Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частицы веществ простых также частица элемента

    Химики тогда изучали поведение веществ, а также свойства элементов и их соединений, опираясь на сведения о молекулах — определенных частицах, которым присущи определенные свойства. Представление о простом и сложном веществе, состоявшем из молекул во всех агрегатных состояниях, лежало в основе понятия химического соединения и, следовательно, химического индивида, строго отграничивавшего индивидуальное вещество от смеси. В отличие от последней, химически индивидуальное вещество подчинялось стехиометрическим законам химии — постоянства состава, простых кратных отношений и валентных отношений. [c.190]


    Более старое определение элемента, возникшее тогда, когда атомная теория еще не была общепринята, было основано на способности веществ к разложению. Элементами назывались все вещества, которые не могли быть разложены на другие, более простые вещества. Считалось, что элемент не может быть получен путем соединения двух или больше веществ, т. е. синтезом, а образуется только при разложении. В настоящее время известно, что атомы могут быть разложены на более простые элементарные частицы, но, понятно, лишь при использовании энергий, в миллионы раз превышающих те, которые доступны в настоящее время в химии. Следовательно, старое определение уже не соответствует фактам, известным в настоящее время. Считалось также, что элементы неизменны и не способны к взаимному превращению. Но и это неверно, что было доказано современной физикой также при использовании больших энергий. [c.25]

    При помощи простого и дешевого оборудования использование электрофореза на бумаге позволяет разделять редкоземельные элементы, белки, нуклеиновые кислоты и другие соединения, входящие в состав живых и растительных организмов, также разделять смеси радиоактивных веществ. На движение частиц в электрическом поле влияют такие факторы, как знак и величина ионов, или коллоидных частиц, присутствие комплексообразователей, изменяющих тип и степень диссоциации вещества. [c.313]

    Атомы. Последним известным в настоящее время пределом делимости вещества являются элементарные частицы — протоны, нейтроны и др. За последние десятилетия благодаря появлению мощных ускорителей и тщательному исследованию состава космических лучей стало известно около 200 элементарных частиц. Теперь ставится вопрос об их (строении в связи с этим вместо термина элементарные частицы иногда пользуются выражением фундаментальные частицы . Атомами называются наиболее простые электрически нейтральные системы, состоящие из элементарных частиц. Более сложные системы — молекулы— состоят из нескольких атомов. Химикам приходится иметь дело с атомами, образующим вещества, — атомами химических элементов они представляют наименьшие частицы химических элементов, являющиеся носителями их химических свойств. Атом химического элемента состоит з положительного ядра, содержащего протоны и нейтроны, и движущихся вокруг ядра электронов . Многие из этих атомов устойчивы, они могут существовать сколь угодно долго. Известно также больщое число радиоактивных атомов, которые спустя некоторое время превращаются в другие атомы в результате изменений, происходящих в ядре. [c.5]


    Нг1 основании периодического закона сформировалось учение о периодичности, которое складывается из трех основных направлений. Первое устанавливает связь макроскопических свойств простых и сложных веществ со строением и свойствами атомов, составляющих эти вещества. Эта сторона учения о периодичности получила развитие с созданием теории строения атома. Второе направление связано со способом выражения закона в виде периодической системы элементов важнейшими в этой системе являются представления об индивидуальных свойствах, специфических (элементы — аналоги по группе, по ряду, по диагонали) свойствах и общих свойствах (формы соединений), а также о месте элемента в системе. Это направление нашло выражение в сравнительном методе изучения свойств элементов и их соединений. Им широко пользовался Д. И. Менделеев, оно применяется до сих пор. Третье направление — применение идеи периодичности к другим объектам ядрам атомов, элементарным частицам и т. д. [c.44]

    Период полураспада (Т. д)- время, за которое количество нестабильных частиц уменьшается наполовину. П. п.— одна из основных характеристик радиоактивных изотопов, неустойчивых элементарных (фундаментальных) частиц. Периодическая система элементов Д. И. Менделеева — естественная система химических элементов. Расположив элементы в порядке возрастания атомных масс (весов) и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, выражающую открытый им периодический закон Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая таблица элементов Д. И. Менделеева позволяют установить взаимную связь между всеми известными химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. На основе закона и периодической системы Д. И. Менделеева найдены закономерности в свойствах химических соединений различных элементов, открыты новые элементы, получено много новых веществ. Периодичность в изменении свойств элементов обусловлена строением электронной оболочки атома, периодически изменяющейся по мере возрастания числа электронов, равного положительному заряду атомного ядра Z. Отсюда современная формулировка периодического закона свойства элементов, а также образованных ими простых и сложных соединений находятся в периодической зависимости от величин зарядов их атомных ядер (Z). Поэтому химические элементы в П. с. э. располагаются в порядке возрастания Z, что соответствует в целом их расположению по атомным массам, за исключением Аг—К, Со—N1, Те—I, Th—Ра, для которых эта закономерность нарушается, что связано с нх изотопным составом. В периодической системе все химические элементы подразделяются на группы и периоды. Каждая группа в свою очередь подразделяется на главную и побочную подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы главной и побочной подгрупп в каждой группе, как правило, обнаруживают между собой определенное химическое сходство главным образом в высших степенях окисления, которое, как правило, соответствует номеру группы. Периодом называют совокупность элементов, начинающуюся щелочным металлом и заканчивающуюся инертным газом (особый случай — первый период) каждый период содержит строго определенное число элементов. П. с. э. имеет 8 групп и 7 периодов (седьмой пока не завершен). [c.98]

    По-новому был также поставлен вопрос и о методах исследования органических соединений. В первой половине XIX века основным методом исследования в органической химии был анализ для получения новых веществ химики в основном пользовались разрушением сложных природных соединений. Жерар в своем учебнике (1848 г.) писал Химик почти всегда производит эти интересные метаморфозы следующ,им образом он подвергает сложные частицы, состоящие из большого числа атомов углерода, водорода и других горючих элементов, частичному разложению, имеющему целью удалить некоторое количество углерода, водорода и азота в виде воды, углекисло, ты и аммиака. Он таким образом упрощает углеродные частицы, разбивает их на две или более других частиц и далее Без сомнения химик может в небольшом числе случаев усложнять углеродистые частицы и соединять две или три из них для образования одной, но этот способ составления вновь редко удается и далеко не так практичен, как обратный, где иногда сложную частицу разбивают на десять, двадцать, тридцать и более простейших частиц . [c.31]

    Ионная связь характерна для многих неорганических соединений таких, как кислоты, щелочи и соли (электролиты). Так, Коссель, создав в 1915 г. теорию ионной связи, возродил через 70 лет идею Берцелиуса о природе химической связи как взаимодействии двух противоположно заряженных частиц. С помощью теории Косселя не удается, однако, объяснить возникновение химической связи и образование многих веществ например, простых, состоящих из одинаковых атомов или из атомов элементов близкой или одинаковой электроотрицательности, а также многочисленных органических соединений, молекулы которых в водном растворе не распадаются на ионы. [c.147]


    Если атомный вес водорода выступил у Дальтона как мера атомных весов всех остальных элементов, то атом каждого простого или сложного тела можно рассматривать как меру данного вещества (напомним, что, по определению Дальтона, понятие атома распространяется также и на мельчайшие частицы химически сложных веществ, называемые ныне молекулами). [c.107]

    Если реакция образования комплексных частиц полностью обратима и протекает с достаточно большой скоростью, то движение ионов элемента в электрическом поле происходит не в виде нескольких полос, соответствующих простой и комплексным формам, а в виде одной зоны, скорость электромиграции которой определяется соотпошением между равновесными концентрациями комплексных и простых ионов, а также подвижностями этих ионов [71]. Важно отметить, что скорости электромиграции зон разделяемых элементов нри избытке комплексообразующего вещества не зависят от того, присутствуют ли данные элементы в микро-или макроколичествах. На этом основано применение электрофореза для разделения смесей ряда радиоактивных изотопов. [c.37]

    Знание соотношения энергия — пробег часто очень важно для практических целей. Однако поскольку простое уравнение, которое связывало бы пробег и энергию и было справедливо для разных частиц и веществ различного состава, отсутствует, то точные данные получают экспериментально или путем сложных расчетов. Предложено также несколько эмпирических выражений для оценки величины пробега. Согласно работе [163], для активационных применений достаточно точные результаты для простых веществ (элемент) дает соотношение [c.133]

    Некоторые необычные явления, открытые в последние годы XIX и первые годы XX вв., значительно изменили эту упрощенную концепцию о строении вещества. Сначала заметили, что некоторые химические элементы обладают необычным свойством самопроизвольно (т. е. без всякого внешнего воздействия) испускать излучения большой энергии. Это явление было названо радиоактивностью. Через короткое время после открытия радиоактивности последовали и другие фундаментальные наблюдения о строении вещества. Было отмечено, что траектория некоторых лучей, испускаемых радиоактивными веществами (а именно а-лучей), при их прохождении через вещество изменяется на основании этого был сделан вывод, что атомы представляют собой сложные построения, состоящие из атомного ядра и электронной оболочки (см. стр. 65). В ядре (несмотря на то что его диаметр составляет примерно одну десятитысячную часть диаметра атома) содержится почти вся масса атома и сконцентрировано также определенное число положительных зарядов, разное у различных элементов. Число положительных зарядов ядра определяет число электронов оболочки атомов. В то время как химические и многие физические свойства, например оптические и рентгеновские спектры атомов, обусловливаются электронной оболочкой последних, другие свойства, такие, как масса и радиоактивность, связаны с ядром. Выделение огромной энергии в процессе радиоактивных превращений показывает, что атомные ядра в свою очередь являются сложными и состоят из более простых частиц. Позднее удалось вызвать искусственным путем явления, подобные наблюдаемым у природных радиоактивных элементов, и высвободить энергию атомов. [c.737]

    Но, судя даже по вышесказанному, не всякие, даже физические, а тем более химические, свойства однородных веществ, особенно твердых и жидких, определяются одним весом их частиц, и многие находятся в определенной (гл. 15) зависимости от природы и веса атомов входящих элементов и определяются их индивидуальными особенностями. Так, плотность в твердом и жидком состоянии (как далее будет показано) определяется преимущественно весами атомов входящих простых тел, так как тяжелые простые и сложные тела встречаются только между веществами, содержащими элементы с большим атомным весом, каковы золото, платина, уран. И в свободном состоянии эти простые тела суть тяжелейшие между всеми. Вещества, заключающие столь легкие элементы, как Н, С, О, N (таковы многие органические), никогда не имеют большого удельного веса в большинстве случаев он разве немногим превышает уд. вес воды. При возрастании количества водорода, как легчайшего элемента, плотность обыкновенно уменьшается и часто получаются вещества более легкие, чем вода, но все отношения, здесь встречающиеся, сложнее, чем, напр., для плотности паров. Светопреломляющая способность веществ также вполне зависит от содержания и свойств элементов [220]. История представляет тому явное доказательство, потому что — по высокому показателю преломления алмаза — Ньютон предугадал, что в нем содержится горючее углеродистое вещество, так как многие горючие углеродистые масла имеют большой показатель преломления. Мы увидим впоследствии (гл. 15), что многие из таких свойств веществ, которые находятся в прямой зависимости не от веса частицы, а от ее состава, или, говоря иначе, от свойств и количества входящих в нее элементов, стоят в особой (периодической) зависимости от атомных весов элементов, т.-е. масса (частиц и атомов), пропорциональная весу, определяет свойства веществ, как она определяет (вместе с рас-Ьтоянием) движение небесных светил. Масса (вес) частицы определяет, как указано выше, многие физические и химические свойства веществ, начиная с плотности их паров и [c.246]

    Газы при высоких температурах. Повышение температуры прежде всего вызывает усиление всех форм теплового движения частиц. При высоких температурах энергия теплового движения частиц становится соизмеримой с энергией химической связи в молекулах, с энергией возбуждения новых электронных уровней и с энергией связи электронов в атомах и в молекулах. Поэтому при высоких температурах в газе образуются возбужденные частицы и продукты диссоциации молекул в виде свободных атомов или валентно ненасыщенных групп (радикалов), которые могут находиться в равновесии с исходными молекулами. Являясь вместе с тем очень реакционно способными, эти частицы могут вступать во взаимодействие между собой или с другими частицами, образуя новые сочетания. То же относится к продуктам ионизации. Наряду с этим при высоких температурах в газах могут содержаться пары веп1еств, практически не испаряющихся при обычных температурах, а также частицы, образующиеся при термическом разложении этих веществ. В результате при высоких температурах в газах содержатся (при равновесном состоянии системы) новые, часто совершенно непривычные виды частиц, отвечающие валентным состояниям элементов, нехарактерным или неизвестным для них при обычных температурах. Эти частицы могут быть или более простыми, чем отвечающие им. частицы при обычных температурах (например, ОН, 510, 50), или, наоборот, более сложными (Сз, Сд, Ыаг, Сев, Мда, Ыа(0Н)С1, ВагОз, М05О15 и др.). [c.117]

    Авторов открытия галлия, кaJдия и германия, а также Б. Браунера, усовершенствовавшего периодический закон (место редкоземельных элементов), Д. И. Менделеев называл укрепи-телями периодического закона . Открытие периодического закона и его укрепление означало не только установление взаимосвязи свойств химических элементов, но и открытие важнейшего критерия для точного определения самого понятия элемент . Недаром Д. И. Менделеев начинает свою классическую статью о периодическом законе с определений соответствующих понятий Понятия простое тело и элемент нередко смешиваются между собою, подобно тому, как до О. Лорана и Ш. Же рара смешивались названия частица, эквивалент и атом, а между тем для ясности химических идей эти слова необходимо ясно различать. Простое тело есть вещество, металл или металлоид с рядом физических признаков и химических реакций. Ему свойственен частичный вес... Оно способно являться в изомерных и полимерных формах и отличается от сложных тел только тем, что в простом теле все атомы однородны. [c.158]

    Метафизические и лишенные опытной основы взгляды на элементы, как первичные свойства, а не материальные вещества, отвечали духу Аристотелевой науки, основанной на умозрительных абстракциях и отрицающей значение опыта в создании теорий и в познании природы. Только в 1661 г. Бойль выдвинул новое представление о химических элементах, как простых веществах, которые не состоят из более простых веществ и никакими химическими способами не могут быть разделены на еще более простые составные части. Бойлю не удалось, однако, дать вполне последовательрюго развития этих новых, близких к современным представлений. Он считал, что различие элементов заключается не в различии их атомов, а в разном их числе, сочетании и взаимодействии. Таким образом, химические элементы Бойля были еще лишены самой основной и характерной их особенности — качественных различий атомов. Бойль не вполне отказался от причисления к химическим элементам таких невесомых и невещественных свойств, как теплород и др. Представления о первичных частицах — атомах материи— также возникли еще в V в. до п. э. у Левкипа и Демокрита, были позже разработаны Эпикуром и Лукрецием, а затем развивались более или менее независимо от представлений об элементах. В настоящее время немыслимо отделять учение об элементах от атомистики, но долгое время никому не удавалось их объединить и найти ту неразрывную связь между индивидуальностью элементов и индивидуальностью составляющих их атомов, которая составляет основу современных взглядов на химические элементы. [c.5]

    Большой интерес представляют различного типа ядерные реакции с участием нейтронов. Нейтроны присутствуют в космическом излучении, образуются в (а, оп ) и (у, о )-реакциях, а также возникают при спонтанном делении урана. Так, нейтроны образуются, если легкие элементы (Ь1, Ве, В, Н, Р, Ма, Mg, А1) бомбардировать а-частицами или частицами, возникающими из естественно-радио-активных элементов, таких, как полоний. Примером такой реакции может служить ранее рассмотренная ядерная реакция Ве (а, о ). Поэтому комбинации Ве — 1) и Ве — ТЬ в соответствующих минералах могут рассматриваться как природные источники нейтронов (например, обогащенные ураном ниоботанталовые минералы, содержащие небольшое количество бериллия). Самой простой реакцией, вызванной нейтронами, является образование дейтерия из водорода [Н (у, о )ОЧ. Она протекает в результате поглощения нейтронов во всех водородсодержащих веществах. Захват нейтронов может изменить изотопный состав нескольких элементов в урано- [c.22]

    При описании массопередачи в процессе экстракции, когда одна жидкая фаза является сплошной, а вторая распределена в ней в виде капель, следует учитьшать, что перенос вещества в каждой фазе имеет существенное отличие. Оно объясняется различием гидродинамических условий переноса массы внутри капли и в сплошной среде. Одним из важных факторов турбулизации сплошной фазы является движение частиц дисперсной фазы. Единственным источником конвекции внзтри капли дисперсной фазы является трение между поверхностью капли и сплошной средой, возникающее в результате относительного движения фаз, В условиях стесненного движения капель дисперсной фазы в аппаратах, интенсифицированных подводом дополнительной энергии, на гидродинамические условия помимо указанных факторов влияют также соударения капель дисперсной фазы между собой и с элементами внутренней конструкции аппарата, приводящие к коалесцешщи и редиспергированию капель, а также вращательное и возвратно-поступательное движение системы в целом. В настоящее время не удается учесть и строго описать все указанные взаимодействия в объеме фаз, а также явления на границе раздела. Наиболее изученным является простейший случай массопередачи между единичной каплей и окружающей жидкостью. В этом сл чае получены уравнения для расчета частных коэффициентов массоотдачи по сплошной и дисперсной фазе при допущении о том, что сопротивление процессу массопередачи сосредоточено в одной из фаз. [c.305]

    Эта закономерность аналогична той закономерности, какую Дальтон установил в отношении весовых количеств вступающих в соединение элементов. Учеными того времени было высказано предположение, что равные объемы различных газов при одинаковых условиях температуры и давления содержат одинаковое число атомов. Однако это предположение оказалось в противоречии с фактами. Приведем пример. Опыт показывает, что водород, и хлор вступают в химическое соединение в одинаковых объемах при этом образуется новое газообразное вещество — хлористый водород. Мельчайшими частицами водорода и хлора, как и других простых газов, в то время считались свободные атомы. Согласно вышеуказанному предположению, в одинаковых объемах водорода и хлора долншо содержаться по одинаковому числу атомов водорода и хлора. Предположим, что взятые объемы газов содержат по 1 ООО атомов. Хлористый водород есть вещество сложное, оно состоит из сложных атомов (по терминологии Дальтона). Каждый такой сложный атом должен содержать по меньшей мере один атом водорода и один атом хлора. Следовательно, при соединении 1 ООО атомов водорода с 1 ООО атомами хлора может образоваться не больше 1 ООО атомов хлористого водорода. Из этого вытекает, что если водорода и хлора взято по одному объему (например по 1 л), то и хлористого водорода должен получиться один объем (т. е. i л). Однако опыт показывает, что при химическом взаимодействии одного объема водорода и одного объема хлора образуется не один, а два объема хлористого водорода. Разрешение вопроса было найдено итальянским ученым Авогадро. Авогадро высказал предположение, что мельча11шими частичками простых газов являются не свободные атомы, как полагал Дальтон, а м о-л е к у л ы, состоящие из нескольки одинаковых атомов. Всякое вещество, сложное или простое, состоит из молекул — мельчайших частичек, способных к самостоятельному существованию. Молекулы сложных, а также и простых веществ- при химических реакциях могут разлагаться на отдельные составляющие их атомы. [c.25]

    ОНИ представляют близкие атомные веса, а именно, сколько то известно, вероятно не совсем точно, най церия равен 92, най лантана 90 (по другим 94), най дидимия равен 95. Несомненно, что паи их близки йюжду собою, и мы увидим впоследствии еще несколько других примеров этого же рода. Таковы никкель и кобальт и их паи чрезвычайно близки родий, рутений и палладий, с одной стороны, иридий, осмий и платина, с другой стороны, представляют также элементы, значительно сходные между собою и имеющие очень близкие атомные веса. Железо и марганец по свойствам близки друг к другу, и паи их также весьма близки. Из этого можно заключить, что в ряду элементов есть два класса, сходственных между собою в одном классе элементов сходственные вещества представляют постепенное увеличение в атомном весе, сообразно с постепенным изменением в характере и в свойствах соединений. Пример этому мы знаем уже в галоидах, щелочных Металлах, в металлах щелочных земель и будем видеть еще над многими другими простыми телами. Другой разряд сходственных элементов характеризуется тем, что при том большом сходстве, какое здесь существует, нет различия или, правильнее сказать, нет значительного различия в величине атомного веса сходственных элементов. Причина различия в первом разряде сходственных элементов весьма понятна из значительной разности в весе атомов сходных элементов, но для металлов второго разряда причина замечаемого различия не лежит уже в величине и в весе атома, а, конечно, в других внутренних различиях материи, входящей в состав атомов таких сходственных элементов, подобно тому различию, какое замечается между изомер [194]ными сложными телами. Между последними известна изомерия нескольких родов один вид такой изомерии, называемый полимерностью, весьма легко понимается, потому что вес частицы полимерных тел не одинаков. Мы видели пример этому в углеродистых водородах, гомологических этилену, но есть другой род изомерия, называемый метамерностию. Метамерные тела имеют один и тот же вес частицы, но между тем в них распределение частей или атомов внутри частицы, несомненно, неодинаково, потому что их реакцйи различны и оНи распадаются при одинаковом влиянии [c.294]

    Если радиоактивное вещество и исходное вещество являются изотопами, что имеет место прежде всего для таких реакций, как (п, у), ((3, р), а также для (п, 2 п), то обогащение возможно по методу, впервые предложенному Сцилардом и Чалмерсом и развитому Эрбахером и Филиппом ). Метод Сциларда использует тот факт, что при всех ядерных реакциях ядро-продукт испытывает отдачу от вылетающей частицы или у-кванта, в результате которой атом получает некоторую кинетическую энергию. При этом активный атом вырывается из молекулы в виде иона. При применении неорганических комплексных соединений активируемого элемента (Ферми с сотрудниками), методом Сциларда при применении носителя достигается обогащение в 10 раз. С помощью введения неионизованных органических соединений удается достичь обогащения радиоактивными изотопами галоидов в 10 раз. Соответствующие соединения (хлористый этил или иодистый этил) после облучения просто смешиваются х водой, причем ионы переходят в раствор. Затем водный раствор очищается от остатков соединения, например бензолом. Если эти соединения свободны от выделенных (например в результате фотохимической диссоциации) галоидов, то в конце концов водный раствор будет содержать меньше неактивных, чем активных атомов галоидов. Если соответствующие органические соединения гигроскопичны, то вместо того, чтобы смешивать их с водой, выделение можно выполнить адсорбционным методом, например углем при этом особенно хорошо адсорбируются ионы элементов с большими порядковыми номерами. Простым кипячением угля в воде осуществляется десорбция. [c.32]

    Еще древнегреческими философами Левкиппом, Демокритом, Эпикуром и др. в чисто умозрительной форме развивалось атомистическое учение, согласно которому вещество состоит из мельчайших неделимых частиц-атомов. Оно получило значительное развитие в трудах М. В. Ломоносова (1741), впервые указавшего на различие между атомами и состоящими из них молекулами. Ломоносов считал, что молекулы представляют собой мельчайшие частицы данного вещества, имеющие тот же атомный состав, что и вещество в целом. Эти идеи были подтверждены в работах Дальтона (1803), установившего закон простых кратных отношений и понятие химического эквивалента, а также в работах Авогадро (1811), которым было показано, что равные объемы всех газов при одинаковой температуре и давлении содержат одинаковое число молекул. Закон Авогадро открыл путь к определению относительных атомных весов элементов и молекулярных весов соединений. Вытекающее из него постоянство числа атомов в грамм-атоме и равного ему числа молекул в грамм-молекуле открыло также возможность определения массы каждого атома и молекулы. Это число называется числом Авогадро. Оно представляет собой фундаментальную физико-химическую константу. На основании измерений различными метода-AJH установлено, что число Авогадро равно  [c.6]


Смотреть страницы где упоминается термин Частицы веществ простых также частица элемента : [c.197]    [c.330]    [c.163]    [c.76]    [c.20]    [c.63]    [c.58]    [c.149]    [c.49]    [c.15]    [c.32]    [c.171]    [c.42]    [c.278]    [c.441]    [c.176]    [c.221]    [c.255]    [c.8]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.59 , c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества простые



© 2025 chem21.info Реклама на сайте