппы УПА в степени окисления —1. В этом состоянии брому и иоду соответствуют ионы Вг и 1 , а также простая ковалентная связь с неметаллами. Молекулы брома и иода двухатомны в любом агрегатном состоянии. Межъядерное расстояние в молекулах Вгг и Ь увеличено по сравнению с хлором. Это обусловливает уменьшение степени перекрывания связующих электронных облаков и, как следствие, уменьщение энергии диссоциации молекул. По этой же причине увеличивается степень поляризуемости молекул. Силы сцепления между молекулами в конденсированной фазе являются ван-дер-ваальсовыми. Они возрастают пропорционально увеличению массы молекул и размеров атомов. Поэтому у галогенов существует та же закономерность в изменении [c.361]

    В случае свободного атома водорода волновые функции известны точно. Тем не менее для улучшения качества МО следует ввести ряд дополнительных функций с точкой центрирования на протоне. Известным обоснованием тому являются следующие соображения. Локальное поле, в котором движется электрон вблизи какого-либо из ядер в молекуле, не обладает сферической симметрией. Из этого потенциала можно выделить главную, сферически-симметричную часть и дополнительное слагаемое, присутствие которого вызывает деформацию (поляризацию) волновых функций, вычисленных для сферически<имметричного потенциала. формация волновых функций атома лития при образовании химической связи уже была учтена ранее при введении 2ро-функции. Аналогичным же образом можно добавить 2ра-поляризующую функцию и на атоме водорода. Добавление поляризующих функций на одном центре сопровождается, как правило, в практике расчета изменением числа базисных функций на другом центре. В примере молекулы LiH введения 2р(Н)-функций целесообразно сочетать с добавлением Зс -функций, центрированных на атоме Li. Проблема нахождения сбалансированного базиса представляет самостоятельную задачу. [c.223]

    Эффективные заряды. При образовании химической связи электронная плотность у атомов меняется. Так, при связывании двух атомов элементов, имеющих различные электроотрицательности, атом более электроотрицательного элемента притягивает электроны сильнее, чем атом менее электроотрицательного элемента. В результате электронная плотность в молекуле распределяется вдоль химической связи асимметрично. Изменение электронной плотности у атома, связанного в молекуле, можно учесть, приписав атому некоторый эффективный заряд 6 (в единицах заряда электрона). Эффективные заряды, характеризующие асимметрию электронного облака, условны, так как электронное облако делокализоваио и его нельзя разделить между ядрами. [c.77]

    Так как линии рентгеновской флуоресценции возникают вследствие переходов электронов в наиболее глубоких внутренних электронных слоях, энергия химической связи в общем слишком мала для того, чтобы изменить состояние электронов этих слоев. Напротив, в случае легких элементов в образовании связи участвуют электроны ЛI-oбoлoчки. В этом случае могут проявляться заметные смещения длин волн, например, для элемента и его окисла. Для А1/Ср-линий это различие составляет ДЯ = 0,02 А. Наряду с изменением длины волны изменяется и относительная интенсивность линий. Длины волн линий алюминия изменяются также в зависимости от его координационного числа по отношению к кислороду. Этим способом можно было бы. например, определить координационные числа алюминия в полевых шпатах и других алюмосиликатах. [c.217]

    Но все подсчеты, сделанные для газовых сред и с помощью различных приближений распространенные на жидкости, приводят к общему важному заключению, что ван-дер-ваальсовы силы рассмотренных выше типов вносят лишь незначительный вклад в общую энергию связей между частицами жидкости. Особенно убедителен расчет для воды (см. М. И. Шахпаронов). Приняв диаметр молекулы воды равным приблизительно 0,28 нм, получаем для усредненной энергии дипольного взаимодействия 797 Дж/моль, лондоновского—140 и поляризационного 42 Дж/моль, т. е. всего 979 Дж/моль, тогда как при испарении одного моля воды поглощается 42 000 Дж/моль. Ван-дер-ваальсовы взаимодействия таким образом обусловливают всего около 2% энергии связей в воде. К этому можно добавить, что энергия теплового движения при 300 К составляет приблизительно 2500 Дж/моль — значительно больше, чем энергия ван-дер-ваальсовых взаимодействий. Вот почему химические взаимодействия между молекулами жидкостей, в результате которых жидкость образует единую химическую систему, представляют особенно большой интерес. Сильные химические взаимодействия, при которых происходит перестройка электронных оболочек, разрываются химические связи и возникают новые связи, сопровождаются большими изменениями запаса энергии системы (порядка 400 кДж/моль) и ведут к образованию соединений, значительно отличающихся по свойствам от исходных. Такой процесс называют химической реакцией. При этом, разумеется, жидкая система может превратиться в пар или твердое вещество. [c.241]

    Если два атома сближаются на столь малое расстояние, что электронные облака их начинают в заметной степени перекрываться, то происходят изменения в распределении электронной плотности (аг рают роль эффекты чисто квантовомеханического характера, в част ности принцип Паули помимо отталкивания электронов играет роль также кулоновское отталкивание между ядрами разных атомов) В случае, когда электронные оболочки атомов замкнуты, имеет ме сто уменьшение плотности заряда в области между двумя ядрами вследствие чего уменьшается экранирование ядерных зарядов электро нами. Результирующий эффект состоит в отталкивании между атомами В то же время взаимодействие атомов с незаполненными электронньь ми оболочками приводит к увеличению электронной плотности между ядрами и образованию химической связи. Таким образом, короткодействующие атомные и молекулярные силы отталкивания имеют тоже происхождение, что и силы химической связи. Короткодействующие силы называют часто валентными силами. [c.273]

    В зави Симости от природы каталитической поверхности превалирует одип из указанных типав реакций, но в принципе все катализаторы окисления полифункциональны, и изменением их химического состава можно усилить или подавить какую-либо реакцию. Центрами образования поверхностных соединений должны стать ионы или атомы, входящие в состав поверхности. В зависимости от строения окисляемого углеводорода под действием этих ионов олефины должны превратиться в л- и я-аллилшые комплексы, а парафины — в радикалы или дегидрироваться до олефинов, которые, в свою очередь, образуют поверхностные формы. Ароматические и алкилароматические углеводороды образуют комплексы с сохранением ароматического кольца или с его разрывом. Такой сложный спектр (поверхностных соединений требует и сложной матрицы поверхности. Во всяком случае, ионы-центры комп-леисоо бразования должны обладать такой электронной структурой, которая обеспечивала бы образование химических связей между окисляемой молекулой и соответствующим ионом. [c.307]

    Элементы групп IVA—VIIA могут иметь несколько значений валентности, причем, как правило, валентность уменьшается ступенчато на 2 единицы. Такое изменение валентности объясняется тем, что в образовании химической связи электроны участвуют попарно (см. 6.2), чем и обусловлено распределение валентных электронов вокруг атомов. [c.105]

    Неоднократные попытки объяснения этой закономерности, являющейся наиболее ярким примером выполнения правила Брен-стеда, предпринимались в рамках двух основных теоретических моделей теории абсолютных скоростей реакций и теории электронного переноса в полярных средах. В классическом варианте теории абсолютных скоростей координата реакции отождествляется с координатой движения протона от оксониевого иона к поверхности металла с образованием адсорбированного атома водорода. Указанное постоянство коэффициента переноса достигается лишь при весьма искусственном предположении о симметричности переходного состояния, сохраняющейся в столь широком интервале изменения энтальпии. Во второй модели энергия активации связана с перестройкой окружения реагентов. Эта модель количественно описывает реакции, в которых перенос электрона не сопровождается разрывом или образованием химических связей, но предсказывает постоянство коэффициента переноса лишь в малой, по сравнению с экспериментальной, области токов разряда. [c.203]

    Реаюме. Для выяснения причин большей стабильности молекулярного иона водорода по сравнению с бесконечно удаленными друг от друга атомом водорода и протоном проанализированы составляющие полной энергии Н . Рассмотрены особенности изменения кинетической и потенциальной составляющих энергии связей в зависимости от межъядерного расстояния. Интерпретация полученных кривых основана на представлении их в виде суперпозиции пяти аддитивных вкладов, описываемых простыми функциями межъядерного расстояния. Количественно эти вклады объяснены непосредственно в рамках физических взаимодействий, а также при рассмотрении соответствующей вариационной процедуры. Анализ приводит к идентификации и истолкованию ряда эффектов, ответственных за образование химической связи в Н, таких, как промотирование, интерференция и квазиклассические электростатические взаимодействия. Показано, что ковалентная связь образуется в результате делокализации электронного облака. [c.259]

    Между этими двумя типами адсорбции существует совершенно четкое различие. Физическая адсорбция вызывается силами молекулярного взаимодействия, к числу которых относятся [1] силы взаимодействия постоянных и индуцированных диполей, а также силы квадрунольного притяжения. Поэтому физическую адсорбцию часто называют также вандерваальсовой адсорбцией. В то же время хемосорбция связана с нерераснределением электронов взаимодействующих между собой газа и твердого тела и с последующим образованием химических связей. Иными словами, физическая адсорбция подобна конденсации наров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента. Из этих определений следует, что по мере изменения наших представлений о сущности химической связи будет соответственно меняться и представление о хемосорбции. [c.20]

    Первое объяснение основано на концепции работы выхода. Если допустить, что при образовании хемосорбировапного слоя электроны вытягиваются из твердого тела, то по мере увеличения степени заполнения поверхности на образование химической связи будет затрачиваться большое количество энергии, поскольку в связи с постепенно возрастающей работой выхода должна быть произведена избыточная работа. Хотя иногда этог эффект может оказаться значительным, такое объяснение не очень убедительно, так как корреляция между вычисленным и наблюдаемым на практике понижением теплоты адсорбции часто бывает плохой [2, 53]. Второе объяснение приписывает понижение теплоты адсорбции изменению типа связи, которое может иметь место при увеличении степени покрытия поверхности. Мы уже видели (разд. 2.2.2), как объясняется тот факт, что хемосорбция водорода на железной или никелевой пленках происходит на двух различных в энергетическом отношении типах поверхностных центров. Изучение адсорбированного состояния с помощью инфракрасных спектров поглощения показало [78], что по мере увеличения степени заполнения меняется тип связи окиси углерода и этилена с поверхностью металлов. Однако это объяснение еще не прошло окончательной проверки. [c.44]

    Ковалентная химическая связь, как известно, направлена, определенным образом ориентирована в пространстве. Кроме того, образование химических связей есть процесс, т. е. явление, протекающее во времени. Поэтому-то химию интересует перераспределение, разрущение, возникновение химических связей в пространстве и времени. Но поскольку в этих процессах определенным образом взаимодействуют валентные электроны реагирующих частиц, то молено сказать, что химия, ее новейший раздел — квантовая химия — изучает, в частности, взаимодействие валентных электронов частщ вещества как между собою, так и с ядрами атомов, составляющих эти частицы, и вызванные этим изменения в строении, составе и свойствах вещества. В этом, с электронной точки зрения, выражается, по-видимому, существо процесса химического превращения веществ. Перераспределение электронных плотностей, обусловленное возникновением одних и исчезновением других связей, сопровождающее каждую химическую реакцию, подтверждает это. [c.41]


Смотреть страницы где упоминается термин Электронная изменения при образовании химической связи: [c.107]    [c.107]    [c.64]    [c.88]    [c.44]    [c.11]    [c.70]    [c.88]    [c.79]    [c.191]   
Химическая связь (0) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь образование

Химическая связь связь

Химический связь Связь химическая

Электрон связи



© 2025 chem21.info Реклама на сайте