Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекула упорядоченность

    Влажность полимера — содержание в нем свободной влаги, выраженное в процентах по отношению к его массе. Влага поглощается полимером в результате сорбции. Поэтому влажность полимеров определяется относительной влажностью среды, продолжительностью пребывания полимера во влажной атмосфере и размерами его частиц. На влажность полимеров влияют химический состав и строение макромолекул, упорядоченность структуры полимера и др. Способность полимерного материала поглощать влагу зависит также от типа применявшихся при получении полимера эмульгаторов и катализаторов, полноты их отмывки, режима сушки полимера. [c.117]


    Решающие факторы, влияющие на В. полимеров,— химич. состав и строение макромолекул, упорядоченность структуры полимера и др. Способность полимерного материала сорбировать влагу зависит также от типа применявшихся при получении полимера эмульгаторов и катализаторов, полноты их отмывки, режима сушки полимера, а также от способности каждого из ингредиентов полимерного материала поглощать влагу. [c.242]

    Из этих процессов последние четыре являются следствием упорядоченного расположения макромолекул.Упорядочение макромолекул, или их ориентация, и связанная с этим кристалличность волокна обсуждались в предыдущей главе, где было показано, что хотя эти два процесса часто рассматриваются отдельно, они на самом деле совершенно идентичны. [c.78]

    Таким образом, если в соответствии с выводами из работы Флори простое упорядочение макромолекул (упорядочение нематического характера) может быть объяснено исключительно ролью энтропийного фактора, то более сложная форма упорядочения (холестерическая мезофаза) связана с участием энергетического фактора. Схематически Ди Марцио иллюстрирует это диаграммой изменение энергии системы — температура, воспроизведенной на рис. 3.8. Нематическая фаза появляется даже в отсутствие внешних полей. Холестерическая фаза метастабильна, если нет вспомогательной энергетической составляющей. [c.56]

    Исследования структуры имеют целью не только выявление механизма процесса. Они способствуют разработке обоснованных эффективных методов и режимов модифицирования мембран для улучшения их проницаемости, селективности и прочностных свойств. Важность структурных исследований определяется тем, что они дают ответ на первый из основных вопросов, с которым и связано исследование механизма,— каким образом происходит перемещение молекул через полимерную мембрану. Ответ на второй вопрос — каким образом достигается селективность процесса разделения, очевидно, также связан с успехами этих исследований. Представления о глобулярно-пачечном строении полимерных тел [51—54] оказались весьма благотворными для объяснения многочисленных экспериментальных данных в различных областях физики, химии и физической химии полимеров, что убедительно свидетельствует о действительном их соответствии реальной структуре полимерных материалов. Основу этих представлений составляет предположение о том, что элементарными первичными надмолекулярными образованиями являются либо глобулы, либо пачки> макромолекул с различной степенью упорядоченности внутри пачки. [c.64]


    О загущающем действии присадок в маслах можно судить также по изменению энтальпии и энтропии системы при этом химический состав масла также сказывается на энергетических изменениях. При загущении масел полиалкилметакрилатами энтальпия изменяется незначительно, а энтропия понижается. Вероятно, в процессе загущения жесткость агрегатов макромолекул полиалкилметакрилатов в растворе существенно не меняется, а структура раствора становится более упорядоченной. Структурные образования в растворе полиизобутилена со слабым межмоле-кулярным взаимодействием непрочны и легко разрушаются. Масло, загущенное полиалкилметакрилатами, обеспечивает легкий запуск двигателя и хорошо в нем прокачивается в начале пуска, тогда как масло, загущенное полиизобутиленом, имеет высокую вязкость при низких температурах. В этом состоит недостаток полиизобутилена как вязкостной присадки. [c.145]

    Движение газовых пузырьков в объеме коксующегося материала приводит к предпочтительной ориентации макромолекул в направлении движения потока и к возникновению структурной упорядоченности. [c.97]

    Структурно-механическая прочность и устойчивость системы обусловливают степень упорядочения макромолекул в ассоциатах и ассоциатов между собой, влияя на вязкость системы (от которой, в свою очередь, зависит кинетика расслоения иа фазы), а также на процесс кристаллизации. [c.47]

    При плавлении кристаллических полимеров наблюдается последовательное изменение координационного и ориентационного порядков. Структура полимеров в твердом состоянии, характеризующаяся лишь дальним ориентационным порядком, относится к так называемой паракристаллической модификации. В пространственно упорядоченные области может входить не вся макромолекула целиком, а некоторая ее часть (рис. 3.10). Полимерная цепь последовательно проходит участки высокой упорядоченности (кристаллиты) и аморфные области. В отличие от низкомолекулярных веществ, где кристаллическая и аморфная фазы разделены четкой поверхностью раздела, в полимерах такая поверхность раздела отсутствует. Кристаллические области статистически распределены в аморфной массе. С увеличением гибкости регулярно построенных макромолекул облегчается кристаллизация полимера. [c.142]

    Поскольку кристаллизация сопровождается распрямлением, упорядочением участков макромолекул, она сопровождается и уменьшением А У, - При кристаллизации имеют место положительные тепловые эффекты, что соответствует условию АЯ < О (табл. 3.2). [c.144]

    Выше отмечалось, что структура полимерных жидкостей (концентрированных растворов и расплавов полимеров) моделируется системой взаимодействующих агрегатов, пачек макромолекул, имеющих флуктуационный характер под влиянием теплового движения полимерные цепи постоянно ассоциируются в более или менее упорядоченные флуктуирующие рои, которые в свою очередь под влиянием теплового движения распадаются. [c.184]

    Ответ. В твердом состоянии фиброин имеет преимущественно упорядоченную структуру, которая характеризуется упаковкой полипептидных цепей в малоподвижные ленточные р-структуры. Очевидно, что подвижность макромолекул в таких фиксированных структурных образованиях существенно ограничена. Поэтому изменение формы материала при смятии (образовании складок) [c.377]

    Вторичная структура полимеров - последовательность упорядоченных и неупорядоченных участков одной макромолекулы конформация макромолекулу. [c.397]

    Ламель - кристаллическая форма полимера, характеризующаяся складчатой конформацией (см.) макромолекул. Возникновение таких упорядоченных структур, сложенных наподобие ленты, обусловлено возникновением избыточной поверхностной энергии на поверхностях раздела фаз в процессе кристаллизации полимеров из растворов или расплавов. [c.400]

    Во всех случаях с увеличением молекулярной массы прочность полимеров возрастает. Кроме сил межмолекулярного взаимодействия на свойства полимеров существенное влияние оказывают межмолекулярные зацепления, которые также соединяют друг с другом отдельные группы макромолекул. Поэтому перелом кривой зависимости вязкости при нулевой скорости сдвига от молекулярной массы (рис. 2.3) обычно объясняют появлением молекулярных зацеплений. Уровень реализации сил межмолекулярного взаимодействия зависит от расстояния между участвующими во взаимодействии элементами химической структуры, поскольку в первом приближении эти силы убывают пропорционально седьмой степени этого расстояния. Поэтому рассмотрим состояния, в которых может существовать полимер и которые характеризуются различными значениями удельного объема и разной степенью молекулярной упорядоченности. [c.40]

    Степень упорядоченности структуры полимеров зависит от температуры и давления, которые определяют интенсивность теплового движения макромолекул, в результате чего происходят изменения их конфигурации. Структура полимера в той мере упорядочена или аморфна, в какой это позволяет его макромолекулам, находясь в данной упаковке, принимать все необходимые при данных условиях конформации, т. е. беспрепятственно изгибаться, скручиваться и раскручиваться, вращаться. Понятно, что чем сложнее разветвление структуры макромолекулы, тем в большей мере должна быть разрыхлена, т. е. аморфна, структура полимера. [c.42]


    В остальном ориентированные некристаллические и кристаллические полимеры имеют много общего. Полимеры и в том, и в другом состоянии обладают твердостью, анизотропией свойств и значительной упорядоченностью в расположении макромолекул. В тех и других образуются надмолекулярные структуры и обнаруживаются явления, обусловленные существованием этих структур. Одним из характерных различий процессов ориентации в этих двух типах полимеров является возможность непрерывного их осуществления в аморфном полимере и скачкообразность этого процесса [c.184]

    СТЕРЕОСПЕЦИФЙЧЕСКАЯ ПОЛИМЕРИЗАЦИЯ, процесс, приводопций к образованию макромолекул упорядоченного строения (см. Стереорегулярные полимеры). Для его осуществления необходима строго определенная ориентация мономера в каждом акте роста цеш1. С. п. протекает обычно в присут. металлокомплексных, металлоорг. или анионных катализаторов причем вероятность появления п-го сегмента определенного типа не определяется однозначно последовательностью всех предшествующих (п — 1) звеньев, а зависит гл. обр. от природы активного центра катализатора и нек-рых внеш. факторов (р-ритель, т-ра и др.). [c.432]

    При оценке СК рентгенографическим методом используют соотношение интенсивностей пиков на дифрактограмме, обусловленных рассеянием лучей кристаллическими областями, и размытого аморфного гало. Однако такую характеристику кристалличности следует считать условной, поскольку в целлюлозе нет строгого разделения на две фазы. В действительности существуют переходные зоны между кристаллическими и аморфными участками, а также дефекты кристаллической решетки и пара-кристаллическая часть. Кроме того, в кристаллической части возможно присутствие разных полиморфньк модификаций целлюлозы. Определяемая рентгенографически СК целлюлозы характеризует долю макромолекул, упорядоченных с образованием трехмерной кристаллической решетки, и долю остальных менее упорядоченных макромолекул. [c.243]

    Даже в довольно разбавленных растворах макромолекулы упорядоченно располагаются друг около друга отдельными участками с появлением надмолекулярных образований флуктуационного характера как глобулярного, так и фибриллярного типа [146 147]. Поэтому вероятность такого упорядочивания в отверждающихся олигомерных системах весьма высока. Вторая причина связана с ассоциацией молекул реагирующих компонентов в результате межмолекулярного взаимодействия между полярными функциональными группами. Локальное концентрирование функциональных групп обусловливает микрорасслоение системы и аномальное повышение скорости реакций в микрообъемах. Молекулы, содержащие полярные и неполярные группировки, характеризуются поверхностно-активными свойствами, что также влияет на закономерности гелеобразования в этих системах. Таким образом, необходимость изучения коллоидно-химических факторов процесса очевидна и при сшивании олигомеров с образованием жестких сеток. [c.72]

    СТЕРЕОСЕЛЕКТИВНЫЙ КАТАЛИЗ, характеризуется предпочтительным образованием к.-л. одного из стереоизомеров продукта р-ции. Катализ, при к-ром образуется только один стереоизомер, наз. стереоспецифическим. Частный случай С. к.— асимметрический катализ. СТЕРЕОСПЕЦИФИЧЕСКАЯ ПОЛИМЕРИЗАЦИЯ, приводит к образованию макромолекул упорядоченного строения (стереорегулярных полимеров), для чего необходимо обеспечение строго определ. ориентации мономера в каждом акте роста цепи. С. п. наиболее типична для процессов, протекающих под действием металлоорг. соед. и их комплексов (гл. обр. содержащих переходные металлы или ЬО. ( тереоспецифичность таких сист. обычно связывают с координацией мономера на атоме металла активного центра. В случае диенов эффект стереорегулирования в тех же сист. чаще всего интерпретируют как закрепление структуры макромолекулы на стадии превращения концевого звена растущей цепи в предконцевое. [c.543]

    Катализаторы координационно-ионной поли.иериза-ции — обычно сложные системы, состоящие из двух и более компонентов. Помимо высокой эффективности действия, эти К. и. обладают способностью к стереорегулированию, приводящему к получению макромолекул упорядоченной структуры того или иного типа. К таким К. п. относят алфиновые и окиснометаллич. катализаторы, катализаторы Циглера — Натта, катализаторы на основе я-аллильных комплексов переходных металлов и др. [c.477]

    Теплостойкость полимеров характеризуется предельно д<эпустимой температурой использования полимера как твердого вещества и обусловлена в основном величиной межмолекулярного взаимодействия, наличием поперечных связей между макромолекулами, упорядоченностью на надмолекулярном уровне и т. д. [c.14]

    После обработки семикарбазидом термостойкость волокна при 200 °С возрастает более чем (В 2 раза. Прочность при 200 °С составляет 24—31% (от исходной при 20 °С), тогда как обычное капроновое волокно при данной температуре практичеоки имеет нулевую прочность. Сопротивление волокна к двойным изгибам повышается почти в 3 раза. Исследования структуры модифицированного волокна рентгенострук-турным, акустическим, дилатометрическим и другими методами показали, что семикарбазид способствует кристаллизации аморфных сегментов макромолекулы. Упорядоченность и плотность волокна при этом увеличиваются. [c.224]

    Следовательно, образование кристаллических структур при растяжении невулканизованных наполненных смесей на основе модифицированного полиизопрена высокой стереорегулярности (СКИ-ЗМ), рост когезионной прочности смесей на основе модифицированного полиизопрена меньшей стереорегулярности (СКИЛМ) позволяют сделать вывод, что некоторое нарушение регулярности строения макромолекул, вносимое модификацией, компенсируется возникновением при растяжении большей упорядоченности всей деформируемой системы в некотором отношении эта упорядоченность более эффективна. [c.234]

    Необходимость разработки многочисленных, столь не сходных между собой моделей макромолекул вызвана не только и не столько расхождениями взглядов различных исследователей на структуру асфальтенов, сколько невозможностью описать единой моделью особенности ВМС различного происхождения. Так, если слоистая модель удовлетворительно согласуется с результатами анализа упоминавшихся выше нефтей [395, 1030—10351, то крайне сомнительно соответствие ее реальной макроструктуре асфальтенов из таджикской нефти (Кичик-Бель) [396], очень слабо метаморфизован-ной,смолистой, сернистой,высокоцикличной. Кичикбель-ские асфальтены, не выделяясь по средней молекулярной массе, обладают очень большими размерами изолированных частиц (см. табл. 7.2) и в рентгеновских спектрах не дают сколько-нибудь четко выраженных пиков отражения, характерных для упорядоченных структур (см. рис. 7.1, кривая 2). Этп ас-фальтепы совершенно не проявляют способности к набуханию при растворении, хотя именно такое поведение типично для слоистых макрочастиц. Макромолекулы этих ВМС вероятно, должны иметь монослойное строение. [c.188]

    С началом катагенных превращений первичные, сравнительно крупногабаритные макромолекулы ВМС постепенно деградируют, отщепляя фрагменты, попадающие в низкомолекулярные фракции и обусловливающие облегчение фракционного состава нефти, дополнительно ароматизируются вследствие реакций перераспределения водорода и дегидрирования циклогексановых колец и организуются в надмолекулярные пачечные структуры благодаря ассоциации и химическому связыванию отдельных ароматических блоков. Немаловажную роль в ассоциации, приводящей к пространственному упорядочению макромолекул, должны играть ориентирующие л — я-взаимодействия полисопряженных систем, донорно-акцепторные взаимодействия между гетероароматически-ми фрагментами и процессы образования комплексов между орга- [c.200]

    Фазовые состояния. Полимеры могут существовать в кристаллическом, жидком (аморфном) и жидкокристаллическом (аморфнокристаллическом.) фазовых состояниях, различающихся степенью упорядоченности частей макромолекул в структуре полимера. При этом кристаллическая и аморфная фазы в полимере находятся в состоянии термодинамического равновесия  [c.374]

    Экспериментальные определения и расчеты стандартных термодинамических функций мицеллообразования по полученным соотношениям позволяют оценить энергетику взаимодействия ПАВ с растворителем (растворения) и непосредственно мицеллообразования. Вклад стадий растворения является превалирующим, вследствие чего суммарная движущая сила процесса определяется в осиовиом ростом энтропии. Например, для бромида -додецилт1)иметиламмония в воде ДС° = — 17,8 кДж/моль, = —1,38 кДж/моль, —7Д5 = —16,5 кДж/моль для м-но-децилсульфата натрия соответственно —21,1 кДж/моль, +0,38 кДж/моль и —21,5 кДж/моль. В то же время стадия непосредственно мицеллообразования сопровождается ростом упорядочения, т. е. уменьшением энтропии системы. Однако нельзя не учитывать некоторого роста конформационной энтропии с увеличением размеров ассоциатов (образование мицелл), подобно тому, как это наблюдается для макромолекул в растворах полимеров. Можно заключить, что экспериментально определяемые значения стандартных термодинамических функций отвечают не столько мпцеллообразованию (из истинного раствора), сколько самопроизвольному диспергированию ПАВ. [c.296]

    Полимерные цепи (вне зависимости от регулярности их строения) под влиянием.теплового движения и межмолекулярного взаимодействия ассоциируются во флуктуационные, более или менее упорядоченные пачки. Пачки под влиянием теплового движения то воссоздаются, то распадаются. Однако вследствие больших размеров макромолекул время жизни пачек может быть весьма большим. Если продолжительность жизни роя молекул низкомолекулярной жидкости составляет 10" с и менее, то в случае твердого полимера она возрастает до многих лет. Чем менее гибим макромолекулы, тем больше время жизни пачек. [c.153]

    Каждую жидкость можно считать гигантской макромолекулой. В таких макромолекулах встречаются однотипные малые фрагменты, содержащие небольшое число атомных ядер, взаимное расположение которых более или менее фиксировано. Эти фрагменты — упорядоченные образования, возш-ткаюгцие спонта1П1Ым образом в ре- [c.57]

    В начальной стадии формирования клубка образуется аморфизированная, рыхлая структура. Сквозь такой клубок легко может фильтроваться растворитель. С повышением степени упорядоченности макромолекул в пакете, то есть с повышением кристалличности пакета, просветы между участками соприкасающихся молекул уменьшаются и в конечном итоге запираются и растворитель прекращает свобод1ю проходить сквозь пакет. [c.61]

    Поэтому структурная организация полимеров лишь на первый взгляд моделируется по аналогии с обычными тве рдыми телами, т. е. как сложная система, в которой можно выделить ряд главных подсистем (кристаллическая решетка в целом, элементарная ячейка, узлы, молекулы (или ионы), атомные ядра, их электронные оболочки и т. д.). В случае полимеров даже при наличии кристаллической решетки есть одна действительно главная подсистема — макромолекула, представляющая собой линейно-периодическую структуру из большого числа элементов — повторяющихся звеньев цепи автоматически это порождает в макроскопической системе, безотносительно к тому, обладает ли она собственной периодической упорядоченностью (кристалличностью), некие особые направления, где вместо вандерваальсовых сил действуют химические связи. [c.10]

    Упорядоченная часть в эластомерах состоит из совокупности микроблоков, причем цепи и сегменты, входящие в м икроблоки, можно назвать связанными . Неупорядоченная часть состоит из свободных участков цепей и сегментов, участвующих в свободном тепловом движении. В целом упорядоченная и неупорядоченная части связаны друг с другом в единую структуру, так как различные части одних и тех же макромолекул могут находиться как з свободном, так и в связанном состоянии. Кроме того, все макромолекулы сшиты между собой поперечными химическими связями, если рассматривать вулканизованные каучуки или резины. Рассмотренная модель строения линейных полимеров является динамической. Между обеими структурными составляющими наблюдается медленное подвижное равновесие, сдвиг которого происходит при изменении как температуры, так и напряжения. [c.56]

    В настоящее время можно считать твердо установленным микрогетерогенное строение ориентированных аморфно-кристаллических полимеров. С помощью рентгенографии под малыми углами установлено закономерное чередование вдоль оси ориентации участков с различной плотностью (так называемые большие периоды). Рентгенография под большими углами показывает, что в более плотных участках макромолекулы уложены в кристаллическую решетку, а в менее плотных такой упорядоченности в расположении макромолекул нет. Большие периоды были впервые обнаружены Гессом и Киссигом по наблюдению рентгеновских Неридиональных слоевых рефлексов в области малоугловой дифракции. Согласно их представлениям, в ориентированном полимере чередуются кристаллические области, разделенные аморф-, ными участками. При этом, период чередования оказывается равным экспериментально наблюдаемому большому периоду. Одна и та же макромолекула поочередно проходит через несколько кристаллических и аморфных участков. [c.198]


Смотреть страницы где упоминается термин Макромолекула упорядоченность: [c.543]    [c.480]    [c.282]    [c.196]    [c.579]    [c.40]    [c.410]    [c.45]    [c.51]    [c.447]    [c.511]    [c.103]    [c.190]    [c.77]    [c.136]    [c.186]   
Химия целлюлозы и ее спутников (1953) -- [ c.67 , c.69 , c.73 , c.76 , c.84 , c.92 , c.102 ]




ПОИСК







© 2025 chem21.info Реклама на сайте