Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновское характеристическое излучение, длины волн

Рис. 52. Тормозное и характеристическое излучение медного анода при напряжении 50 кВ (/) и зависимость коэффициента массового поглощения рентгеновского излучения фильтром из никеля от длины волны (2) Рис. 52. Тормозное и <a href="/info/135101">характеристическое излучение</a> <a href="/info/874966">медного анода</a> при напряжении 50 кВ (/) и зависимость <a href="/info/518559">коэффициента массового поглощения</a> <a href="/info/28163">рентгеновского излучения</a> фильтром из никеля от длины волны (2)

    Характеристический рентгеновский спектр. При некоторых условиях возникают однородные лучи, длины волн которых зависят только от материала анода рентгеновской трубки и не зависят от приложенного к трубке напряжения. Этот вид рентгеновского излучения назвали характеристическим. [c.107]

    Характеристический рентгеновский спектр образуется, когда энергия электронов превосходит порог возбуждения, характерный для атомов анодного вещества (рис. 52). Длина волны однородного характеристического излучения зависит от вещества анода и не зависит от приложенного напряжения. Характеристический рентгеновский спектр состоит из нескольких групп линий (серий), значительно отличающихся друг от друга по длине волны. Для более тяжелых элементов таких серий четыре К. I, М, N. Каждая  [c.109]

    Рентгеновская флуоресценция (РФ) — это инструментальный аналитический метод для элементного анализа твердых и жидких проб с минимальной пробоподготовкой. Пробу облучают рентгеновским излучением. Атомы в пробе возбуждаются и испускают характеристическое рентгеновское излучение. Энергия (или длина волны) этого характеристического излучения различна для каждого элемента. Это дает основу для качественного анализа. Число фотонов характеристического рентгеновского излучения элемента пропорционально его концентрации, что обеспечивает возможность количественного анализа. В принципе, могут быть определены все элементы от бора до урана. Определение следов элементов (млп ), а также концентраций примесных и основных элементов (%) может быть выполнено из одной пробы. В зависимости от того, как измеряют характеристики рентгеновского излучения, различают рентгенофлуоресцентную спектрометрию с волновой дисперсией (РФСВД) и с энергетической дисперсией (РФСЭД). [c.57]

    Наибольшее применение в дифракционном структурном анализе получили три компоненты характеристического спектра рентгеновского излучения Кр, Ка, и Ка,. Не вдаваясь в подробности, укажем только, что существуют экспериментальные методики, позволяющие выделять из всего спектра излучения ту или иную характеристическую компоненту, например, с помощью кристаллов-монохроматоров, фильтров и т. д. [3]. В настоящее время промышленность выпускает рентгеновские трубки с анодами из различных материалов, которым соответствуют характеристические длины волн /(Г-серии рентгеновского излучения, лежащие в интервале от 0,5 до 2,5 А и наиболее подходящие для целей структурного анализа. Спектральные характеристики рентгеновского излучения для различных материалов анода можно найти в справочниках [4, 5]. [c.113]


    Обычно в методе порошка используют не монохроматическое излучение, а всю /С-серию характеристического спектра анода рентгеновской трубки. Она может быть представлена в основном как совокупность излучений трех длин волн Ка,< Ка,< связи [c.359]

    Глава 1. Взаимодействие рентгеновских лучей с веществом и рентгеновские спектры. 1-1. Характеристическое рентгеновское излучение (длины волн К-серии рентгеновского излучения, длины волн Ь-серии рентг(Шовского излучения, относительные интенсивности линий if-серии характеристического спектра, ширина линий характеристического спектра, индексы асимметрии линий характеристического спектра). 1-2. Перевод С-единиц в абсолютные ангстремы. 1-3. Соотношения между единицами коэффициентов поглощения. 1-4. Рассеяние рентгеновских лучей (рассеяние рентгеновских лучей различных энергий электронными оболочками и ядрами атомов, рассеяние рентгеновских лучей в газах, массовые коэффициенты рассеяния рентгеновских лучей, массовые коэффициенты рассеяния о /р, коэффициенты рассеяния сечения некогерентного рассеяния рентгеновских лучей). 1-5. Поглощение рентгеновских лучей (скачок поглощения для некоторых элементов, вычисление коэффициентов поглощения, номограмма для определения коэффициентов поглощения). 1-6. Суммарное ослабление рентгеновских лучей (атомные коэффициенты ослабления для элементов, массовые коэффициенты ослабления у,/р для элементов, массовые коэффициенты ослабления ц/р для больших длин волн, массовые коэффициенты ослабления ц/р для малых длин волн, массовые коэффициенты ослабления ц/р для некоторых соединений, толщина слоя половинного ослабления рентгеновских лучей для некоторых элементов, толщина слоя ослабления при различных углах падения лучей на образец). 1-7. Ионизирующее действие рентгеновских лучей. 1-8. Преломление рентгеновских лучей (единичные декременты показателя преломления, углы полного внутреннего отражения). [c.320]

    Поскольку основная часть энергии электронного пучка преобразуется в тепловую энергию, в качестве анодов рентгеновских трубок выбираются достаточно тугоплавкие металлы с хорошей теплопроводностью (Сг, Ре, Со, N1, Си, Мо). Длины волн характеристического излучения лежат для этих металлов (кроме молибдена) в интервале 2,3-1,5 А, что удобно для исследования поликристаллических образцов, так как обеспечивает хорошую разрешающую способность. Рентгеновские трубки с Мо-анодом широко используются в рентгеноструктурном анализе монокристаллов, так как в этом случае важно иметь возможно полный набор экспериментальных данных, а это, как будет показано ниже, обеспечивается выбором излучения с меньшей длиной волны. [c.8]

    Чтобы идентифицировать элементы в пробе, используют знергию (или длину волны) характеристического рентгеновского излучения интенсивность этого характеристического излучения есть мера концентрации. [c.64]

    Характеристические рентгеновские лучи возникают при отрыве электронов с К-, L- и М-оболочек атома с последующим возвращением атома из возбужденного состояния в нормальное путем перехода внешних электронов на вакантные места внутренних оболочек. Атомы с определенным атомным номером излучают строго определенные по длинам волн рентгеновские фотоны. Диапазон длин волн лежит от 0,005 до 37,5 нм, длина волны излучения уменьшается с ростом Z. Пиковая интенсивность характеристических линий / является функцией ускоряющего электрона напряжения (энергии зонда о), критического потенциала возбуждения кр данного элемента и тока зонда i  [c.221]

    Если путем внешнего воздействия из внутренней оболочки атома удалить один электрон, произойдет перестройка всех электронных оболочек атома. На место выбитого электрона перейдет электрон с более отдаленной от ядра оболочки, его место займет еще более отдаленный электрон и т. д. Каждый переход электрона сопровождается излучением рентгеновского кванта определенной длины волны. Атомы каждого химического элемента испускают рентгеновские кванты определенных длин волн, набор которых составляет характеристический рентгеновский спектр элемента. [c.366]

    Рассмотрим теперь закономерности в характеристических рентгеновских спектрах элементов, открытых в 1913—1914 гг. английским ученым Мозли. Рентгеновские излучения возникают в рентгеновской (вакуумной) трубке под влиянием бомбардировки потоком электронов (катодных лучей) материала антикатода, который и является их излучателем. Длины волн рентгеновских излучений 0,006—2 нм (см. схему в гл. III). По выходе из трубки они с помощью кристаллов могут быть разложены в спектр. В этих спектрах обнаруживаются линии характеристических излучений, индивидуальных для каждого элемента и почти не зависящих от того, в каком соединении находится элемент в материале антикатода. Характеристические спектры состоят из ряда серий К, L, [c.92]


    Жидкости и аморфные тела в отличие от кристаллов не дают дискретных дифракционных максимумов. Поэтому для исследования их структуры важно знать общий ход интенсивности в зависимости от угла рассеяния. Поскольку характеристический спектр рентгеновского излучения состоит из дискретных длин волн, каждая из которых дает свою дифракционную картину, то используемое излучение должно быть монохроматическим. Наиболее интенсивной в рентгеновском спектре является / ol-линия, поэтому кажется естественным, что в структурном анализе жидкостей используется именно /Са-излучение. Сопровождающее его /Ср-излучение рассеивается веществом независимо от / i-излучения. В результате возникают две дифракционные картины одна от Кш -, а другая от -излучения, что затрудняет их расшифровку. Поэтому ATp-излучение отфильтровывается. [c.91]

    Для качественного рентгенофлуоресцентного анализа важно, чтобы энергия полихроматического излучения (излучения различных длин волн) рентгеновской трубки была равна или превышала энергию, необходимую для выбивания /(-электронов элементов, входящих в состав анализируемой пробы. В этом случае спектр вторичного рентгеновского излучения содержит характеристические рентгеновские линии, длина волны которых соответствует приведенным в таблице данным. Избыточная энергия первичного излучения трубки (сверх необходимой для удаления /(-электронов) высвобождается в виде кинетической энергии фотоэлектрона. [c.781]

    Принципиальная схема установки для рентгенофлуоресцентного анализа показана на рис. 33.3. Первичное излучение рентгеновской трубки / попадает на пробу 2, в которой возбуждается характеристическое вторичное рентгеновское излучение атомов элементов, входящих в состав пробы. Отражающиеся от поверхности пробы рентгеновские лучи самых разнообразных длин волн проходят через коллиматор 3 —систему из параллельных молибденовых пластин, предназначенную для пропускания параллельных идущих только в одном направлении лучей. Расходящиеся лучи других направлений поглощаются внутренней поверхностью трубок. Идущие от пробы лучи разлагаются в спектр, т. е. распределяются по длинам волн посредством кристалла-анализатора 4. Угол отражения лучей 0 от кристалла равен углу падения однако [c.783]

    Рентгеновское излучение, испускаемое при излучательных переходах, называется характеристическим рентгеновским излучением, так как его энергия и длина волны характеризуют конкретный возбуждаемый элемент. [c.73]

    Практическое использование рентгеновского излучения часто требует более точного знания характеристического спектра для каждого элемента, чем то, которое следует из закона Мозли. В табл. 35.2—35.5 представлены длины волн и края поглощения для различных элементов. [c.797]

    Такие острофокусные трубки были разработаны для проекционной рентгеновской микроскопии (см. ниже). Они были использованы также для дифференциальной абсорбциометрии по обе стороны от края поглощения (см. 5.4), как показано на рис. 110. В этой схеме образец помещается прямо против точечного источника рентгеновского характеристического излучения, а его увеличенное изображение после отражения от изогнутого анализирующего кристалла проектируется на окно пропорционального счетчика. Длины волн, возбуждающие образец, определяются материалом использованной мишени, и для каждой задачи они могут быть подобраны специально. Ошибки, создаваемые дрейфом источника рентгеновского излучения, исключаются небольшим равномерным и частым покачиванием кристалла таким образом, что от него отражаются лучи двух длин волн, расположенных по обе стороны от края поглощения. С помощью такой схемы было выполнено определение кальция на участке диаметром 10 juk в срезе биологического объекта. Надежность результатов составляет несколько процентов от найденного количества кальция на площади указанного размера (2-10" г и даже меньше). [c.309]

    После фотоэлектронного поглощения атом находится в высоковозбужденном состоянии. Вакансия, созданная фотоэлектронным поглощением, будет заполнена электроном с более высоколежащей оболочки. Разность энергии между этими двумя уровнями, например, вакансией в К-оболочке и вакансией в Ьз-оболочке, испускается в виде рентгеновского фотона. Это рентгеновское излучение называют характеристическим , потому что его энергия (или длина волны) различны для каждого элемента, так как всякий элемент имеет свой собственный уровень энергии. [c.64]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    В рентгеновской спектроскопии длины волн характеристического излучения атомов изначально было [c.356]

    Под рентгенографическим анализом понимается совокупность разнообразных методов-исследования, в которых используется рентгеновское излучение — поперечные электромагнитные колебания с длиной волны 10 2—Ю А. В рентгеновских трубках для получения рентгеновского излучения используют столкновение электронов, ускоренных под действием высокого напряжения с металлическим антикатодом. Возникающее при этом рентгеновское излучение в зависимости от длины волны разделяют на жесткое [Х 1 А] и мягкое [к> —5 А], в зависимости от спектрального состава — на непрерывное (сплощное), не зависящее от природы вещества антикатода, и характеристическое (линейчатое), определяемое только природой вещества антикатода а также на полихроматическое, состоящее из волн различной длины, и монохроматическое — с определенной длиной волны. При монохроматическом в основном применяют линии Ка. -серии (возникающей при переходе электронов в атомах с -оболочки на /С-оболочку) металлов от хрома (обозначается СгКа ) до молибдена (МоКа ), длины волн которых лежат в интервале от 2,3 до 0,7 А. Для монохроматизации рентгеновского излучения используются селективно поглощающие фильтры и кристаллы-монохроматоры. [c.71]

    Процесс возбуждения рентгеновской флуоресценции аналогичен процессу возбуждения характеристического рентгеновского излучения электронами. Спектры рентгеновской флуоресценции содержат информацию, необходимую для анализа элементного состава веществ и материалов. При качественном анализе определяют длины волн флуоресцентных линий, а затем с помощью таблиц (см. Приложение III) устанавливают принадлежность зарегистрированных линий тем или иным элементам. [c.7]

    Тормозное излучение однозначно связано с напряжением С/а и имеет непрерывный спектр, а характеристическое получается при превышении определенного Уа и определяется физическими параметрами материала мишени. Энергия кванта рентгеновского излучения с минимальной длиной волны >.0 при- [c.289]

    Метод анализа по характеристическому излучению был применен, например, для установления ядерной изомерии брома [279]. Чтобы отличить рентгеновское излучение брома от излучения селена и криптона, необходимы две системы характеристических фильтров. Для анализа излучения брома и селена используются фильтры из селена и мышьяка. Сравнение полос поглощения селена и мышьяка с длиной волны (/Са, и Ка ) селена показывает, что последняя больше длины волны края полосы поглощения селена и мышьяка. Вследствие этого рентгеновские лучи селена должны поглощаться в этих фильтрах почти одинаково. В случае же брома длина волны (/Са, и Ка,) брома больше, чем длина волны края полосы поглощения селена и меньше, чем длина волны края полосы поглощения мышьяка. При этом рентгеновские лучи брома будут сравнительно слабо поглощаться селеном и сильно — мышьяком. Более сильное поглощение исследуемых лучей в мышьяке свидетельствует о принадлежности их либо брому, либо криптону. Что- [c.156]

    Микроанализатор (рис. 23.1) состоит из электрон-но-оптической системы для получения узкого пучка электронов (электронная пущка и две электромагнитных линзы) одного или более рентгеновских спектрометров для анализа излучения по длинам волн и интенсивностям светового микроскопа Для выбора участка образца, предназначенного для исследования устройства для получения растрового изображения объекта с использованием для модуляции интенсивности на экране катодно-лучевой трубки сигнала от спектрометра (интенсивности того или иного рентгеновского характеристического излучениия). [c.567]

    Характеристические спектры рентгеновских лучей данного элемента обычно получают, изготовляя из этого элемента или содержащего его соединения антикатоды электронных трубок, которые бомбардируются пучком электронов, имеющих энергии, соответствующие нескольким десяткам киловольт. Возбужденные таким способом атомы испускают излучение, длина волны которого заключена в интервале 1 —10 А. Вследствие больших волновых чисел спектроскопия таких излучений требует спещшльной экспериментальной техники. Она достаточно полно рассмотрена, например, в книге Зигбана ). Мы ограничимся лишь теоретическими вопросами. [c.311]

    Уже отмечалось, что за несколькими исключениями атомные веса элементов последовательно возрастают, причем атомный вес являлся единственным непериодическим свойством элементов, известным до исследования спектра рентгеновских лучей и радиоактивности. Теперь известно, что элемент с атомным номером Z может иметь более тяжелые изотопы, чем элемент с атомным номером как, например, в случае 27 0 и и причем число изотопов у различных элементов может быть совершенно различным. Из свойств, непрерывно изменяющихся с увеличением Z, мы должны отметить рассеивание элементами а-частиц, поглощение и рассеивание рентгеновских лучей и длину волны характеристических рентгеновских лучей данной серии (т. е. Л, и других серий). Мозли в 1914 г, для многих элементов установил приблизительную линейную зависимость квадратного корня из частоты характеристического излучении данного типа, например Л -линий от атомного номера. Линейнаи зависимость между и Z для каждого типа характеристического рентгеновского излучения К, Ь, М к т. д.) существует не во всем интервале величин до Z= 1, но справедлива липгь до тех пор, пок  [c.41]

    В методе вращения рентгенограмму получают при постоянной (характеристической) длине волны излучения анода рентгеновской трубки от монокристалла, вращающегося вокруг какой-либо оси. Съемку осуществляют в камерах вращения, колебания и рентгено-гониометрах с движущейся пленкой. Метод этот применяют для полного определения структуры вещества (параметры элементарной ячейки, ее тип, симметрия, крординаты атомов в элементарной ячейке.) не только в простых, но и в сложных случаях. Это наиболее совершенный метод структурного исследования кристаллических веществ. [c.355]

    Рентгеновские лучи занимают широкий диапазон длин волн от 80 до 0,00001 нм. Спектр излучения в зависимости от возникновения делится на сплошной (тормозное излучение) и характеристический торможение заряженных частиц (двигающихся с начальной скоростью Уд) в поле атомов вещества приводит к рентгеновскому излучению с граничной частотой Vo=m o/2h=eDVh, [c.101]

    В 1900 г. Виллард нашел третью компоненту излучения, испускаемого радиоактивными веществами, так называемые улучи. Эти лучи испускаются атомными ядрами в результате естествейных или искусственных превращений или вследствие торможения заряженных частиц, аннигиляции пар частиц и распадов частиц. ДлинЬ волн у-лучей большинства ядер, лежит в пределах от 0,0001 до 0,1 нм. у-Лучис энергией до 100 кэВ (мягкие у-лучи) ничем кроме своего ядерного происхождения не отличаются от характеристических рентгеновских лучей. Поэтому часто термин "ii-лучи применяют для обозначения электромагнитного излучения любой природы, если его энергия больше 100 кэВ. Фотоны, возт кающие в процессах аннигиляции и распадов, называют v-квантами. [c.102]

    Характеристическое флуоресцентное излучение, даваемое пробой, коллимируется, и параллельный пучок лучей после прохождения через абсорбер (ослабитель) падает на плоский кристалл анализатора. Возможно использование нескольких сменных коллиматоров и ослабителей, а также кристаллов, служащих для спектрального разложения рентгеновского излучения. В ассортимент кристаллов-анализаторов входят LiF, Ge, Si, кварц, графит и ряд других. Диспергирование излучения кристаллической решеткой с заданной постоянной происходит вследствие селективного отражения под углом, зависящим от длины волны. [c.151]

    Таким образом, каждое семейство атомных плоскостей будет давать ряд отражений в зависимости от того, какие значения принимает п (1, 2, 3 и т. д.), чтобы sin0 не превышал единицы. Соотношение (V.5), называемое уравнением Вульфа — Бреггов, является основным расчетным уравнением рентгеноструктурного и рентгеноспектрального анализов. Зная межплоскостные расстояния и углы скольжения, можно по уравнению (V.5) вычислить длины волн отраженного рентгеновского излучения (рентгеноспектральный анализ). А зная длину волны монохроматического или характеристического рентгеновских излучений и углы скольжения, можно вычислить межплоскостные расстояния (рентгеноструктурный анализ). [c.114]

    Для определения очень легких элементов целесообразно использовать комптоновское рассеяние. Как было показано в разд. 5.2.2.1, диффузно рассеянное излучение состоит из двух частей — когерентно и некогерентно 5ассеянного, причем длины волн в процессе рассеяния немного возрастают. Три определении легких элементов используют тот факт, что оба вида излучения рассеяния по-разному зависят от атомного номера элемента. Так, соотношение интенсивностей /коь/АпкоН рассеянных пробой характеристических рентгеновских линий материала трубки пропорционально соотношению С и Н в веществе пробы 122]. [c.217]

    Мы обозначаем все характеристические рентгеновские линии, образующиеся из вакансий в К-оболочке, как К-линии. На рис. 8.3-5 показана диаграмма электронных переходов железа. К-вакансия может быть заполнена электронами с уровней Ьг, Ьз или Мз г- Переход Ьз —>К приводит к рентгеновскому излучению с энергией 6,404кэВ (1,9360 A). Эта рентгеновская линия обозначается Fe К-Ьз или Fe Kai. Другая Ка-линия, Каг, соответствует переходу L-2 — К. Обе линии являются диаграммными, поскольку правила отбора соблюдены. Так как разность энергии между этими двумя линиями крайне мала и спектрометр не всегда их разрешает, то для этого дублета используют обозначение К-Ьз 2 (или Ка). Линии, включающие переходы с оболочек М и N, называют К/З-линиями. К/З-линии имеют более высокую энергию (меньшую длину волны), чем Ка-линии. Первоначальное обозначение рентгеновских линий (Ка, Куб) ввел в 1920 г. Зигбан. Сейчас предпочитают использовать более систематическое обозначение по ИЮПАК (К-Ьз, К-Мз,2), включающее начальное и конечное состояние атома (табл. 8.3-5). [c.65]

    М-липии, возникающие благодаря вакансии в одной из пяти М-подоболочек, в РФ-апализе используют редко. М-линии тяжелых элементов (РЬ) могут налагаться на К- и Ь-линии элементов с меньшим атомным номером Z. Энергии характеристического рентгеновского излучения некоторых элементов приведены в табл. 8.3-6, соответствующие им характеристические длины волн мохут быть найдены из уравнения 8.3-2. [c.67]

    Для измерения энергии и интенсивности характеристического рентгеновского излучения используют спектрометры с волновой и энергетической дисперсией (рис. 10-2.9). Энергодисперсионные рентгеновские спектрометры регистрируют одновременно все длины волн в спектре, позволяя проводить определение элементов от Ве до и (при использовании безоконных детекторов). Эти спектрометры состоят из полупроводникового детектора (кремния, легированного литием), преобразующего энергию фотонов в электрические импульсы, напряжение которых пропорционально энергии фотонов. Таким образом происходит дискриминация фотонов по энергиям. Разрешение энергодисперсионных спектрометров составляет около 140 эВ для линий средней энергии [c.333]

    Для того чтобы вое три условия удовлетворялись одновременно, т. е. чтобы пространственная решетка рассеивала рентгеновские лучи в одной и той же фазе, надо в каком-то интервале непрерывно менять либо длину волны рентгеновских лучей, либо углы падения. В первом 1 лучае для получения рентгенограммы используется не характеристическое (монохроматическое) излучение, а белое (не монохроматическое) метод Лауэ). Недостатком его является то, что лучи, соответствующие дифракционным максимумам и дающие на рентенограм-ме темные пятна, имеют разные длины волн, что очень осложняет [c.109]

    Твердый образец подвергают облучению либо электронами, ускоренными в вакууме при разности потенциалов 5-40 кВ, либо первичным рентгеновским излучением высокой энергии и интенсивности. Испускаемое образцом вторичное характеристическое излучение рентгеновской частоты проходит через щель коллиматора на кристалл-анализатор, исполняющий роль диффракционной решетки для определения длины волны излучения, и попадает на регистратор для определения интенсивности отдельных линий и непрерывной записи рентгеновского спектра. Так работают приборы электронно-спектрального химического анализа (ЭСХА), рентгено-спектрального химического анализа (РСХА), электронно-зондовые рентгеновские микроанализаторы и др. В последнее время их объединяют с оптическими и электронными микроскопами для целенаправленного выбора объекта исследования в неоднородных средах. [c.109]

    При взаимодействии быстродвижущихся электронов с атомами вещества возникает рентгеновское излучение, которое имеет спектры двух типов характеристические и тормозные. Особенность характеристических рентгеновских спектров заключается в том, что атомы каждого химического элемента, независимо от того, в какой химической форме они находятся, имеют свой, вполне определенный спектр. Тормозные спектры возникают вследствие торможения быстрых электронов в электромагнитном поле атомов вещества. Непрерывный рентгеновский спектр тормозного излучения ограничен со стороны малых длин волн некоторой наименьшей длиной волны Ятш, называемой коротковолновой границей тормозного спектра. Появление границы связано с тем, что вся энергия, которую приобретает электрон в электромагнитном поле рентгеновской трубки, излучается в виде кванта при едином акте торможения. Если Хпчп выразить в нм, а потенциал фо на рентгеновской трубке в кВ,то [c.214]

    В рентгеновской спектроскопии дайны волн характеристического излучения атомов традиционно выражают в X единицах, а в кристаллогафии — в ангстремах. Коэффициент пересчета из шкалы Х-единип в шкалу ангстрем равен 0= 1,00202 А/Х. При этом в старых таблицах дайны волн Я. < 1,0 А измеряли относительно стандартной линии МоКд, а дайны волн Я. > 1,0 А — относительно линии СиКд. Несовпадение шкал приводит к относительной погрешности = 0,00002. В настоящее время измерения дойн волн обычно выполняются с относительной погрешностью не хуже 0,000001. В связи с этим в работе [1] бьша проведена переоценка более ранних длин волн. [c.56]

    Рентгеновские лучи анализируют разложением по длинам волн или при помощи энергоселективного анализатора. Приближенный элементарный состав можно получить, сравнивая интенсивности характеристических рентгеновских линий неизвестного образца и стандарта известного состава. Используя необработанные данные по интенсивностям для компонентов, содержание которых превышает 10%, можно ожидать, что точность их определения составит 25%. Вводя поправки на поглощение рентгеновских лучей образцом и нелинейность рентгеновского излучения, а такн<е уделяя долл ное внимание стабильности инструментальных факторов, неизменному полон ению образца, степени доводки его поверхности (необходима оптически гладкая поверхность) и качеству калибровки, можно добиться точности 2%. Если образец является изолятором, необходимо покрыть его проводящим слоем, чтобы предохранить от статического заряжания. [c.400]


Смотреть страницы где упоминается термин Рентгеновское характеристическое излучение, длины волн: [c.30]    [c.75]    [c.73]    [c.205]    [c.232]    [c.31]    [c.289]   
Структуры неорганических веществ (1950) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Длина волны

Длина волны излучения

Рентгеновское излучение

Рентгеновское излучение, длина волны

Характеристическое излучение

Характеристическое излучение длины волн

Характеристическое рентгеновское

Характеристическое рентгеновское излучение



© 2024 chem21.info Реклама на сайте