Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия металлов оценка

    При попадании влаги в бензины коррозия металлов приобретает электрохимический характер и скорость ее резко возрастает. Для оценки коррозионной агрессивности в условиях конденсации влаги существует стандартный метод (ГОСТ 18597—73). [c.32]

    Для количественной оценки местной коррозии металлов, помимо упомянутых ранее глубинного /( и прочностного Ка показателей коррозии и показателя изменения электрического сопротивления Kr (см. с. 40 и 266), приняты также следующие показатели коррозии  [c.414]


    Имеющиеся в технической литературе и в нормативной документации рекомендации, позволяющие оценить величины термических сопротивлений некоторых видов загрязнений, во многих, случаях противоречивы, недостаточно обоснованы и неконкретны. Связано это прежде всего с весьма большим разнообразием сопутствующих химической технологии процессов, в которых теплоносители загрязняют теплопередающие поверхности аппаратов. К таким процессам относятся коррозия металлов и сплавов, отложение солей, взвешенных твердых примесей, образование в потоке теплоносителя полимеров, их отложение и налипание на поверхности и т. п. Такое разнообразие процессов существенно затрудняет разработку обобщенных методов оценки величины термических сопротивлений загрязнений, и поэтому рекомендации по их выбору обычно имеют ограниченные области применения и являются ориентировочными. [c.346]

    Коррозионные свойства топлив, коррозионная агрессивность — склонность топлив вызывать коррозию металлов (с которыми они контактируют при применении) вследствие взаимодействия с ними компонентов топлив или продуктов их преобразования. Защитные (от коррозии) свойства топлив — склонность топлива уменьшать (или вызывать) коррозию металлов, с которыми они контактируют до сгорания в двигателе в условиях, допускающих наличие влаги. Как коррозионная агрессивность, так и защитные свойства одного и того же топлива, могут быть различными в зависимости от металла, с которым оно контактирует. Поэтому при оценке этих свойств топлив необходимо указывать, о каком (каких) металле идет речь. [c.180]

    Деление сероорганических соединений на активные и неактивные имеет значение только при оценке коррозионной агрессивности топлив при обычных температурах. При сгорании все они образуют окислы серы 802 и 80з, обладающие высокой коррозионной агрессивностью. При высоких температурах окислы серы вызывают сухую газовую химическую коррозию металлов камер сгорания, выпускных клапанов, трубопроводов и т. д. При относительно низкой температуре, когда возможна конденсация водяных паров из продуктов сгорания, окислы серы растворяются в капельках воды с образованием серной и сернистой кислот. В этих условиях протекает электрохимическая коррозия, скорость которой очень высока. [c.20]

    В настоящем разделе дается характеристика химической стойкости наиболее распространенных видов конструкционных материалов для ориентировочной оценки возможности использования в различных отраслях техники в приложении 1 приведены справочные данные, содержащие значения скоростей коррозии металлов и сплавов и показатели стойкости неметаллических материалов в некоторых жидких и газообразных средах. [c.6]


    Метод оценки действия ингибиторов по общей поляризуемости заключается в следующем. Скорость коррозии металла в электролите определяется величиной коррозионного тока. [c.178]

    Оценка остаточного ресурса сосудов и аппаратов, отработавших установленный срок эксплуатации на объектах Госгортехнадзора РФ, проводится по методике, согласно которой основное условие работоспособности оборудования состоит в том, что возникающие в конструкции эквивалентные напряжения не должны превосходить некоторых, допускаемых для условий эксплуатации, значений. При этом, обычно, предполагается, что коррозия металла является поверхностной и равномерной, а напряжения оцениваются в бездефектных сечениях. [c.60]

    Скорость коррозии металла под покрытием определяется скоростью обмена реагентов грунтовой среды влаги и кислорода, а также образующихся окислов металла. В этом обмене немаловажную роль играет проникающая в покрытие влага. Поэтому для оценки защитной способности покрытия используем скорость проникновения водяных паров. В этом случае поток диффундирующего вещества целесообразно относить к площади, равной произведению длины трещины на максимальную ширину ее раскрытия. Тогда влагопроницаемость материала в условиях трещинообразования [c.80]

    Метод, основанный на измерении поляризационного сопротив-. ления, является одним из наиболее эффективных методов оценки коррозионного сопротивления металла. Если в эксплуатационных режимах использование этого метода для контроля коррозии металла котлов бывает затруднено (например, из-за высоких температур, давлений и связанных с ним сложностей с размещением электродов и измерениями), то в стояночных режимах метод поляризационного сопротивления может быть использован без каких-либо сложностей. [c.109]

    Оценка эффективности консервации теплоэнергетического оборудования, в частности котлов, производится контрольным определением скорости коррозии металла чем эффективнее консервация, тем, естественно, ниже скорость коррозии. Поэтому, без [c.127]

    В Основных направлениях экономического и социального развития СССР на 1981—1985 годы и на период до 1990 года намечено повысить качество строительства объектов трубопроводного транспорта и обеспечить их надежную работу. Основной путь повышения надежности и снижения металлоемкости металлических конструкций — создание расчетных методов оценки их прочности и долговечности на базе более полного учета реальных эксплуатационных условий. Особенно актуален вопрос о совершенствовании количественной оценки надежности газопромысловых труб, от бесперебойной работы которых во многом зависит реализация регламентированного объема добычи газа. Суш,ествующие расчетные методы оценки работоспособности газопромысловых трубопроводов основываются на теории сопротивления материалов и некоторых механических характеристиках металлов (предел текучести вт, временное сопротивление Ов), полученных на образцах, испытываемых в лабораторных условиях. При этом эксплуатационные условия и среда учитывались формально, путем введения коэффициентов запаса прочности, условий работы и запаса на коррозионный износ. Эти коэффициенты не учитывают реальную динамику напряженного состояния трубопроводов. Другими словами, существующие методы расчета не учитывают временной фактор, хотя в настоящее время его влияние на работоспособность металлических конструкций считается бесспорным. Временной фактор связывают с явлениями старения, усталости и коррозии металлов, которые активируют процессы разрушения во время эксплуатации при наличии микро- и макроскопических дефектов. В настоящее время эти явления интенсивно изучаются как в Советском Союзе, так и за рубежом. [c.3]

    При оценке скорости общей коррозии металлов плотность коррозионно го тока может быть приближенно определена из выражения [99]  [c.187]

    При оценке атмосферной коррозии важное значение имеет количественная зависимость средней скорости коррозии металла от метеорологических факторов, которая может быть установлена гравиметрическим методом, а также по модели коррозионного элемента медь—железо . [c.6]

    С современных позиций рассмотрено электрохимическое поведение металлов под адсорбционными и фазовыми слоями электролитов. Приведено большое количество экспериментальных данных о влиянии внешних условий на развитие коррозии металлов. На основе физико-математических моделей рассмотрена возможность использования ускоренных лабораторных испытаний для прогнозирования коррозионного поведения металлов в различных климатических зонах. Дана оценка эффективности современных средств и методов защиты металлов от коррозии. [c.2]


    Влияние других примесей в атмосфе-р е. Широкий спектр химических примесей в атмосфере антропогенной природы затрудняет оценку их влияния на коррозию металлов, особенно на фоне относительно больших концентраций таких загрязнений, как ЗОг, N02, С1 и др. Вместе с тем, можно заключить, что активаторами атмосферной коррозии металлов будут все примеси, способные при растворении в пленке влаги ионизироваться или подвергаться гидролизу. К этому классу примесей могут быть отнесены пары низкомолекулярных кислот (муравьиной, уксусной, пропио-новой и др.), многие элементоорганические соединения, которые могут быть выброшенными в атмосферу предприятиями лесохимической и деревообрабатывающей промышленности. [c.65]

    Наиболее распространенными показателями коррозии при оценке коррозионной стойкости металлов являются следующие изменение массы образцов глубина коррозионных поражений  [c.19]

    Большой интерес представляет своевременное обнаружение начальных стадий межкристаллитной коррозии металла аппаратуры непосредственно в эксплуатационных условиях на заводах химической, нефтяной и других отраслей промышленности, когда отсутствует доступ к внутренним стенкам аппаратов и обследовать их невозможно без остановки и демонтажа. Стремление к более объективной оценке поражения металла МКК выдвигает необходимость использования неразрушающих физических методов контроля. [c.103]

    Металлы, потенциал к-рых менее положительный, чем у кислородного электрода, термодинамически неустойчивы в контакте с (или воздухом) и водой. Поэтому Э. р. н. служит дои ориентировочных оценок скорости электрохим. коррозии в водных р-рах при обычных т-рах, а также для выбора безопасных контактных пар (гальванич. пар) разнородных металлов. Если металл электроотрицательнее, чем Hj, то может нити активный коррозионный процесс (см. Коррозия металлов, Коррозионностойкие материалы. Электрохимическая защита), Практич. реализация электродных процессов определяется наряду с термодинамич. таюке и кинетич. факторами (см. Электрохимическая кинетика). [c.465]

    Термодинамическая оценка газовой коррозии металлов [c.33]

    В стенках оборудования оболочкового типа, как правило, возникает двухосное напряженное состояние. Поэтому представляет практический интерес экспериментальная оценка влияния схемы напряженного состояния на скорость коррозии металлов. С этой целью целесообразно проводить коррозионные испытания листовых образцов двух типов, нагружаемых постоянным прогибом по схеме чистого изгиба (рис. 15) пластины с соотношением сторон поперечного [c.46]

    Близость моря (до 2—2,5 км) усиливает коррозию металлов. Оценка влияния атмосферных условий на скорость коррозии (К) даиа ниже. [c.12]

    Интенсивность коррозии металла подшипника зависит от ряда факторов, из которых наибольшее значение имеют противоокисли-тельная устойчивость масла и характер продуктов окисления, продолжительность соприкосновения металла с коррозионно-агрессивными продуктами в масле, температура масла, нагрузка на подшипник, наличие воды в масле. Кроме того, имеют значение такие факторы, как свойства применяемого топлива, вентиляция картера и др. Для предотвращения коррозии подшипников применяются специальные антикоррозионные присадки. Испытание на коррозионность проводят для оценки коррозионных свойств базовых масел и антикоррозионной эффективности присадок по отношению к свинцу, являющемуся важной составной частью большинства современных антифрикционных сплавов. [c.215]

    Коррозия металла в условиях переменного контактироваиия с воздухом, испытуемым топливом и соленой водой. Этот показатель предназначен для оценки защитных свойств дизельных топлив в условиях обводнения морской водой и топлив с ингибиторами коррозии и является факультативным при квалификационных испытаниях. Его определяют динамическим методом, в основу которого взята методика определения коррозий-ности моторных масел на приборе Пинкевича (ГОСТ 5162-49). [c.108]

    При количественой оценке коррозии металлов ется учитывать фактор неравномерности коррозии  [c.338]

    Методы исследования газовой коррозии. Исследования газовой коррозии предусматривают оценку процессов разрушения металлов, протекаюид,их по химическому механизму, главным образом под действием газовых сред при повышенных температурах. [c.350]

    Приведены основные сведения по теории химической и электрохимичеокоЯ коррозии металлов. Дана краткая оценка коррозионной стойкости конструкционных материалов в различных условиях, рассмотрены принципы основных видов защиты металлов от коррозии, технология производства некоторых видов антикоррозионных работ и ремонта ос5ое дов0ния. [c.2]

    Распространена ошибочная точка зрения на роль неметаллического покрытия. Считают, что покрытие защищает металл от коррозии, пока оно не повреждено и держится на мета1ше. Это не так, коррозия металла начинается задолго до того, как покрытие разр -шилось. С другой стороны, даже с появлением единичных дефектов 3 покрытии его защитные функции еще сохраняются. На прак-тике лимитирующим фактором непригодности покрытия в большинстве случаев считают отслоение его, от подложки и распространение дефекта. При оценке защитных свойств покрытий часто определяют физико-химическую стойкость материала покрытия, а состав металла и его реакции с компонентами [c.46]

    Из анализа состава и основных физических характеристик сточных вод АО Искож , а также в результате изучения факторов, влияющих на процессы коррозии бетона и металлов, можно предполагать, что эти воды не должны обладать повышенной, по сравнению с собственными промысловыми сточными водами, коррозионной активностью. Безусловно, следовало бы систематически определять скорость коррозии металла в сточной воде на выходе из КНС № 15 для наблюдения изменения ее агрессивности по отношению к металлу. Эти определения в свое время не были выполнены, поэтому при оценке влияния сточных вод АО Искож на работу оборудования приходится пользоваться косвенными данными и методом сравнения. [c.371]

    Скорость процессов накипеобразования и коррозии металлов определяли на образцах из СтЗ размерами 40X20X3 мм согласно рекомендациям по их подготовке, обработке после окончания опыта и количественной оценке указанных процессов методом потерь массы [2, 3]. Всего провели 10 опытов, девять из них были поставлены для реализации план-матрицы многофакторного эксперимента типа 2 . Исходной водой для этих опытов служила смесь технической и дренажной вод, взятых в соотношениях 1 0,25 1 0,33 и 1 0,43, что соответствует содержанию дренажной воды в смеси с технической 20, 25 и 30 %. [c.44]

    Исследования влияния магнитного поля на коррозионную активность технологических жидкостей проведены также на Морты-мья-Тетеревском месторождении. Напряженность поля составляла 30 кА/м. Для оценки защитной эффективности магнитной обработки использовали гравиметрический метод определения скорости коррозии металлов [209]. Степень защиты вычисляли на основании сопоставления экспериментальных данных, полученных на образцах без обработки магнитным полем и в его присутствии. При реализации гравиметрического метода определения скорости коррозии металлов продукты коррозии удаляют различными составами, взаимодействующими не с основным металлом, а с продуктами коррозии. Образцы металла, предназначенные для гравиметрических испытаний и имеющие форму тонкой пластинки, зачищают тонкой наждачной бумагой с зернистостью менее 0,1 мм, замеряют штангенциркулем линейные размеры с точностью до 0,01 мм и высчитывают площадь их поверхности. Затем обезжиривают ацетоном или этиловым спиртом, промывают дистиллированной водой, высушивают фильтровальной бумагой и определяют массу каждого образца на аналитических [c.71]

    За годы десятой пятилетки грузооборот трубопроводного транспорта нефти и нефтепродуктов возрос более чем в два раза. Это вызвало интенсивное строительство трубопроводов, резер-вуарных парков для хранения нефти и нефтепродуктов, газголь-д зов и других объектов нефтяной и газовой промышленности. Защита этих сооружений от коррозии является одной из важных задач народного хозяйства. По оценке специалистов, ежегодные убытки от коррозии по отдельным отраслям народного хозяйства составляют несколько миллиардов рублей. Так, например, по данным III Международной научно-технической конференции по проблеме Разработка мер защиты металлов от коррозии , состоявшейся в 1980 году в Варшаве, потери от коррозии за 1977 год в ПНР составляли 3,15 млрд. рублей, в США за 1975 год —70 млрд. рублей. На этой же конференции научно-исследовательский институт ГДР привел интересные данные о влиянии агрессивных сред на окружающую среду и об актуальности борьбы с коррозией металлов. На конференции был рассмотрен широкий круг вопросов по коррозионной защите и сокращению потерь металлов от коррозии. [c.3]

    Подземные детали, изготовленные из нелегпрованных черных металлов, могут быть поражены равномерной сплошной коррозией, а также язвенной и сквозной. Вид коррозии зависит от свойств грунта, но в первую очередь от протяженности и свойств подземного сооружения у сооружений малой площади или не имеющих пассивной защиты обычно преобладает равномерная сплошная коррозия, тогда как у сооружений большой площади или имеющих пассивную защиту, например у трубопроводов, следует ожидать преимущественно местную коррозию. Для оценки коррозионной опасности решающим фактором является рассмотрение функционального назначения сооружения (см. раздел 2.1). Так, для трубопроводов и резервуаров коррозионное разъедание (местная коррозия) представляет существенную опасность ввиду возможного прорыва стенки, тогда как равномерная сплошная коррозия практически не имеет значения. Напротив, у подземных транспортных сооружений, например у транспортных туннелей, равномерная сплошная коррозия может снизить несущую способность. Местная коррозия при этом представляет второстепенный интерес. [c.137]

    О биостойкости материалов можно судить по действию на них ферментов тех микроорганизмов, которые идентифицированы в данных условиях эксплуатации. Коррозию металлов в этом случае называют микробиогенной (или ферментативной). Целесообразно проверять стабильность материалов относительно определенных классов ферментов (дегидрогеназы, оксидазы, гидролазы и др.). Эти испытания можно отнести к ускоренным или экспресс-методам. Так как ферменты действуют на материалы быстрее, чем микроорганизмы, возможно увеличение концентраций ферментов для интенсификации процесса возможно моделирование условий ферментативных реакций и выявления действительного характера процесса (при сравнении с протекающими в реальных условиях) возможна оценка ингибиторного действия биоцидных веществ [7, с. 68]. [c.76]

    С лабораторными и эксплуатационными коррозионными испытаниями связаны и методы оценки. Результаты иоиытаний оценивают визуально по изменению состояния поверхности, массы и размеров, общей площади и распределению участков неравномерного коррозионного разрушения, изменению структуры и виду разрушения, выявленным металлографическим путем, изменению механических и эксплуатационных свойств. Наиболее распространенным методом оценки коррозии металлов является определение убыли массы, которую можно оценить количественно, считая, что коррозия протекает равномерно. По этой убыли [c.91]

    Самостоятельный интерес (особенно для оценки коррозии металлов) представляет изучение распространения аэрозолей морских солей в прибрежных районах. Содержание хлоридов в атмосфере этих районов определяется продолжительностью действия морских ветров, временем открытой воды, рельефом местности и расстоянием от линии уреза водьи. Имеются данные о том, что наиболее интенсивный вынос хлоридов с моря на континент происходит при скоростях ветра более 6 м/с [9]. Мерой возможного выноса хлоридов с моря является средняя непрерывная продолжительность скорости [c.20]

    Таким образом, на основе теории коррозионных процессов можно правильно выбрать материалы и способы защиты для данных условий, метод ускоренных испытаний и способ оценки скорости коррозии металлов и сплавов. Ознакомление с основными методами коррозионных испытаний металлов поможет специалистам, занимающимся защитой от коррозии с помощью лакокрасочных покрытий, более точно оценить свойства металлов, которые должны быть защищены от воздействия кбррозионно-активных сред. [c.33]

    В классической теории коррозии металлов поведению коррозионных элементов, образование которых в реальных условиях может быть связано с очень многими причинами, всегда уделялось большое внимание. В принципе материальный расход прокорродироваашего металла можно определить, установив тем самым скорость коррозии, используя законы Ома и Фарадея. Однако при формально математическом описании процесса коррозии это предполагает введение совершенно не поддающейся оценке величины лолног1Э омичеокого, сопротивления и так называемой начальной э. д. с. коррозионного элемента Лф , представляющей разность потенциалов катодного и анодного участков. Последняя, в свою очередь, зависит от силы тока, и это приводит к необходимости учета поляризационных характеристик анодного и катодного участков, связанных с их индивидуальными сзойствами, геометрическими размерами, взаимным расположением и т. д. [c.149]

    Стоимость защиты стали от коррозии в морских условиях очень высока, однако нередко эти затраты бывают отчасти излищними. Можно назвать две причины подобной перезащиты . Во-первых, объемный и непривлекательный вид продуктов коррозии, создающий впечатление значительного разрушения металла, хотя действительные скорости коррозии материала при продолжительной эксплуатации известны сравнительно плохо. Скорости коррозии, приводимые в литературе, получены, как правило, в краткосрочных испытаниях и представляют средние значения за весь период экспозиции. Известно, однако, что коррозия углеродистой стали в морских условиях обычно протекает очень быстро в начальный период, а затем выходит на стационарный режим, характеризуемый линейной зависимостью. Этот линейный участок зависимости коррозионных потерь от времени и определяет стационарную скорость коррозии — наиболее важный параметр для оценки срока службы стальной конструкции в морской воде. Во-вторых, чрезмерные защитные меры связаны с плохо изученным влиянием биологической активности среды на скорости коррозии металла. Сплавы на основе железа, по-видимому, в наибольшей степени подверл<ены воздействию морских организмов среди всех металлов, однако эти биологические факторы практически игнорируются коррозионистами. В классических курсах коррозии влияние биологической активности на коррозионные процессы либо не упоминается совсем, либо считается несущественным и изолированным явлением. [c.441]

    Обычно при разработке ингибиторов или при их иприменении в кислых средах (травление, перевозка кислот, защита химической аппаратуры и т. п.) учитывают лишь потерю массы металла вследствие развития процессов общей равномерной коррозии. Однако практика показывает, что такая оценка явно недостаточна, так как в большинстве случаев оборудование, механизмы, аппараты работают не только в. условиях воздействия агрессивных кислых сред, но и под влиянием различного рода механических напряжений. Механические напряжения Могут усиливать равномерную коррозию металла в кислой среде, а также приводить к локальным коррозионным поражениям, скорость которых в десятки Тысячи раз выше скорости равномерной коррозии. Совместное действие среды Механического фактора вызывает коррозионно-механическое разрушение, которое выражается в усилении общей коррозии, возникновении коррозионного растрескивания 11 коррозионной усталости. [c.61]


Библиография для Коррозия металлов оценка: [c.98]   
Смотреть страницы где упоминается термин Коррозия металлов оценка: [c.141]    [c.333]    [c.84]    [c.158]    [c.51]    [c.11]    [c.141]   
Ремонт и монтаж оборудования химических и нефтеперерабатывающих заводов (1971) -- [ c.86 , c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии



© 2025 chem21.info Реклама на сайте