Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа взаимодействия для взаимодействия ионов металло

    При взаимодействии гидролизующегося иона металла М с фотометрическим реагентом являющимся слабой кислотой, в присутствии конкурирующих комплексантов Ь степень связанности определяемого элемента в окрашенный комплекс и необходимую для этого концентрацию реагента рассчитывают из выражения условной константы устойчивости исследуемого комплекса МН . [c.306]

    На основании многочисленных работ, посвященных взаимодействию ионов металлов с небольшими молекулами, можно предсказать, какие группы в биологических системах должны обладать способностью связывать ион металла (такие группы называют лигандами). Результаты исследования взаимодействия иона металла с молекулой обычно выражают через константу/С1, характеризующую образование комплекса иона металла с сопряженной группой лиганда. Если ион металла находится в растворе, содержащем кислые и основные группы, то можно написать два условия равновесия. Например, для лиганда типа протонизированного амина [c.400]


    Константы устойчивости комплексов металлов с рядом лигандов, имеющих сходные структуры, часто в первом приближении линейно зависят от основности лиганда log р а р/Са + Ь. Причиной этому служит то, что факторы, имеющие значение при образовании а-связи между лигандом и ионом металла, подобны таким же факторам при протонизации молекулы лиганда, поэтому чем больше основность амина, тем больше константа устойчивости его комплекса с металлом. Величину Ь было предложено считать мерой л-характера связи металл—лиганд [23]. Более детальный анализ этого соотношения для комплексов Си (И) с рядом замещенных салицилальдегида подтвердил такую интерпретацию, но показал, что величина Ь зависит от положения, в котором находится заместитель. Это было интерпретировано как показатель изменчивости я-электронных взаимодействий [24]. Аналогично этому, если сопряжение в ароматической системе расширяется за счет аннелирования большего числа колец или же более тесного их связывания, как, например, при переходе от салицилальдегида к 2-окси-1-нафтальдегиду или от 2,2 -дипиридила к 1,10-фенантролину, это должно, вероятно, приводить к образованию орбиталей лиганда, гораздо более энергетически выгодных для осуществления с ионами металла я-связи. С другой стороны, плотности а-электронов на основных центрах [c.63]

    Хотя слово устойчивость использовалось для описания различных свойств соединений, в данной главе оно применяется к константе равновесия реакции взаимодействия иона металла (М +) и лиганда (Ь" ) с образованием комплекса [c.89]

    Так как последовательность Ирвинга— Уильямса определяет, по крайней мере во многих случаях, АН взаимодействия между ионом металла и лигандом, то попытки объяснения наблюдаемых устойчивостей были направлены на -рассмотрение энергий связей металл—лиганд. Хотя при использовании электростатической модели (разд. 2.1.1) для объяснения наблюдаемой последовательности использовались изменения ионных радиусов ионов металлов, эти изменения в действительности слишком малы для соответствующего объяснения больших изменений величин К. Другое приближение [51] включало корреляцию констант устойчивости с потенциалами ионизации ионов металлов. [c.102]

    Контактное (Ферми) взаимодействие состоит в переносе спиновой плотности неспаренных электронов парамагнитного иона на данное магнитное ядро по цепи химических связен. Поэтому контактное взаимодействие зависит прежде всего от электронного строения лигандов и характера связи металл — лиганд. Контактное взаимодействие прямо пропорционально константе сверхтонкого взаимодействия Л/ неспаренного электрона с магнитным ядром и обратно пропорционально абсолютной температуре Т. Константа /4 быстро затухает по цепи а-связей в сопряженных системах знак Л, в цепи альтернирует. Контактное взаимодействие более характерно для элементов IV периода, а у лантаноидов, как правило, оно играет второстепенную роль, особенно при их взаимодействии с протонами. [c.107]


    С осадителем могут взаимодействовать несколько находящихся в растворе ионов. При этом происходит совместное осаждение малорастворимых электролитов. Однако при достаточно большой разности констант растворимости можно путем регулирования концентрации осадителя осуществлять дробное фракционное) осаждение. Примером может служить разделение ионов металлов осаждением сульфидов при pH 0,5 и pH 9—10 (см. рис. 24). При pH 0,5 и суммарной концентрации сероводорода 0,1 моль /л концентрация осадителя (сульфид-ионов) порядка 10" моль/л, а при pH 9 — порядка 10 моль/л (см. пример 20 гл. 4). [c.249]

    Рассмотрим присоединение молекулы X к другой молекуле Р, которая может представлять собой молекулу белка, нуклеиновой кислоты, ион металла или любую другую частицу. Если на поверхности Р имеется лишь один центр связывания для X, то взаимодействие может быть описано уравнением (4-1), а константа равновесия /Сг определяется уравнением (4-2)  [c.243]

    В табл. 4-2 приведены значения логарифмов констант образования комплексов между нонами некоторых металлов и органическими н неорганическими лигандами при соотношении 1 1 [28, 28а]. Когда известно несколько констант, соответствующих последовательным стадиям связывания, приводится только значение 1 К - Во многих случаях, однако, с одним ионом может связываться два или большее число лигандов. Так, например, известно, что взаимодействие между ионом двухвалентной меди и аммиаком характеризуется четырьмя константами [c.265]

    Отсутствие реакционной способности у ионов Си + и N1 + вплоть до концентраций 10 моль/л и pH 8, вероятно, результат хелатирования ионов металлов трис-буфером, затрудняющего взаимодействие с пенициллином. Константы образования хе- [c.230]

    Ионы многих металлов практически безактивационно восстанавливаются гидратированным электроном до необычных зарядовых состояний 2п+, Со" , N1+ и др. Измерены константы скорости взаимодействия е со многими органическими и неорганическими веществами. Большая часть таких реакций происходит либо без энергии активации, либо эта энергия очень мала. Гидратированный электрон по своей реакционной способности сравним с наиболее активными частицами — газовыми ионами. [c.38]

    Наоборот, на растворимость осадков, являющихся солями слабых кислот, кислотность раствора оказывает очень существенное влияние Так, ионы jO "" могут взаимодействовать с ионами кальция, образуя осадок щавелевокислого кальция. HoBbi O " могут реагировать такл е с ионами Н , образуя молекулы слабой щавелевой кислоты. Образование или растворение щавелевокислого кальция, степень осаждения кальция и другие характеристики равновесия зависят от концентраций реагирующих веществ, а также от величин константы диссоциации кислоты и произведения растворимости осадка. Величины произведений растворимости углекислого бария и щавелевокислого бария почти одинаковы. Однако угольная кислота слабее щавелевой, т. е. анион СО при прочих равных условиях связывается с ионами водорода сильнее, чем анион С О . Поэтому ВаСО, легко растворяется в уксусной кислоте, а растворимость ВаС О при тех же условиях почти не изменяется. Если два осадка являются солями одной и той же кислоты, например сульфидами, то при прочих равных условиях растворимость в кислотах зависит от величины произведения растворимости. Известно, что путем изменения концентрации ионов водорода достигаются многочисленные разделения катионов в виде сульфидов, фосфатов и других соединений металлов с анионами слабых неорганических и органических кислот. Таким образом, значение кислотности раствора для осаждения и разделения металлов очень велико. [c.39]

    В то время как хелатный эффект известен уже в течение десятилетий, устойчивость комплексов, содержащих макроцикличе-ские лиганды типа порфиринов, была в сущности неизвестна. Основная проблема при определении их констант устойчивости — очень медленная скорость взаимодействия ионов металлов и мак-роциклических лигандов. [c.113]

    Трудности, связанные со сравнением констант устойчивости комплексов с белками и модельными соединениями, были наглядно показаны также при исследовании миоглобина кашалота [109, ПО] и альбумина бычьей сыворотки [111, 112]. Отсутствие данных о константах устойчивости комплексов ионов металлов с малыми пептидами, содержащими координирующие боковые цепи (т. е. гистидин, лизин или остатки глутаминовой кислоты), очень задерживает понимание более сложных взаимодействий ионов металлов с белками. [c.126]

    Многие из соединений группы тетрапиррола могут выполнять роль фотосенсибилизаторов в процессах перехода кислорода из основного триплетного состояния в синглетное. Поскольку двойные связи конъюгированных ароматических систем, а также ненасыщенные боковые заместители способны взаимодействовать с кислородом в синглетном состоянии, целесообразно — по меньшей мере в тех случаях, когда неизвестны химические свойства компонентов анализируемой смеси, — осуществлять хроматографическое разделение в отсутствие света (обычно достаточно обернуть колонку или хроматографическую каме-ру алюминиевой фольгой) и защищать вещество от воздействия света до и после хроматографирования. Кроме того, ароматический характер тетрапирролов способствует как одноэлектронному окислению циклической части молекулы, так и аутоокислению периферических заместителей, протекающему через промежуточное образование радикалов типа бензила. Когда молекулы адсорбированы на большой поверхности неподвижной фазы, скорость указанных реакций может существенно возрасти под действием света или окислителей, например присутствующих в растворителях пероксидов. Таким образом, как и в случае большинства других хроматографических экспериментов, для разделения рассматриваемых соединений следует использовать растворители подходящей квалификации. В силу того что тетрапирролы обладают высоким сродством к ионам металлов, необходимо позаботиться о том, чтобы растворители и сорбент не содержали примесей ионов тяжелых металлов, способных образовывать комплексы с хроматографируемыми соединениями. На практике, когда проводят выделение достаточно больших количеств вещества, это свойство тетрапирролов, как правило не создает особых проблем. Однако при работе на аналитическом уровне, особенно если соединения экстрагированы из природных источников, будь то биологические ткани или геологические образцы, необходимо отдавать себе отчет в том, что присутствие ионов металлов может привести к некоторому искажению хроматографической картины. Не существует никаких других удобных и общих способов избежать этого, кроме как свести к минимуму вероятность контактов образца с ионами металлов или металлами в ходе его экстракции, подготовки к анализу и хроматографирования (следует отметить, что даже никелированный шпатель может оказаться источником загрязнения образца). Поскольку константы связывания порфиринов с ионами металлов часто соизмеримы по своей величине с константами, характерными для таких хелатирующих агентов, как ЭДТА, использование последних при низкой концентрации с [c.203]


    Соли комплексонов называются комплексонатами, образуются они за счет взаимодействия ионов металлов и протонов СООН-групп, а также за счет д6-норио-акцепторного взаимодействия азота комплексона и ионов металла. Образуюшиеся комплексонаты, как правило, хорошо растворимы и характеризуются большими константами устойчивости. [c.202]

    Увеличение реакционной способности при гидролизе, катализируемом ионом двухвалентной меди, не может быть следствием только одной атаки гидроксильного нона на положительно заряженный эфир а-аминокис-лоты, так как было найдено, что введение положительного заряда, удаленного на два атома от карбонильной группы эфира, увеличивает константу скорости щелочного гидролиза в 10 раз [176], тогда как между гидролизом этилового эфира а-фенилаланина, катализируемым ИОНОМ меди, и щелочным гидролизом существует различие в скорости приблизительно в 10 раз. Эффективный заряд комплекса ион меди — глицин (буфер) — эфир равен -Ы, так что фактор 10 нельзя объяснить увеличением заряда до большей величины, чем в бетаине. Кроме того реакция не может обусловливаться атакой молекулы воды на положительно заряженный эфир а-аминокислоты, так как было показано, что константа скорости кислотного гидролиза этилового эфира фенил-алашна очень мала. Таким образом, естественно предположить, что быстрый гидролйз эфиров а-аминокислот при pH 7,3, катализируемый Си-ионами, обусловливается непосредственным взаимодействием иона металла с реакционным центром — эфирной группой. [c.67]

    Рассмотренные примеры показывают, что хелатообразователь связывается с ионом металла значительно сильнее, чем обычный родственный ему лиганд. Из данных табл. 20-8 можно видеть, что константы образования этилендиаминовых комплексов на 8-10 порядков (т.е. приблизительно в миллиард раз) больше, чем константы образования комплексов тех же ионов металла с лигандами ЫНд. Связь аммиака и аминных хела-тообразователей с металлом относится к одному типу в обоих случаях неподеленная пара электронов на атоме азота в аммиаке или амине взаимодействует с металлом. Различие в константах образования комплексов с ННз и этилендиамином является отражением повышенной устойчивости последних, обусловленной вхождением связывающихся атомов лигандов в одну хелатную молекулу. Эта повышенная устойчивость иногда называется хелатным эффектом. Однако цианидный ион СК (который связывается с металлом через атом углерода) характеризуется намного более сильным притяжением к металлам, чем азотный атом аминных лигандов. Как показывают данные табл. 20-8, константы образования для циа-нидньгх комплексов на 3-13 порядков величины больше, чем для соответствующих этилендиаминовых комплексов. [c.245]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    Метод кристаллического поля неадекватен также при вычислении дипольпой части сверхтонкого взаимодействия с ядром металла. Экспериментальные дипольные вклады в константы сверхтонкого взаимодействия меньше вычисленных по величине <г ) для свободного иона. В рамках ТКП нельзя объяснить наличие ДСТС от ядер лигандов, которая наблюдается в комплексах, содержащих ядра Р, Ч 1, - С и Н. [c.310]

    Если максимальное координационное число ионов металла М"+ по отношению к лиганду К равно N. таких уравнений будет также Л . В зависимости от характера лиганда координационное число может меняться. Так, известен хлоридный комплекс кобальта СоС1 в котором координационное число кобальта равно 4. При взаимодействии Со2+ с молекулами аммиака возможно образование Со(ЫНз)б , в котором координационное число кобальта равно 6. Аналогично при взаимодействии А1 + с ионами С1- возможно образование А1СЦ, т. е. максимальное координационное число для ионов АР+ равно 4. При взаимодействии же ионов алюминия с ионами Р- образуется ряд комплексов с координационным числом от I до 6 А1Р ,. .... ... А1Рб, т. е. максимальное координационное число ионов алюминия равно 6. Таким образом, координационное число является не только свойством металла, но также зависит от свойств лиганда. Между константами устойчивости, или константами образования К1 [c.240]

    Последовательность взаимодействия ионов фтора с ионами обоих металлов определяется их константами устойчивости для А1р и FeFl логарифмы этих констант равны 20,7 и 16,1 соответственно. [c.465]

    Данные о кислотно-основных и комплексообразующих свойствах поликомплексонов, приведенные в ряде работ [1, 167, 547], имеют большой разброс Это связано с разнородностью состава поликомплексонов, зависящего от способа их получения (см. разд. 1.5), а также с отсутствием единой методики расчета указанных физико-химических констант для гетерогенных систем, Вместе с тем имеющийся материал дает достаточно оснований считать, что кислотность комплексоиов, закрепленных на матрице полимера, близка к кислотности мономерных аналогов Ряд устойчивости комплексов двухзарядных ионов металлов с поликомплексонами, проявляющийся в очередности извлечения этих ионов из водных растворов, как правило, совпадает с рядом устойчивости комплексов мономерных комплексонов аналогичного строения [547, 548], Для большей части исследованных поликомплексонов независимо.от валентности катиона (Си +, РЬ +, Ре +, ТЬ" ) наблюдается взаимодействие лишь с одной хелантной группой. Жесткое закрепление комплексообразующих групп в каркасе полимера и значительное расстояние между ними препятствуют образованию максимально возможного числа циклов, приходящихся на один катион металла [557, 558], Некоторые авторы допускают существование комплексов иного состава, чем и объясняют различия в устойчивости комплексов, образуемых разными катионами. Однако правильнее эти различия связать с природой иона-комплексообразователя [559], [c.296]

    Главное допущение, лежаш ее в основе борновской теории кристаллических солей [15], состоит в том, что структурными единицами, из которых иост-рооЕШ кристаллы, являются ионы, отталкивающие и притягивающие друг друга по закону Кулона. Кроме того, ионы подвержены действию сил внутреннего отталкивания, изменяющихся обратно пропорционально п-й степени расстояния. Мы применим эту теорию к кристаллическим галогенидам щелочных металлов. Используя константы табл. 1 и опытные значенпя сжимаемости, можио рассчитать энергию решетки, т. е. энергию, требующуюся для разложения кристалла на газообразные ионы, бесконечно удаленные друг от друга. Чтобы сделать более понятным способ суммирования кулоновских составляющих, рассмотрим сначала линейное расположение разноименных ионов с равными зарядами (рис. 14). Пусть -Ьге и —ге будут соответственно зарядами катиона п аниона. Ион А испытывает кулоновское притяжение двз х своих непосредственных соседей В ш Е потенциальная энергия, связанная с этим взаимодей-стнием, равна 2х(—г е а). Ион А испытывает также кулоновское отталкивание от следующих своих соседей Е и С, причем энергия равна 2х(+г е72а). Отсюда общая кулоновская энергия взаимодействия иона А со всеми ионами в ряду равна [c.490]

    Еще одной характеристикой спектра ЭПР является сверхтонкая структура, происхождение которой связано с взаимодействием между магнитным моментом наспаренного электрона и спинами ядер. Это взаимодействие аналогично спин-спиновому взаимодействию в ЯМР (гл. 2, разд. 3). Константа сверхтонкого расщепления А, так же как и константа взаимодействия / в ЯМР-спектроскопии, выражается в герцах Расщепление обусловлено наличием магнитного момента у ядра, вокруг которого вращается электрон, или у расположенного поблизости ядра, а также присутствием другого неспаренного электрона. Иногда наличие или отсутствие расщепления позволяет делать важные в химическом плане заключения Так, в спектре ЭПР иона металла в комплексе расщепление под воздействием ядер лиганда будет наблюдаться только в том случае, если лиганд связан с ионом ковалентной связью [c.349]

    Реакция ионов гидроксония с фторид-ионами протекает несколько быстрее, чем реакция ионов гидроксония с гидросульфид-ионами. Небольшое различие в наблюдаемых скоростях в этом случае может быть обусловлено действием чисто статистических факторов, поскольку фторид-ион располагает четырьмя парами электронов, способными присоединять протон, тогда как в гидросульфид-ионе таких пар только три. Электростатические взаимодействия оказывают лишь слабое влияние на константу скорости, что, по-видимому, связано с высокой диэлектрической проницаемостью воды, выполняющей здесь роль растворителя. В грубом приближении можно считать, что константа скорости переноса протона от иона гидроксония уменьшается в два раза при введении в молекулу каждого дополнительного положительного заряда, если размер молекулы при этом не изменяется. Так, например, реакции иона гидроксония с комплексами ионов металлов различного заряда характеризуются следующими значениями константы скорости [л/(моль-с)] для Н0Си(Н20)5+ 10 , для НОСо(ЫНз)5 + 5-10 и для НМНР1(еп)2 + l,9 10 . [c.26]

    При перечислении факторов, способствующих каталитическому действию ионов металлов, особое внимание было уделено тому, что ион металла должен соответствующим образом координироваться с молекулой субстрата. В катализируемых металлами нуклеофильных реакциях ион металла должен специфично координироваться или хелатироваться с молекулой субстрата. Эффект хелатирования проявляется, как правило, во многих процессах это означает, что помимо реакционного центра, с которым ион металла должен взаимодействовать, субстрат должен обладать одним или двумя донорным атомами. Исследования взаимосвязи между каталитическим действием ионов металлов и константами устойчивости соответствующих комплек- [c.234]

    Стехиометрические константы равновесия реакции (6) рассчитаны для взаимодействия лантанидов и трехвалентных актинидов с дп-к-бутплфосфорной кислотой [148] и для взаимодехтствия урана (VI) с различным диалкилфосфорными кислотами [152 [. При расчете константы равновесия в ряде случаев учитывалось [92, 117, 151] образование комплекса иона металла с анионом экстрагента в водной фазе [138, 139, 158-160]. [c.37]


Смотреть страницы где упоминается термин Константа взаимодействия для взаимодействия ионов металло: [c.229]    [c.54]    [c.13]    [c.157]    [c.267]    [c.698]    [c.655]    [c.78]    [c.422]    [c.305]    [c.410]    [c.98]    [c.31]    [c.108]    [c.542]    [c.382]    [c.265]    [c.128]    [c.439]    [c.160]    [c.232]    [c.728]   
Биохимия Том 3 (1980) -- [ c.265 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие с ионами металлов

Взаимодействия ионные

Ионов взаимодействие

Константа ионов

взаимодействие с металлами



© 2024 chem21.info Реклама на сайте