Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний определение ванадия

    Осаждение гидроокисей. Осаждение гидроокисей широко применяется и в качественном, и в количественном анализе для открытия, отделения и определения катионов. В некоторых случаях разделение катионов основано на амфотерном характере некоторых окислов металлов. Так, например, железо отделяют от ванадия, молибдена, алюминия и т. п. элементов, обрабатывая раствор избытком ш,елочи. В других случаях разделение элементов основано на различной растворимости гидроокисей. Так, при анализе многих руд, металлов, шлаков, известняков и т. п. материалов, для отделения алюминия и железа от марганца, магния, кальция и других элементов используют то обстоятельство, что гидроокиси большинства трехвалентных металлов значительно менее растворимы, чем гидроокиси многих двухвалентных металлов. Слабые основания, как, например, гидроокись аммония, пиридин (С Н Н) и др., количественно осаждают гидроокиси алюминия и железа, тогда как ионы кальция, магния и многих Других двухвалентных элементов остаются в растворе. [c.94]


    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    Определению титана при помощи диантипирнлметана не мешают ионы магния, алюминия, цинка, кадми , марганца, меди, циркония, редкоземельных элементов, молибдена, ниобия и тантала, поэтому метод можно применять для определения титана в легких, черных и цветных сплавах. Ионы никеля, хрома и кобальта не реагируют с диантипирилметаном, но мешает собственная окраска ионов поэтому раствор сравнения должен содержать все компоненты, кроме диантипирилме-тана. Ионы железа (III) и ванадия (V) предварительно восстанавливают гидроксиламином. [c.374]

    Титан губчатый. Спектральный метод определения ванадия, марганца, хрома, меди, циркония, алюминии молибдена, олова, магния и вольфрама Титан губчатый. Спектральный метод оиределения кремния, железа и никеля [c.821]

    Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определения палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.579]

    Титан губчатый. Спектральный метод определения ванадия, марганца, хрома, меди, циркония, алюминия, молибдена, олова, магния и вольфрама [c.579]

    Лантан, церий, европий, гадолиний, лютеций, иттрий и их окиси. Спектральный метод определения ванадия, железа, кальция, кобальта, кремния, магния, марганца, меди, никеля, свинца, титана, хрома, цинка и циркония [c.589]

    Методика применима для определения ванадия в азотной кислоте, магнии и в хлоридах натрия и калия. [c.150]

    После растворения окиси магния в серной кислоте проводят определение ванадия, используя реакцию окисления аш-кислоты броматом калия. Ошибка определения составляет не более 30%. [c.248]

    Разработаны методы определения ванадия в особо чистых солях магния, кальция, алюминия, бария, меди с относительным стандартным отклонением 0,08—0,15 (табл. 5.3). [c.157]


    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Много времени и труда можно сберечь, если все эти пять компонентов породы определять в одной навеске пробы величиной около 2 г. Если, однако, нужно определить также и ванадий, то тогда определение ванадия и хрома лучше проводить в отдельной навеске (стр. 899). Выше было сказано (см. Щелочноземельные металлы , стр. 636), что только в совершенно исключительных случаях, после дву- или трехкратного осаждения кальция и стронция в виде оксалатов, барий может оказаться вместе с ними. Обычно он переходит количественно в фильтрат вместе с магнием, откуда и может быть выделен осаждением серной кислотой после удаления аммонийных солей. Прибавив при Зтом немного спирта, можно одновременно выделить следы стронция, если анализируемая порода была им богата. Но нельзя быть уверенным, что отделенный таким образом от магния барий представляет все количество этого элемента, содержавшееся в породе. Найденные таким путем величины почти всегда оказывались ниже истинных, вероятно потому, что в ходе анализа создаются благоприятные условия для небольших потерь бария. [c.887]

    Присутствие некоторых веществ даже в ничтожных количествах резко понижает активность катализатора пли совершенно уничтожает его действие другие, наоборот, будучи прибавлены к катализатору в определенном (оптимальном) количестве, увеличивают его активность, хотя сами по себе не являются катализаторами для данной реакции. Такие вещества (активирующие добавки) называются промоторами (активаторами) и служат как бы катализаторами для катализаторов . В нефтепереработке многие синтетические катализаторы используются с активирующими добавками. К ним относятся окислы циркония, тория, ванадия, бериллия, магния и многих других металлов. [c.22]

    В нефти В очень малых количествах присутствуют и другие элементы, главным образом металлы ванадий, хром, никель, железо, кобальт, магний, титан, натрий, кальций, германий, а также фосфор и кремний. При определении элементарного состава нефти эти элементы концентрируются в остатке, называемом золой. [c.18]

    Из приведенных металлов многие образуют комплексы с хромазуролом 5 в тех же условиях, что и алюминий, следовательно, мешают определению алюминия. Например, ванадий (V) мешает мало, допустимы до 4 мг его [5921, но допустимы лишь равные количества V (IV). Хром (VI) не мешает до 10 мг [820], а по другим данным [592], только до 1 жг это противоречие несуш,ественно, так как в условиях применения аскорбиновой кислоты Сг (VI) восстанавливается до трехвалентного. Сг (III) и Мо (VI) при pH 5 не мешают до 20-кратных количеств, большие количества ослабляют окраску комплекса алюминия [164]. Влияние Сг (III) слабее при меньших pH так, при pH 5,8 допустимо содержание лишь равных количеств Сг (III). При pH 5 не мешают 100-кратные количества 2п, Мп, Со, N1, Аз (V), V (V), Сс1, РЬ, 8Ь (III) [164]. Кальций и магний не мешают до соотношения к алюминию соответственно 10 ООО 1 и 2500 1, ш,елочные металлы допустимы в значительных количествах [417]. [c.106]

    Реакция обратима. Для полного восстановления У (У) доУ(1У) необходимо поддерживать высокую концентрацию НС1. В водных растворах солей, подкисленных серной кислотой, ванадий легко восстанавливается амальгамой висмута до У(1У), магнием — до У(1И) и цинковой амальгамой— до У(И). Некоторые приемы восстановления, сопровождаемые последующим окислением восстановленных растворов ванадия титрованным раствором КМпО , были предложены для количественного определения У. [c.9]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]


    Как показали контрольные опыты, содержание до 5% алюминия, кальция, хрома, магния, марганца, никеля, вольфрама, ванадия и цинка не оказывает заметного влияния на результаты определения молибдена при содержании его 0,2—2%. Медь мешает анализу, образуя коллоидную суспензию тиоцианата меди, но в присутствии аравийской камеди влияние меди (до 5%) ничтожно. Те количества кремния, которые обычно присутствуют в титане, не влияют на результат анализа. Если в пробе находятся большие количества кремния, с целью их отделения раствор после упаривания с серной кислотой фильтруют. [c.64]

    Как показали контрольные опыты, наличие до 5% алюминия, хрома, железа, магния, молибдена, никеля и олова, до 2% меди и до 1% ниобия и вольфрама не сказывается ка определении кремния в пределах 0,1—0,5%. Ванадий повышает оптическую плотность раствора, но влияние до 5% ванадия можно компенсировать введением эквивалентного количества ванадия в холостой раствор. [c.88]

    Редкоземельные металлы и их окиси. Спектральный метод определения ванадия, железа, кобальта, кремния марганца, меди, никеля, свинца, титана, хрома Лантан, церш4, европий, гадолиний, лютеций, иттрий и их окиси. Спектральный метод определения ванадия железа, кальция, кобальта, кремния, магния, марганца, меди, никеля, титана, хрома, цинка и циркония [c.822]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Фосфор. Раствор после определения ванадия подщелачивают аммиаком, прибавляют избыток его в 10 мл и подкисляют азотной кислотой, вводя избыток этой кислоты в 5 мл. Если предыдущее определение показало присутствие ванадия, прибавляют сульфат железа (II) в достаточном количестве, чтобы восстановить ванадий до четырехвалептного, и осаждают фосфор при комнатной температуре молибденовым реактивом (стр. 785). При отсутствии ванадия сульфат железа (II) не прибавляют, а нагревают раствор до 50° С и осаждают молибденовым реактивом. В обоих случаях раствор оставляют стоять в течение ночи, после чего его фильтруют и определяют фосфор в виде пирофосфата магния MgjPgOy (стр. 785). Фильтрат и промывные воды после промывания фосфоромолибдата сохраняют. , [c.121]

    Такую навеску удобло брать для главной порции, в которой определяют кремнекислоту, окись алюминия и др., щелочноземельные металлы и магний но более 1 г брать не следует, потому что если взять большую навеску, то осадок гидроокиси алюминия и др. будет слишком объемистым. Навеску не следует и слишком уменьшать, если требуется точное определение марганца, никеля и стронция. Для определения щелочных металлов очень удобна навеска в 0,5 г. В общем можно принять за правило не брать для анализа бо.гее 2 г пробы, если ее будут сплавлять с карбонатами щелочных металлов, как это требуется при определении серы, фтора и хлора. Для определения СОг навеска может быть увеличена до 5 г или даже более, если содержание этого компонента очень мало. При этом на определение рас ходуется не больше времени, чем при навеске в 1 г, а результаты получаются значительно более точньши. Для определения ванадия также обычно нужна навеска, превышающая 2 г. [c.890]

    К сожалению, не все элементы имеют изотопы, удобные для иснользования в качестве радиоактивных индикаторов. Из наиболее важных таких элементов должны быть названы титан, алюминий, магний, бериллий, ванадий. Коротко кивущие изотопы-ин-дикаторы имеют медь и галлий. В ряде случаев для определения таких элементов можно использовать радиоизотопы других элементов, так называемые пешзотопные индикаторы [430]. Примеры использования неизотопных индикаторов в радиометрическом экстракционном титровании см. на стр. 205. [c.241]

    Очень интересным типом азотсодержащих соединений нефти являются порфирины. Они имеют такое же строение, как порфири-новый комплекс, входящий в молечулу хлорофилла или гема, только вместо магния (хлорофилл) или железа (гем) в порфири-новых комплексах иефти встречается ванадий или никель. Пор-с )ириновые комплексы нефти фотоактивны, они способны ускорять окислительно-восстановительные реакции, поэтому предполагают, что они принимают активное участие в процессах диспропорционирования водорода в процессе генезиса нефти. Очевидно, более глубокое изучение этих природных соединений позволит расширить наши представления о происхождении нефти, а возможно, и выделить новый вид катализаторо в с обратимыми окислительно-восстановительными функциями, способными ускорять определенные реакции подобно хлорофиллу в хивых растениях. [c.204]

    Введение аэрозоля в разряд через канал электрода. Метод был предложен Л. Эрдеи, Е. Гегуш и Е. Кочиш [78—80]. В канал нижнего электрода снизу вставляют конец стеклянной трубки от специального углового распылителя, в котором происходит распыление исследуемого раствора (рис. 91). Для анализа достаточно 1—3 мл раствора. Распыление производится сжатым воздухом под давлением 0,2—0,6 атм. Крупные капли аэрозоля стекают вниз, мелкие капли с потоком воздуха попадают в зону дугового или искрового разряда. Этим методом определяли бор и германий, а также примеси магния, цинка, ванадия и хрома в чистом алюминии [81]. Чувствительность определения 10-= — 10 %, погрешность определения для всех элементов составляет [c.143]

    По данным авторов, предлагаемый ими метод по точности не уступает методам Ros oe и Rose (см. текст) при этом определению ванадия не мешают магний, алюминий, медь, молибден, вольфрам и тит н. Железо и хром мешают. А. Д.]. [c.492]

    Двуокись титана является одним из важнейших белых пигментов, обеспечивающих получение высококачественных долговечных покрытий. В лакокрасочной промышленности применяют двуокись титана как рутильной, так и анатазной модификации, обработанные различными способами для повышения устойчивости кристаллической формы, улучшения цвета, снижения меления и т. д. Ру-тильная модификация менее склонна к образованию перекисных групп и более стабильна, чем анатазная. В качестве стабилизирующих добавок применяются небольшие количества реакционноспособных окислов, таких, как окислы циркония, сурьмы, цинка, алюминия, кремния, магния определение содерл ания этих веществ и примесей, ухудшающих цвет и стабильность пигмента (хром, марганец, ванадий, хлор, сульфаты), настоятельно необходимо при оценке качества пигмента. [c.351]

    Определению ванадия (V) и ванадия (IV) не мешают 100-кратные количества марганца (II), алюминия, кальция, магния не мешают определению большие количества фосфат-ионов. Определению ванадия (V) в 2 н. растворе Н2504 не мешают 100-кратные количества ванадия (IV). Таким образом, в кислом растворе экстракцией с помощью Ы-БФГА ванадий (V) может быть отделен от ванадия (IV). Этот вывод очень важен. Определению мешают титан (IV), железо (III), хром (III), которые уже при соотношении V М 1 1 искажают величину оптической плотности раствора. Влияние этих элементов может быть исключено их маскированием соответствующими реагентами. [c.32]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    В новом пламени — смеси этанола и воздуха — натрий можно определять сразу же после разложения силикатов смесью НР и Н2804, так как не обнаружено влияния железа, кальция и других элементов [99]. В пламени кислород—водород при определении натрия по линии 589,6 нм не наблюдалось влияние лития, магния, меди, бария, стронция, алюминия, циркония и ванадия [1207]. Влияние ванадия не наблюдали также при его содержании до [c.122]

    Применяют для определения алюминия при pH 7—8 методом обратного титрования солью цинка в присутствии пиридина. Барий, кальций и ртуть титруют при pH 10 в присутствии комплексоната магния. Кадмий и кобальт при pH 10 определяют прямым титрованием. Магний, цинк, железо (III) и титан (IV)—методом обратного титрования солью цинка в присутствии пиридина. Галлий (III) при pH 6,5—9,5 определяют обратным титрованием солью цинка. Индий определяют при pH 8—10 в присутствии сегнетовой соли марганец при pH 10 —с добавлением гидроксиламина. Никель и свинец при pH 10—методом обратного титрования солью магния или цинка. Титан (IV) определяют при pH 10 обратным титрованием солью магния или с добавлением комплексоната магния. Ванадий (V) определяют при pH 10 методом обратного титрования солью марганца. Переход окраски от винно-красной к синей. [c.279]

    При обычном анализе трудно смешать линии индия с линиями других элементов [215]. Однако при определении индия по линии 1п 4511, 3 А можно обкидать помех за счет близлежащей линии алюминия (особенно при возбуждении в искре), хрома, платины и рутения, а также от более слабых линий ванадия и очень слабых линий марганца и магния (особенно при возбуждении в искре). При небольшой дисперсии спектрографа следует принять во внимание также линии меди и свинца (главным образом при возбуждении в дуге), молибдена, титана, вольфрама, а также более слабые линии кальция и осмия. Алюминий и бериллий вызывают на месте этой линии сильный фон. Яркие мешающие линии Ве 4513,3 А и Т1 4512,7 А. [c.203]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Определению содержания титана не мешают магний, алюмиий, цинк, кадмий, марганец, РЗЭ, медь, цирконий, церий, кобальт, молибден (V), ванадий (IV). Молибден (VI) образует с реактивом окрашенное соединение и его мешающее влияние устраняют также, как и мешающее влияние железа рП) и ванадия (V), восстановлением аскорбиновой кислотой, гидроксиламином. Никель, хром (III) мешают определению содержания титана собственной окраской. [c.123]

    Определение кобальта по методу вытеснения [918, 1246]. Анализируемый раствор соли кобальта прибавляют к комплек-сонату ванадила, магния или марганца. Катионы кобальта вытесняют ванадил, магний или марганец из комплексонатов, после чего катионы этих металлов титруют раствором комплексона 1П. Аналогично определяют другие катионы, в частности меди, никеля, железа и алюминия. [c.125]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Фотометрическое определение в рудах в форме сульфата [745]. Навеску руды разлагают смесью азотной и соляной кислот и раствор выпаривают с серной кислотой. Осаждают медь раствором тиосульфата натрия. При этом железо восстанавливается до двухвалентного состояния. Измеряют оптическую плотность полученного раствора Со804 (после фильтрования) при 520 ммк. Не мешают мышьяк, сурьма, магний, алюминий, кальций, ци к, кадмий, натрий, калий и титан. Допустимо до 0,5 мг/мл марганца и 0,3 мг/мл вольфрама. Мешают хром и ванадий собственной окраской. При больших количествах никеля оптическую плотность измеряют при двух длинах волн— при 400 и 520 ммк и затем вычисляют содержание кобальта. [c.180]


Смотреть страницы где упоминается термин Магний определение ванадия: [c.228]    [c.238]    [c.121]    [c.152]    [c.238]    [c.169]    [c.35]    [c.204]    [c.150]   
Методы анализа чистых химических реактивов (1984) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение

Магний определение



© 2025 chem21.info Реклама на сайте