Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влага в материале капиллярная

    Снижение содержания активных функциональных групп после высушивания торфа приводит, вследствие развития меж-и внутримолекулярных взаимодействий, к тому, что процесс связывания молекул воды с материалом становится избирательным и определяется тем, насколько выгодна связь сорбента е сорбатом по сравнению со связями в самом материале. Особенно существенно сказывается глубокое высушивание торфа на содержании таких форм влаги, как капиллярная, внутриклеточная, осмотическая, иммобилизованная, т. е. влаги, за содержание которой ответственна в основном структура материала . В то же время общее количество физико-химически связанной влаги в торфе при его высушивании в мягких условиях может изменяться незначительно. При этом теплота смачивания дегидратированного торфа в 3—4 раза превышает теплоту кон- [c.66]


    Изотермический перенос влаги в капиллярно-пористых системах в общем случае представляет собой течение дисперсионной среды в виде капиллярной или пленочной влаги в промежутках и по поверхности частиц материала под действием градиента потенциала влаги. Диффузионная подвижность поровых растворов в пределах зоны действия поверхностных сил значительно меньше, чем в объеме. Снижение содержания связанной влаги в [c.74]

    Внутренний тепломассоперенос в капиллярно-пористых влажных материалах может быть описан системой дифференциальных уравнений второго порядка, в основу которых положены линейные градиентные законы переноса теплоты, влаги и избыточного давления, возникающего вследствие испарения влаги внутри капиллярно-пористой структуры материала [11- [c.144]

    Физико-химически связанная влага для капиллярно-пористых материалов — это влага, удерживаемая на внутренней поверхности пор адсорбционными силами. В отличие от химически связанной, количество адсорбционной влаги для одного и того же материала может быть существенно различным в зависимости от внешних условий — температуры и влажности окружающей среды. [c.235]

    А. В. Лыковым предложена теория, которая получила название углубления зоны испарения. Согласно этой теории в процессе сушки во влажном теле образуются зона испарения и влажная зона, которые изменяются во времени. Испарение происходит не только на поверхности, но и по всей толщине поверхностного слоя. Наибольшее количество жидкости испаряется на поверхности влажной зоны, а по мере приближения к поверхности тела испарение постоянно уменьшается. Причем в зоне испарения преобладает адсорбционная влага, а во влажной-капиллярная (испарение здесь происходит с поверхности менисков). Полагают, что на границе влажной зоны и зоны испарения газ полностью насыщен (ф = 100%), а в зоне испарения влажный газ находится в равновесии с влагой материала таким образом, можно связать влагосодержания материала и газа законом равновесия и выражать движущую силу сушки через газовую фазу. [c.234]

    Существующая в настоящее время теория внутреннего мас-со- и теплопереноса базируется на понятии некоторого единого потенциала переноса влаги, объединяющего все потенциалы возможных элементарных актов переноса влаги, и поток влаги внутри капиллярно-пористого материала записывается аналогично закону теплопроводности Фурье  [c.271]


    Современные интенсивные режимы конвективной сушки не слишком мелких мелкопористых материалов могут приводить к возникновению градиентов избыточного внутреннего давления и заметному фильтрационному переносу влаги внутри капиллярно-пористого материала. Расчеты по имеющимся решениям упрощенных задач [2] и непосредственные измерения [11] показывают, что максимум избыточного давления в процессе сушки перемещается от поверхности в глубь материала и на первых стадиях процесса конвективной термической сушки влага вследствие фильтрационного переноса частично перемещается в центральные зоны частицы. [c.275]

    Перенос влаги внутри капиллярно-пористых материалов оказывается весьма сложным. Анализ показывает, что процесс переноса массы в такого рода материалах может происходить за счет более чем десяти одновременно действующих физических эффектов, из которых основную роль в большинстве случаев играют обычное вязкое течение влаги по капиллярам под действием разности давлений, возникающих внутри пористой структуры влажного материала вследствие процессов внутреннего испарения влаги и возможной конденсации ее паров капиллярное течение жидкой фазы, вызываемое силами поверхностного натяжения внутри тонких пор переменного сечения специфическое для неизотермических процессов сушки так называемое термоградиентное течение жидкой фазы в направлении уменьшающейся температуры (обычно в направлении от наружной поверхности [c.569]

    Оценка относительной величины наружного и внутреннего сопротивлений проводится по численному значению массообменного критерия Био В1 , = в котором Р - коэффициент массоотдачи от наружной поверхности материала к потоку сушильного агента I — характерный размер материала - коэффициент массопроводности материала. Напомним, что физический смысл критерия В1 (см. гл. 7) соответствует мере отношения интенсивности наружного массопереноса к интенсивности переноса влаги внутри капиллярно-пористого материала, т. е. отношению величин, обратных соответствующим сопротивлениям. [c.572]

    В противоположных случаях, когда В1 > 50, можно пренебречь относительно малым значением наружного диффузионного сопротивления и при анализе процесса принимать во внимание только сопротивление переносу влаги внутри капиллярно-пористого материала. В условиях такой внутренней задачи увеличивать скорость удаления влаги из материала можно только за счет уменьшения внутреннего сопротивления влагопереносу. Это удается сделать только измельчением частиц сушимого материала (разумеется, если это возможно), поскольку изменять внутреннюю пористую структуру материала практически невозможно влияние внешних факторов на величину внутреннего сопротивления при этом незначительно. Некоторая интенсификация процесса сушки все же возможна и здесь - путем повышения температуры сушильного агента, что обычно приводит к повышению температуры внутри влажного материала, а следовательно, - к уменьшению вязкости жидкой влаги, что снижает потери на трение при перемещении влаги по капиллярно-пористой структуре. Условия, соответствующие внутренней задаче процесса сушки, наиболее типичны для материалов с сильной связью между влагой и микропористой структурой материала (древесина, полиамиды, пропилен и т. п.). [c.573]

    Постоянство температуры материала в первом периоде сушки объясняется преобладающим значением наружного диффузионного сопротивления процессу отвода парообразной влаги с наружной поверхности материала по сравнению с сопротивлением переносу жидкой влаги по капиллярно-пористой внутренней структуре. Действительно, в начале процесса сушки, когда влагосодержание материала еще достаточно велико, все его поры заполнены влагой. Эквивалентные диаметры капилляров и пор реальных материалов имеют различные значения (см. гл. 9), следовательно, на первой стадии сушки, при еще высоком значении влагосодержания влага присутствует не только в мелких, но и в наиболее крупных порах. Перемещение влаги по капиллярам значительного диаметра происходит сравнительно легко, поскольку гидравлическое сопротивление канала при ламинарном режиме течения по нему вязкой жидкости обратно пропорционально квадрату диаметра [c.577]

    Сублимационная сушка представляет собой сушку влажных материалов при низких температурах (до -50 °С), когда влага в капиллярно-пористом материале находится в виде твердой фазы (льда). При низком остаточном давлении (1,0-0,1 мм рт. ст.), поддерживаемом с помощью конденсатора и вакуум насоса, происходит образование паров удаляемой из материала влаги непосредственно из твердой фазы, минуя обычное для процессов сушки жидкофазное состояние. [c.602]


    Если влага удерживается в изоляционном слое, она может удаляться из него испарением благодаря капиллярности и выветриванию. При плотном прилегании изолирующего слоя к поверхности металла и правильном выборе самого изолирующего материала, который должен обладать хорошими водопроницаемыми свойствами или капиллярной структурой, можно добиться также быстрого перехода в изоляционный слой, а затем и наружу, влаги, сконденсировавшейся на поверхности металла. Для этого нужно температуру более теплой части изоляционного слоя после периода конденсации поднять выше точки росы. При наличии соответствующих свойств изоляционного материала (капиллярная структура) покрытие может быть полностью высушено в течение нескольких часов. [c.420]

    Эта система дифференциальных уравнений описывает перенос тепла и влаги в капиллярно-пористом теле в процессе его сушки и перенос тепла и вещества в химических процессах (обжиг и т. д.). Термодинамика необратимых процессов открывает большие возможности для исследования силикатов. Однако для решения системы дифференциальных уравнений, которые можно составить при использовании экспериментального материала, полученного непосредственно в процессах термической обработки силикатов, требуется знание определенных краевых условий, которые в настоящее время не всегда доступны. [c.46]

    На основе представленного механизма удаления влаги из капиллярно-коллоидных веществ рассмотрен процесс высушивания ферментных препаратов. Показано, что крахмал является хорошим стабилизатором амилазы при высушивании ферментного осадка в вакууме при 30°С. Интенсивность процесса вакуум-сушки ферментных препаратов зависит и от их удельной теплоемкости. Интенсификация процесса сушки термолабильных веществ подводом тепла возможна только в первый период сушки, характеризующийся неизменной скоростью и температурой материала. [c.159]

    Помимо химической возможна физико-химическая, более слабая связь влаги с веществом. Она определяется действием адсорбционных и осмотических сил. Наименее прочно связана с веществом физико-механическая влага, удерживаемая капиллярными силами или смачиванием поверхности материала. [c.205]

    Термическая подвижность граничных слоев влаги в торфяных системах при и<,11 к снижается. Перенос ионов ТСВ при этом уменьшается и становится равным нулю при / 0,25 Ум.г (рис. 4.11). При и>ик перераспределение ионов при термо-влагопереносе в торфяных системах изменяется незначительно (рис. 4.11, кривая /). Даже когда влажный материал находится практически в двухфазном состоянии (ТКП и ТДП О), в торфе имеет место интенсивный перенос ионов ТСВ [234]. Это дает основание предположить, что в области влажного состояния торфяных систем транспорт влаги и ионов ТСВ происходит в определенной степени автономно и не зависит от содержания капиллярной (свободной) воды в них. [c.79]

    В / период сушки влага внутри материала перемещается в виде жидкости (капиллярная и осмотически связанная влага). С началом // периода начинается неравномерная усадка материала. На стадии равномерно падающей скорости наблюдаются местные углубления поверхности испарения и начинается испарение внутри материала. При этом капиллярная влага и некоторая часть адсорбционно связанной влаги перемещаются внутри материала уже в виде пара. [c.611]

    Присутствие в порошкообразном материале некоторого количества жидкой фазы — гигроскопической влаги, межкристального маточного раствора или специально добавленных жидкостей, например воды, солевых растворов, вязких связующих веществ, — обеспечивает пластичность материала и агломерирование частиц при гранулировании. При малом количестве жидкости она образует отдельные мостики — перемычки между твердыми частицами в местах их контакта (рис. 12.1, а) при большей влажности жидкость может полностью заполнить поры (рис. 12.1, б). В обоих этих случаях действуют капиллярные силы сцепления, обеспечивающие образование и прочность гранул. Они определяются поверхностным натя- [c.286]

    С ростом pH диффузия воды, влагопроводность и миграция водорастворимых соединений в торфяных системах снижаются [224, 229]. Однако на перенос влаги и растворенных веществ в данном случае определенное влияние оказывают также изменения структуры и емкости обмена торфа. С ростом pH органические компоненты торфа интенсивно набухают, уменьшая тем самым активную капиллярную сеть и влагопроводность материала. При снижении pH в торфе наблюдается процесс, обратный описанному. Рыхлые гуминовые образования торфа претерпевают компактную коагуляцию, активизируя капиллярную сеть [c.75]

    Макрокапилляры заполняются жидкой фазой только при непосредственном контакте с жидкостью. При этом происходит также смачивание наружной поверхности материала жидкой пленкой. На способность пленки удерживаться на материале поверхностными силами гидрофильного вещества в значительной степени влияет сила тяжести. Обычно количество влаги, удерживаемое телом в виде наружной пленки, мало по сравнению с количеством влаги, находящейся внутри капиллярно-пористой структуры материала. [c.235]

    Формулы (5.4) и (5.5), полученные для испарения жидкости с ее свободной поверхности, можно использовать для определения интенсивности тепло- и массообмена между сушильным агентом и твердым влажным материалом, наружная поверхность которого в процессе сушки находится во влажном состоянии. Испарение влаги происходит с наружной поверхности капиллярно-пористого материала с постоянной скоростью. Это наблюдается при больших величинах влагосодержания материала, когда количество влаги, непрерывно удаляемое с наружной поверхности,, полностью компенсируется жидкостью, подходящей к наружной поверхности изнутри материала. Затем в процессе обезвоживания наступает такое состояние, при котором подвод жидкости из внутренних зон к наружной поверхности не успевает полностью компенсировать убыль влаги с внешней поверхности. Влага начинает превращаться в пар во внутренних зонах капиллярно-пористой структуры тела, а температура наружной поверхности повышается. [c.239]

    Для того чтобы практически можно было пользоваться системой уравнений (5.18) при анализе реальных процессов сущки, необходимо иметь информацию о величинах всех коэффициентов переноса, вычисление которых на основе теоретических представлений о структуре капиллярно-пористых тел и о характере связи влаги со скелетом материала в настоящее время не представляется возможным. Поэтому все имеющиеся в литературе сведения о коэффициентах тепло- и массопереноса влажных тел основаны на экспериментальных данных. [c.245]

    Оценивая результаты современной теории внутреннего тепло- и массопереноса, следует отметить, что развиваемый ею подход в известной мере является формальным, поскольку все многообразие элементарных актов переноса массы внутри капиллярно-пористой структуры влажного материала заменяется здесь неким эффективным градиентным переносом влаги. Система дифференциальных уравнений (5.17), (5.21) и (5.22) не учитывает всех перекрестных влияний отдельных видов тепло- и массопереноса, как это следует из представлений термодинамики необратимых процессов. Анализ процессов тепло- и массообмена на строгой термодинамической основе в настоящее время затруднителен, поскольку соотношение взаимности кинетических коэффициентов для капиллярно-пористых влажных тел не выполняется. [c.254]

    Рассмотрим другую модель сушки влажного пористого материала. В некотором смысле этот случай аналогичен предельной кинетике послойной отработки в процессах экстрагирования и адсорбции. Предполагается [9], что капиллярно-пористая структура влажного материала и начальное распределение влаги в нем изотропны. Скорость удаления влаги считается зависящей от двух факторов теплопереноса и фильтрования паров влаги. По мере сушки происходит углубление локализованного фронта испарения. К фронту испарения тепло поступает за счет теплопроводности сухой части материала (рис. 5.10), где оно расходуется на превращение жидкости в пар. В результате испарения внутри пористой структуры создается некоторое избыточное давление, под действием которого пары фильтруются от фронта испарения к наружной поверхности. [c.256]

    Численное значение коэффициента К определяется в основном внутренними переносными свойствами капиллярно-пористого влажного материала. Действительно, при изменении внешних условий меняется величина наружного сопротивления переносу влаги от поверхности влажного материала к сушильному агенту, а следовательно, и значение интенсивности сушки в первом периоде N. При этом величина критического влагосодержания, зависящая от соотношения внешнего и внутреннего сопротивлений, также изменяется. [c.260]

    Процесс массопереноса состоит, как правило, из нескольких последовательных стадий. Иными словами, поток компонента, переносимого из одной фазы в другую, преодолевает несколько последовательных сопротивлений. Так, при кристаллизации из растворов кристаллизующееся вещество вначале преодолевает сопротивление слоя жидкости у поверхности кристалла, а затем происходит собственно присоединение подведенного вещества к кристаллической рещетке. При экстрагировании целевой компонент транспортируется из пористой структуры твердого вещества, а затем отводится от наружной поверхности в основную массу экстрагента. Адсорбция обычно состоит из трех последовательных стадий подвода адсорбтива из потока парогазовой смеси к наружной поверхности твердого поглотителя, проникновения целевого компонента внутрь пористого массива адсорбента и присоединения молекул адсорбтива к активным центрам на внутренней поверхности пор поглотителя. Процесс сушки заключается в перемещении влаги по капиллярно-пористой массе высушиваемого материала, после чего происходит транспорт влаги от поверхности в псггок сушильного агента. Параллельно с транспортом вещества при термической сушке происходит перенос тепла. Каждая из последовательных стадий имеет свое сопротивление, а его общая величина равна сумме отдельных сопротивлений. [c.14]

    Применение в качестве сушильного агента перегретого водянохс пара вносит ряд особенностей в сушку ПВХ. При конвективной сушкс дисперсный материал быстро нагревается до температуры мокрогс термометра, которая в случае паровой среды при атмосферном давлении равна 100 °С, т.е. температуре кипения. Как показывают опыты, этот период занимает большую часть (90 - 95%) общего баланса времени сушки [38]. При сушке ПВХ в зтих условиях полимер находится в высокоэластическом состоянии, так как Г(. = 80 °С. Под действием давления паров, образующихся при кипении внутренней влаги, скелет капиллярно-пористого тела благодаря своей эластичности будет растягиваться, расширяя проходное сечение пор и капилляров. При этом создаются условия для постоянной релаксации давления и поддержания постоянной температуры частицы ПВХ. В этом случае сопротивление диффузии существенно снижается (величина критерия Лыкова достаточно велика) и устанавливается эквивалентный тепло- и массообмен, когда количество испаряемой из частицы влаги точно эквивалентно подведенному к материалу количеству тепла. Таким образом, задача массопереноса сводится к чисто теплообменной, т.е. классической задаче нагрева сферы. [c.114]

    Диффузия при сушке. При сущке движение влаги в капиллярно-пористом материале происходит как в виде жидкости, так и в виде пара. Миграция жидкости может осуществляться за счет массопереноса под действием разности капиллярных потенциалов, пленочного течения, обусловленного градиентом расклинивающего давления пленки, поверхностной диффузии в микропо-рах г < 10 м) и переходных порах (г = 10" + 10" м), термокапиллярного течения жидкости во всем объеме поры, термокапиллярного пленочного движения вдоль стенок пор, фильтрационного переноса жидкости под действием градиента общего давления в материале и т. д. Движение пара происходит за счет молекулярной диффузии пара, кнудсеновской диффузии, стефанов-ского потока, термодиффузии пара, теплового скольжения в микро- и макропорах г > 10 м), циркуляции парогазовой смеси в порах, конвективно-фильтрационного переноса под действием градиента общего давления, бародиффузии (молекулярного переноса компонента с большей массой в область повышенного давления) и т. д. [5]. При большом влагосодержании материала преобладает капиллярный поток, с уменьшением влагосодержания материала возрастает вклад парового и пленочного потоков, а также поверхностной диффузии. [c.534]

    При анализе процессов сушки существенно иметь в виду, что скорость массообмена, в результате которого влага из капиллярно-пористого материала в конечном счете оказывается перенесенной в поток сушильного агента, зависит от двух основных сопротивлений процессу переноса массы от сопротивления внутреннему переносу влаги, оказываемого капиллярно-пористой структурой материала, и от внешнего диффузионного сопротивления, которое оказывает пограничный слой сушильного агента, существующий у наружной поверхности материала. Эти два сопротивления преодолеваются удаляемой из материала влагой последовательно, т. е. в процессе сушки влага вначале проходит из глубинных зон материала через его пористую структуру к наружной поверхности, а затем пары влаги за счет диффузии поперек пограйичного слоя должны пройти от наружной поверхности сушимого материала в основной поток сушильного агента. [c.571]

    В первом периоде постоянной скорости сушки пре-oбJiaдaющим является наружное диффузионное сопротивление отводу образующихся паров влахи от поверхности материала в поток сушильного агента, тогда как сопротивление переносу жидкой влаги внутри капиллярно-пористой структуры материала весьма незначительно, поскольку крупные поры (с малым гидравлическим сопротивлением переносу влаги из внутренних зон материала к е10 наружной поверхности) еще заполнены влагой. В процессе обезвоживания материала крупные поры первыми освобождаются от влаги, и в дальнейшем ее приходится удалять из мелких 1юр, обладающих значительным гидравлическим сопротивлением. Пфемещение атаги к поверхности уже не успевает обеспечивать прежнюю скорость ее испарения с наружной поверхности материала, и общая скорость сушки начинает непрерьшно уменьшаться вслед за возрастанием внухреннего сопротивления переносу влаги по капиллярно-пористой структуре материала. [c.218]

    Существует несколько теорий для объяснения гистерезиса влаги в капиллярных телах. По одной из них причиной гистерезиса является присутствие воздуха в капиллярах, воздух сорбируется стенками капилляров и уменьшает смачивание их жидкостью. Экспериментальным подтверждением этого являются опыты, в которых навеска сухого материала предварительно выдерживается в глубоком вакууме, так что воздух удаляется из пор материала. В этих случаях площадь гистерезиса уменьшается и даже совсем исчезает, т. е. кривая поглощения (сорбции) приближается к кривой при сушке и даже совпадает с ней. Другая теория объясняет меньшуюравновеснуювлажностьприпоглощении задержкой образования мениска в капилляре. [c.64]

    Последней стадией приготовленпя алюмосиликатного катализатора являются процессы термической обработки — с шка и прокаливание. После процессов мокрой обработки влажные" шарики содержат 90—92% воды (9 — 12 кг воды на 1 кг сухого материала), заполняющей все норы геля. Основную массу этой влаги удаляют при сушке, после которой катализатор приобретет твердую пористую структуру. При высушивании катализатора вначале удаляется гигроскопическая, затем капиллярная (адсорбционная) вода и, наконец, начинается переход гидроокисей в безводные окислы. Наибольшее значение имеет процесс разложения гидроокисей, т. е. конец термической обработки катализатора — процесс прокаливания. [c.64]

    В природных дисперсных материалах, в том числе и торфе, перенос влаги, как правило, происходит в неизотермических условиях. При этом процессы термовлагообмена в капиллярно-по-ристых системах протекают наиболее интенсивно, когда они находятся в трехфазном состоянии [218], отвечающем наибольшей подвижности влаги под действием градиентов температуры. При низком влагосодержании материала (11- 0) термическая подвижность влаги мала вследствие высокой энергии ее связи с твердой фазой. При двухфазном состоянии торфа в нем возможна лишь термическая циркуляция массы без ее перераспределения Б объеме йи 1йТ = 0). Кроме того, с увеличением и уменьшается поверхность раздела жидкость — газ, определяющая тер-мовлагоперенос под действием градиента поверхностного натяжения. Следовательно, наибольшая термическая подвижность дисперсионной среды соответствует такому остоянию материала, когда его поры не полностью заполнены влагой и в достаточной мере развита поверхность-раздела жидкость — газ [231]. Влага порового пространства в данном случае разделена короткими пленочными участками, от термической подвижности которых и зависят значения термоградиентного коэффициента б. [c.76]

Рис. 7.8. Влияние частоты электромагнитного поля на коэффищ1ент потерь для материа- ла ( ) с преобладающей капиллярной формой связи влаги и для материала (2) с основной формой связи — адсорбционной Рис. 7.8. Влияние <a href="/info/1463636">частоты электромагнитного поля</a> на коэффищ1ент потерь для материа- ла ( ) с преобладающей капиллярной <a href="/info/145273">формой связи влаги</a> и для материала (2) с <a href="/info/191951">основной формой</a> связи — адсорбционной
    При интенсивном нагреве влажного тела внутри его пористой структуры происходит процесс парообразования. Возникающее при этом избыточное давление не успевает мгновенно релаксиро-ваться через пористую структуру материала, и появляющийся градиент давления внутри капиллярно-пористого материала вызывает перемещение влаги. Поэтому в общее уравнение для потока влаги вводится слагаемое, соответствующее переносу влаги под действием возникающего во влажном материале избыточного давления /ф = —Кф /Р, где /Сф — коэффициент фильтрационной проницаемости пористого материала. Общее уравнение имеет вид [c.109]

    ВЖК и нерастворимые мыла (кальциевые, цинковые и алюминиевые) можно вводить и в строительные растворы, и бетоны для повышения их водонепроницаемости. Они значительно понижают капиллярный подсос влаги, повышают водонепроницаемость строительных изделий и детален. Гидрофил1.ные группы (—СООН и — OONa) этих веществ, взаимодействуя с карбонатами или окислами кальция или магния, которые содержатся в строительных материалах, образуют на их поверхности тонкие слои нерастворимых в воде кальциевых или магниевых мыл, обладающих гидрофобными свойствами. Эти мыла препятствуют проникновению влаги к частицам строительного материала. Большим недостатком, однако, является при этом замедление схватывания цементов и значительное снижение прочности бетона, [c.157]

    Влажностью или влагосодержанием вещества называют содержание в нем гигроскопической воды. (Под влажностью обычно понимают отношение массы влаги к массе влажного материала, а под влагосодержанием — отношение массы влаги к массе абсолютно сухого материала). Наибольшее количество воды, которое может свободно удерживаться веществом, называют его максимальной, или полной, влагоемкостъю. Ее обычно выражают в процентах (по массе) по отношению к сухому веществу. Различают сорбционную и капиллярную влагоемкость, сумма их равна максимальной влаго-емкостп. Очевидно, что максимальная влагоемкость водорастворимых веществ теоретически равна бесконечности, так как при контакте с водой они образуют сначала насыщенные, а затем беспредельно разбавленные растворы. Практически для сравнительно медленно растворяющегося кристаллического вещества за максимальную влагоемкость условно принимают наибольшее количество удерживаемой его массой воды (в виде раствора) после фильтрования через слой под действием гравитации. [c.272]

    Пойятие потенциала 0 суммарно учитывает все потенциалы элементарных переносов массы, которые зависят в основном от температуры и влагосодержания (см. гл. 1). Так, например, капиллярный потенциал переноса включает в себя поверхностное натяжение жидкости, которое зависит от температуры, и среднюю кривизну капилляров, еще не освободившихся от жидкой фазы. В процессе сушки первыми освобождаются от влаги наиболее крупные поры, следовательно, среднее значение радиусов пор, еще заполненных жидкостью, уменьшается по мере снижения влагосодержания влажного материала. Таким образом, потенциал переноса влаги является функцией локальных значений температуры и влагосодержания капиллярно-пористого тела 0(i, и). [c.241]

    Кварцевые капиллярные колонки, на которые не нанесен защитный слой, подвержены действию влаги воздз ха. Молекулы воды действуют на связи кремний — кислород с образованием силанольных групп. При этом образуются трещинки, которые разрастаются и через сравнительно небольшое время приводят к ломке капилляра (рис. 2-5). Внешнюю поверхность капиллярной колонки необходимо защищать от царапин и действия влаги, поэтому колонки покрывают защитным слоем нолиимида или другого материала, не уступающего ему по прочности. [c.16]


Смотреть страницы где упоминается термин Влага в материале капиллярная: [c.18]    [c.550]    [c.15]    [c.406]    [c.36]    [c.76]   
Расчет и проектирование сушильных установок (1963) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Капиллярная

Капиллярность



© 2025 chem21.info Реклама на сайте