Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители в реакциях восстановления

    Следует отметить, что при использовании в качестве катализатора платины, нанесенной на инертный носитель, вывод об электрохимическом механизме реакции экспериментально не подтверждается. Предположение об электрохимическом механизме реакции восстановления N0 на платине, нанесенной на активированный уголь, можно сделать на основании того общеизвестного факта что при абсорбции электролитов на платинированном угле в атмосфере водорода платина проявляет себя, как водородный электрод и сообщает поверхности активированного угля свой потенциал Если исходить из такого предположения, механизм процесса можно представить себе следующим образом на платине ионизируется водород, а на угле идет электрохимическое восстановление по схеме [c.141]


    Носители в реакциях восстановления  [c.460]

    Реакции окисления хорошо протекают, если носителем служит окись алюминия, в то время как реакции восстановления идут лучше, если в качестве носителя взят кварцевый песок. Реакция окисления аниона [c.383]

    Был исследован ряд смесей с различными носителями и восстановителями. Оказалось, что окись алюминия не является подходящим носителем для реакций восстановления на колонке, в то время как для реакций окисления на колонке она является лучшим носителем. [c.387]

    Хорошим носителем для реакций восстановления является кварцевая пудра. Из восстановителей лучшими оказались сульфит натрия, солянокислый гидроксиламин и солянокислый гидразин. [c.387]

    Если в чистую воду погрузить изделие из серебра, то, через некоторое время в любой пробе воды можно будет обнаружить ионы серебра. Результаты такого эксперимента свидетельствуют о том, что в воде образуются катионы металла, несущие положительный электрический заряд. Но в этом случае, в силу закона сохранения заряда, на поверхности металла должны накапливаться отрицательные электрические заряды, носителями которых являются избыточные электроны, оставшиеся после ионизации. Следовательно, после начала реакций окисления создаются предпосылки для протекания реакции восстановления атомов железа (8). [c.6]

    Выхлопные газы, содержащие 2—4% (об.) Ог и остатки N0+ +N02, предварительно подогревают теплом горячих нитрозных газов до 400 °С и затем смешивают с природным газом с тем, чтобы обеспечить в результате реакции температуру 750—870 °С. В качестве катализатора применяют платину, нанесенную на носители. Этим путем содержание N0+N02 в выхлопных газах удается довести до 0,005—0,0005% (об.). При получении азотной кислоты на многотоннажных агрегатах для восстановления окислов на катализаторе применяют природный газ давлением 1,5—1,6 МПа. Восстановление осуществляют в контактных аппаратах при 750 °С. Чтобы предотвратить образование взрывоопасной метановоздушной смеси и ее взрыв в аппаратуре, предусматривают автоматическое регулирование подачи природного газа. Кроме того, агрегат каталитической очистки оснащают системой защитных блокировок, обеспечивающих отключение подачи природного газа к горелкам подогревателя при аварийной остановке компрессорных агрегатов и отклонении температуры газов после топки от нормальной. Предусматривают также запрет подачи природного газа к горелкам прп отключенной воздуходувке. На линии природного газа, ведущей к смесителю реактора каталитической очистки, устанавливают отсекатель, который закрывается при отклонении от нормальной температуры газа после реактора, остановке компрессорного агрегата и закрытии отсекателя на линии природного газа перед топкой. [c.45]


    Использование ионитов в качестве катализаторов имеет преимущества перед растворимыми кислотами и щелочами благодаря более мягкому воздействию ионообменных групп уменьшается протекание побочных реакций продукты реакции и катализатор легко разделяются фильтрованием устраняется коррозионное действие кислот на металл, что упрощает конструктивное оформление процесса. Иониты легко регенерируются, а потому используются многократно, что снижает расход катализатора на целевой продукт [236, 238—240]. Во многих случаях каркас ионита используют как носитель металла-катализатора. Насыщая катионит соответствующими ионами металла с его последующим восстановлением, удается достичь высокой степени дисперсности катализатора [241]. Однако твердые органические контактные массы отличаются [c.175]

    Показано [12], что адсорбционные и каталитические свойства никелевых катализаторов на одном и том же носителе в значительной мере зависят от способа приготовления и от температуры восстановления при высокой температуре восстановление приводит к очень активным, но чувствительным к ядам катализаторам, при низкой температуре — дает менее активный, ио более устойчивый контакт. При изменении температуры получается катализатор с разной степенью восстановления никеля до металла, и это влияет на активность [13]. А1 тивность никелевых катализаторов на кизельгуре падает при получении никелевого катализатора из исходных солей формиат>ацетат>оксалат>нитрат. При получении адсорбционных никелевых катализаторов на синтетическом алюмосиликате их активность в реакции гидрирования зависит от pH раствора никелевой соли [13]. [c.30]

    Например, в работах [6, 10] изучалось влияние различных факторов на скорость гидрогенизации глюкозы в водном растворе при интенсивном перемешивании (на суспендированном никель-медном катализаторе, промотированном окисью хрома). Детально исследованы влияния условий приготовления катализатора (температура восстановления от 200 до 600 °С), его количества (до 5% от массы глюкозы), соотношения массы металлической фазы к массе носителя (от I 1 до I 4), концентрации глюкозы в растворе (до 40%), давления водорода (до 12. МПа), температуры реакции (до 130 °С) и величины pH среды (от 4 до 11). [c.68]

    Силикагели. Силикагель (ксерогель кремниевой кислоты с хорошо развитой пористой структурой) используется для осушки воздуха и промышленных газов, осушки различных жидкостей, рекуперации паров органических веществ, очистки масел, удаления из нефти смолистых веществ. Применяется в хроматографии, а также как носитель и катализатор для реакций полимеризации, конденсации, окисления и восстановления органических веществ, для разделения радиоактивных изотопов, очистки промышленных сточных вод от ионов различных металлов [29]. Производится промышленностью в виде зерен и шариков в зависимости от пористой структуры может быть двух сортов мелкопористый и крупнопористый. В свою очередь каждый сорт по размерам зерен имеет несколько марок  [c.387]

    Как уже упоминалось, окись алюминия часто используется как носитель катализаторов. Она имеет кислые свойства и способна катализировать такую реакцию как дегидратация, если ее не нейтрализовать щелочью. Таким образом, при получении спиртов посредством гидрирования альдегидов или кетонов может произойти дегидратация спиртов, если в катализатор не включить щелочь. Могут добавляться и другие, менее основные окислы (как ZnO), но при этом должна быть принята во внимание возможность их восстановления с образованием менее активного сплава с активным металлом. В зависимости от температуры реакции это может являться достоинством или недостатком. [c.32]

    При формировании окислительно-восстановительной хроматограммы происходит повторение элементарного акта окисления — восстановления, что определяется большой поверхностью колонки и обратимостью протекающих процессов. Закрепление продуктов реакции происходит вследствие проявления адгезионных свойств носителя. [c.289]

    Волькенштейн и Киселев подчеркивают, что при рассмотрении системы адсорбент — адсорбат как единой квантовомеханической системы электронный переход означает лишь переход носителя тока (электрона, дырки) из одного энергетического состояния в другое без фиксации геометрии перехода. Однако прп сохранении иона-ми решетки своих индивидуальных свойств и отсутствии зон проводимости такая трактовка уже становится неприемлемой. В этом случае переход электронов от молекулы органического соединения к твердому катализатору может привести к обычной реакции, восстановления катиона переменной валентности, входяш его в состав катализатора, аналогично тому, как это происходит в гомогенном ката 1изе [c.28]


    К. М. Ольшанова и А. Н. Щеколдина [50] показали, что реакции окисления хорошо протекают, если носителем служит оксид алюминия, в то время как реакции восстановления идут лучше, если в качестве носителя взят кварцевый песок. Выбор окислителя зависит от состава анализируемой смеси восстановителей. Окислительно-восста-новительный потенциал окислителя должен быть выше соответствующих потенциалов компонентов анализируемой смеси. В качестве носителей, кроме упомянутых веществ, применяют также силикагель, анионитные смолы и оксид алюминия. [c.222]

    Поскольку в растворе нет свободных электронов, они должны восприниматься в связи с их носителем, донором электронов. Электрон может покинуть донор (восстановитель), только пе1>ейдя к акцептору электронов (окислителю). Таким образом, окисление всегда сопровождается восстановлением н наоборот. Для реакции восстановления [c.174]

    Анализ проводят, инжектируя пробу хлората в поток носителя — подкисленного раствора титана(П1), который затем соединяют со вторым потоком лейкометиленового синего (LMB). В то время как первые две реакции протекают очень быстро, третья реакцйя восстановления синей формы МВ идет медленно. Таким образом, концентрацию хлорат-иона можно легко определить по оптической плотности раствора МВ, образующегося во второй реакции, тогда как образование LMB имеет место уже после того, как зона пробы прошла через детектор. [c.453]

    Исследование реакции восстановления окиси азота водородом, окисью углерода и эквимолекулярной смесью Н2/СО на Р1-, Р(1-, КЬ-, Ки-катализаторах на носителях проведено в работе [70]. Авторам удалось установить, что основным продуктом восстановления в присутствии Р1 и Р(1 является N113, а в присутствии КЬ и Ки— [c.440]

    Самый механизм реакции восстановления в гетерогенной системе с участием твердою восстановителя (Ре, 2п и т. п.) нуждается в выяснении. Бесспорно, реакция здесь идет на поверхности, разделяющей твердую фазу от жидкой. Не только размеры поверхности (крупность зерна металла), но и ее состояние имеют большое значение для начала и скорости восстановлеиня этому мы найдем примеры особенно в щелочном методе восстановления. Однако составление хотя бы схематической картины для взаимодействия между атомами металла, Н -нли ОН -ионами и носителем иитрогруппы—дело будущего, и здесь положение вопроса не более, если [c.127]

    Каутский и Пфанненстил [137] приготовили подходящий гидрирующий катализатор из раствора соли никеля, в котором металл осаждался помощью кислородных соединений кремния, содержание кислорода в которых должно быть меньше, чем в окиси кремния, например применяют силоксен. Запатентован способ приготовления никелевого катализатсра [406] заключающийся в покрытии аморфным никелем зерен металлического никеля, употребляемого в качестве носителя. На никелевую проволоку диаметром 2 мм действуют хлором при 150° при этом наружный слой металла превращается в хлористый никель, а середина остается неизмененной. Обработка газообразным аммиаком при той же температуре ведет к образованию летучего хлористого аммония, который уходит, а хлорид металла превращается в губчатый пористый металл, отложенный на неизмененном никеле. Другой активный никелевый катализатср получается пропиткой содержащего углерод вещества раствором азотнокислого никеля с последующей сушкой, восстановлением и окислением при 800° [45]. В одном из патентов [85] рекомендуется способ приготовления высокоактивного никелевого катализатора, пригодного для процессов восстановления. Соединения металла, употребляемого в виде катализатора, восстанавливают водородсм при начальной температуре 150—250°, причем, по мере хода реакции восстановления, температура повышается до 200—450°. Кроме того, в начале восстановления вводится небольшое количество газовой смеси, состоящей в основном hs инертного газа с небольшим количеством водорода, процесс проводится дальше с газовой смесью, содержащей больше водорода, чем в начале, и заканчивается со смесью, содержащей большой процент чистого водорода. [c.274]

    Активация водорода является лимитирующей стадией и облегчается на катализаторах с высокой энергией связи водорода. На рисунке 3 и в таблице 1 иредставлены данные о взаимосвязи скорости восстановления га-бензохинона и нитросоединений с количеством и величиной энергии связи прочносвязанного водорода на платино-палладиевых и смешанных никелевых катализаторах на носителях [8, 24]. Результаты наших исследований свидетельствуют о значительной роли прочно-связаниых форм адсорбированного водорода в реакциях восстановления Х01Ю Ш0 адсорбирующихся органических соединений, лимитирую- [c.49]

    Иное наблюдается при воостановлении, например, кислорода ( незатрудненная реакция). Роль носителя в этой реакции значительно возрастает, особенно в области разведенных слоев. Это обнаружено нами нри изучении газофазного восстановления избытка кислорода окисью углерода (окисление окиси углерода) на палладиевых, платиновых и смешанных катализаторах на носителях [10]. Указанная реакция по своей схеме имеет много общего с реакцией восстановления л-бензохинона и нитросоединений. 1В обоих случаях кислородоодержа-щие соединения — акцепторы электронов адсорбируются на поверхности металлического катализатора, отнимая от него электроны, с образованием отрицательно заряженных соединений. Восстановитель — донор электронов (водород, окись углерода) активируется на поверхности при мгновенной адсорбции из газовой фазы с отдачей электрона. При этом чем выше энергия связи донора электронов с атомной фазой, тем выше скорость реакции. Однако в характере участия металлического катализатора на носителе в рассматриваемых процессах наблюдается существенная разница. Она заключается в следующем. Для протекания восстановления сложных по строению органических соединений с максимальной скоростью требуется сочетание двух типов двухатомных активных центров, одни из которых расположены на крупных кристаллах, обладающих объемными свойствами металла  [c.55]

    Еще в 1912 г. удалось восстановить пиридин, 2-метилпиридин (а-пиколин) и 4-метилпиридпи (у-пиколин) на коллоидной платине в качестве катализатора ирн 25—45° [348, 349]. Реакция восстановления протекала сравнительно медленно. Пиперидин был получен [459] каталитическим гидрировапием пиридина па палладии (на асбестовом носителе). Восстановление пиридина водородом под давлением проводили также иа платиновом [323] и на окисноплатиновом катализаторе с применением этанола или уксусной кислоты в качестве растворителя [124]. Гидрирование пиридина и замещенных ниридинов изучалось нри высоких температурах и давлениях [8, 12]. В качестве катализаторов й этих [c.248]

    В некоторых случаях окись алюмишш служит ие только носителем, имеющим большую удельную поверхность, но выполняет и некоторые дополнительные функции. Так, двуокись молибдена МоОг сама не активна, но на окисноалюминиевом носителе является одним пз наиболее активных и долговечных катализаторов. Вполне возможно, что в условпях реакции двуокись молибдена восстанавливается в неактивный металлический молибден окись алюминия, вероятно, подавляет эту реакцию восстановления в такой степени, что катализатор на носителе достаточно длительно сохраняет свою активность [7]. [c.292]

    Известно, что даже при высоких температурах и низком давлении на поверхности катализатора существуют водные кластеры. Квантово-химиче-ские расчёты для водных кластеров, содержащих от одной до трёх молекул воды, показали, что при увеличении размера водного кластера энергия отрыва протона значительно увеличивается п = 1 163,1, п = 2 196,6, п = 3 220,7 ккал/моль). Энергия комплексообразования субстрата при взаимодействии с протонированным водным кластером понижается в ряду п = 1,2,3 и приблизительно линейно зависит от величин энергий отрыва протона от соответствующих водных кластеров. Из приведённых расчётов следует, что в зависимости от силы кислотных центров меняется и энергия комплексообразования, т. е. изменяя кислотные свойства катализаторов, можно изменять их селективность. Таким образом, когда происходит реакция восстановления окиси палладия с образованием тритиевой воды, носитель насыщается активированным тритием. За счёт обратного спилловера трития (ОСВ) на активных центрах катализатора возникают протонированные водные кластеры, на которых происходит изотопный обмен  [c.529]

    Наконец, Гобрехт и др. 116—18] использовали для определения относительной величины скорости поверхностной рекомбинации ИК ИЗлучение, сопровождающее рекомбинационные процессы в электроде. Неравновесные свободные носители вводятся в образец германия сквозь поверхность раздела его> с электролитом (с помощью освещения или реакции восстановления феррицианида) и рекомбинируют в его объеме, а возникающее при этом ИК-излучение наблюдается с обратной стороны тонкого электрода. [c.9]

    Кэбикер и Поспишил [39] исследовали восстановление окисных катализаторов водородом, который служил одновременно и газом-носителем. Несколько миллиграммов исследуемых катализаторов загружали в реактор поток водорода после реактора направляли в ячейку детектора. Так как в этом случае вода является единственным продуктом реакции, то запись на ленте самописца, непрерывно регистрирующего показания детектора, отражает изменение скорости реакции восстановления во времени. [c.52]

    Как и в случае мономерных фталоцианинов металлов нанесение полифталоцианинов Со, Ре и Мп на углеграфитовый носитель смещает потенциал без тока кислородного электрода в область более положительных значений по сравнению с потенциалом носителя. Однако указанный эффект для полимеров несколько меньше, чем для мономеров. Напротив, при наложении внешнего катодного тока полимерные фталоцианины Со , Ре и Мп более активны в реакции восстановления кислорода по сравнению с носителем и моно" мерными фталоцианинами (рис. 1). При потенциале 0,8 в относительно обратимого водородного электрода в том же растворе электрохимическая активность кислородного электрода с (РсСо)г, синтезиро- [c.108]

    В цикле работ Ю. И. Ермакова с сотр. [45—48] по исследованию реакции гидрогенолиза алканов изучены каталитические системы, полученные взаимодействием металлорганических соединений переходных металлов с поверхностью носителей. В частности исследован гидрогенолиз этана и неопентана на следующих металлах, нанесенных на 5102 Р1, Р1, Мо—Р1, Рд, У—Р(1, Мо—Рс1. Приготовление этих катализаторов включает две стадии 1) закрепление на поверхности носителя ионов Ш или Мо 2) нанесение металл-органпческих соединений Р1 или Р(1 с последующим их восстановлением. Найдено [45], что при гидрогенолизе этана активность Р1-ка- [c.96]

    Показано [69], что удельная поверхность платины в Pt/ существенно зависит от температуры предварительной термической обработки угля, использованного в качестве носителя. При этом меняется и активность катализатора в реакции Св-дегидроциклизации изооктана, причем по-разному в зависимости от способа нанесения платины. Так, при приготовлении Pt/ по способу, описанному в работе [66], оптимальной температурой предварительной обработки угля являегся 300°С. Однако для Pt/ , полученных пропиткой угля раствором Н2Р1С1е с дальнейшим восстановлением водородом, наиболее благоприятным оказалось предварительное прокаливание угля при 1400°С. [c.200]

    Каталитическое гидрирование в паровой фазе при атмосферном давлении над восстановленным никелем было открыто Сабатье Вскоре В. Н. Ипатьев впервые применил гидрирование в жидкой фазе под давлением водорода. За почти семидесятилетний период развития и изучеааия реакций гидрирования было открыто много весьма активных катализаторов позволявших работать при очень мягких условиях никелевые катализаторы на носителях, хромит-медные катализаторы, окись платины, платиновая чернь и др. Большое значение, в том числе и промышленное, получили так называемые скелетные никелевые катализаторы ( никель Ренея ) . К настоящему времени ряд катализаторов значительно пополнен, а известные катализаторы усовершенствованы. Так, например, очень активными катализаторами являются сплавы никеля и родия, платины и рутения, модифицированные катионами палладиевые катализаторы и др. Скелетные катализаторы значительно улучшены промотированием , а приготовление катализаторов усовершенствовано так, что платиновая чернь, например, может быть получена с хГоверхностью до 200 м /г, в то время как в прошлом лучшие образцы имели поверхность не более 50—60 м г. [c.130]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Значительно большее практическое значение имеет гидрирование ненасыщенных жнрных кнслот и нх сложных эфиров по этиленовым связям с получением насыщенных кислот. Лучшим катализатором для этой цели является восстановленный никель, применяемый в мелкодиснергированном состоянии или на носителе и активный при 125—200°С. Сложные эфиры реагируют быстрее самих ненасыщенных кислот, причем скорость реакции падает с удлинением и разветвлением цепи. При этом двойная связь в кислотах менее реакционносиособна, чем в олефинах, что указывает на дезактивирующее действие карбоксильной группы. [c.507]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Никелевые катализаторы на носителях — кизельгуре, окиси алюминия, окиси хрома широко применяют для жид о-парофазного процесса гидрирования. Содержание никеля в этих катализаторах достигает 30—50 вес.%. Никель на кизельгуре получают пропиткой кизельгура солями никеля с последующим превращением их в окись никеля. Затем проводят ее восстановление водородом при 300—400° С до металлического никеля (1, 188]. Для гидрирования бензола, фенола, крезолов эффективным является никельокисноалюминиевый катализатор, содержащий около 50 вес. % металлического никеля. Катализаторы подобного состава готовят соосаждением компонентов, например, из растворов алюмината натрия и азотнокислого никеля из смеси азотнокислого Никеля и азотнокислого алюминия раствором углекислого натрия и т. д. После отмывки от продуктов реакции, формовки и сушки катализаторы восстанавливают водородом при 350—400° С. Катализатор № 6523, вырабатываемый в ГДР, содержит около 50 вес. % никеля на окиси алюминия [213]. [c.85]

    В одном из методов прямой гидратации пропилена с твердым катализатором последним служила восстановленная окись вольфрама на силикагеле. Гидратацию производили обычной водой. Для этого 10 молей воды и 1 моль пропилена пропускали сверху вниз через колонну, наполненную катализатором. Процесс проводили при 200—240° и 200 ат, отводя из нижней части колонны 12—15%-ный водный раствор изопропилового спирта. Наилучший выход изопропилового спирта (95% на прореагировавший олефин) был получен при 50%-ной конверсии пропилена за один проход. Съем изоп]юпилового спирта в час равнялся 15—30 г с л катализатора. В описанном процессе поглощение пропилена происходит частично в жидкой фазе, частично в паровой, причем равновесные степени превращения имеют большую величину, чем при чисто парофазной реакции. Описано усовершенствование этого процесса, которое отличается тем, что поглощение проводят при 250—290° и 150—300 ат в присутствии голубой окиси вольфрама без носителя [13]. [c.150]


Смотреть страницы где упоминается термин Носители в реакциях восстановления: [c.406]    [c.218]    [c.414]    [c.194]    [c.193]    [c.107]    [c.73]    [c.155]    [c.194]    [c.23]    [c.546]    [c.41]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.460 , c.504 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановления реакции



© 2025 chem21.info Реклама на сайте