Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

соединения, молекулярное строение

    С позиций химии нефть — сложная исключительно многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углеводородов различного химического строения с числом углеродных атомов до 100 и более с примесью гетероорганических соединений серы, азота, кислорода и некоторых металлов. По химическому составу нефти различных месторождений весьма разнообразны. Поэтому обсуждение можно вести лишь о составе, молекулярном строении и свойствах "среднестатистической" нефти. Меиее всего колеблется элементный состав нефтей 82,5 — 87 % углерода 11,5—14,5 % водорода 0,05 —0,35, редко до 0,7 % кислорода до 1,8 % азота и до 5,3, редко до 10 % серы. Кроме названных, в нефтях обнаружены в незначительных количествах очень многие элементы, в т. I. металлы (Са, Мд, Ре, А1, 51, V, N1, Ыа и др.). [c.59]


    Масляные фракции состоят из смеси углеводородов различных классов и гетероциклических соединений разнообразного строения. Физические свойства углеводородов зависят как от их принадлежности к определенному классу, так и от молекулярной массы. Физические свойства гетероциклических соединений отличаются от свойств углеводородов. В частности, все эти соединения по-разному и при различных температурах (избирательно) растворяются в ряде органических растворителей. [c.325]

    С неметаллами водород образует летучие соединения молекулярного строения. В обычных условиях это газы или летучие жидкости. [c.138]

    Вслед за Перкином химики начали синтезировать соединения все возрастающей сложности. Конечно, синтетические соединения в то время не могли конкурировать с природными 1, однако существовало несколько исключений, в частности синтетический индиго. Кроме того, синтез обычно позволял установить молекулярное строение, что всегда представляло огромный теоретический а иногда и практический) интерес. [c.125]

    Из советских нефтей более всего богаты алканами нефти, добываемые на полуострове Мангышлак, а также грозненская парафи-нистая и озексуатская. С повышением средней молекулярной массы фракций нефти содержание алканов в них уменьшается. В бензиновой и средних дистиллятных фракциях содержатся жидкие алканы Сб—С15, а в тяжелых фракциях и остатке — твердые с числом углеродных атомов 16 и выше. В составе алканов нефти наиболее широко представлены соединения нормального строения и монометилзамещенные с различным положением ме-тильной группы в цепи. [c.23]

    Индикатор представляет собой слабую кислоту (или слабое основание), которое обладает резко различающейся окраской в диссоциированном и недиссоциированном состояниях. На рис. 5-6 показано молекулярное строение красителя метилового оранжевого-сложного органического соединения, имеющего красную окраску в своей нейтральной неионизован-ной форме и желтую окраску в ионизованной форме. У словно его можно обозначить как слабую кислоту Hin, которая диссоциирует по уравнению [c.233]

    Электронный парамагнитный резонанс и другие методы магнитохимии приобретают в последние годы широкое распространение для изучения молекулярного строения и изменения конфигураций молекул нефтяных систем, определения структуры входящих в них соединений, оценки уровня межмолекулярных взаимодействий. Методом ЭПР-спектросконии установлено [126, 127, 128], что асфальтены являются концентратами парамагнитных молекул — стабильных свободных радикалов и комплексов парамагнитных металлов, Вследствие большой энергии взаимодействия друг с другом и с диамагнитными молекулами парамагнетики нефтей и остатков объединены в ассоциаты. Сверхтонкая структура спектров ЭПР свободных радикалов нефтей и остатков, впервые полученная авторами работ [126, 127], позволила установить новую химическую характеристику этих соединений, представляющую в виде асфальтенов осадок, получаемый вследствие отторжения парафиновыми растворителями при их взаимодействии с парамегнетиками нефтей и нефтепродуктов, В работе [129] установлено, что с увеличением глубины залегания [c.115]


    По химическому составу первичных смол можно судить о молекулярном строении веществ, которые входят в состав органической массы исходных углей. Например, высокое содержание фенолов, ароматических и гидроароматических соединений в первичных смолах.гумитов указывает на ароматическое строение веществ последние преобладают в торфе, бурых и каменных углях. Низкое содержание этих соединений в сапропелевой первичной [c.246]

    Третий компонент тяжелых нефтяных остатков — асфальтены. Это наиболее высокомолекулярная и наиболее сложная но элементному составу и молекулярному строению часть нефти. Содержащиеся в асфальтенах металлы и азотистые соединения являются причиной многих трудностей в каталитических процессах переработки тяжелой части нефти. Поэтому в настоящее время нецелесообразно, вероятно, рассматривать асфальтены как химическое сырье для дальнейшей переработки, а необходимо использовать их в качестве продукта непосредственного технического применения для целей изоляции, защитных покрытий металлических поверхностей, наполнителей полимерных материалов и др. [c.33]

    Характерной особенностью реакции каталитического гидрирования окиси углерода является то, что образующиеся углеводороды как насыщенные, так и ненасыщенные представляют собой соединения с прямой цепью углеводороды изостроения получаются в небольшом количестве. У олефинов двойная связь находится на конце цепи или вблизи его. Такое преимущественное образование соединений нормального строения имеет особое значение для органического синтеза, так как позволяет выделять индивидуальные вещества или смеси, состоящие всего лишь из нескольких однородных химических веществ, на всем протяжении гомологического. ряда вплоть до соединений с довольно высоким молекулярным весом. Из сырой нефти или из продуктов ее крекинга можно выделить только углеводороды с числом атомов углерода, не превышающим шести, поскольку трудности разделения изомеров резко возрастают по мере дальнейшего увеличения их числа. [c.59]

    При изучении отравления катализаторов Е. Мэкстедом было открыто интересное явление, названное якорным эффектом, которое устанавливало зависимость между токсичностью и молекулярным строением антикатализатора. При отравлении Р1-катализато-ра различными сульфидами и меркаптанами было замечено, что их токсичность возрастает с усложнением неядовитой части молекулы. В табл. 7 приведены относительные токсичности на единицу серы в соединениях типа и К5Н [29]. [c.71]

    Величина точки Крафта зависит от молекулярного строения ПАВ, природы и концентрации добавок. Изменения структуры ПАВ, приводящие к усилению межмолекулярного притяжения в углеводородных областях или в слоях полярных групп, вызывают ее повышение. Так, величина Ткр повышается в гомологических рядах ПАВ по мере роста длины углеводородного радикала (рис. 15). Соединения с разветвленной цепью имеют меньшую величину Т р по сравнению с аналогичными ПАВ нормального строения (при одинаковом количестве атомов углерода в радикале), так как разветвленные цепи менее плотно упакованы и силы когезии между цепями меньше. Заметно снижается Ткр при введении в [c.56]

    Молекулярное состояние вещества характерно для земной атмосферы и гидросферы. Каменное тело Земли — литосфера — построена в основной своей массе по принципу накопления бесконечных ионных структур, не способных к индивидуализации в молекулы. Возникнув и развиваясь в молекулярной среде — атмосфере и гидросфере, — органическое вещество имеет молекулярное строение. Здесь однако также не всегда ясен вопрос, что же считать молекулой данного соединения, т. е. его структурно-кинетической, индивидуальной единицей  [c.97]

    Влияние на величину молекулярной электропроводности ( х) растворов комплексных соединений, их строения и природы внешнесферных групп [c.271]

    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]


    Синтетическим путем было получено несколько очень высокомолекулярных органических веществ точно установленного строения. Одно из этих соединений близкое некоторым дубильным веществам, имеет состав С22оН 42058Н4Л2 и молекулярный вес 4021. По-видимому, по величине молекулярного веса оно занимает первое место среди всех органических соединений установленного строения (Э. Фишер). [c.13]

    Наиболее строго рассмотренные определения выполняются для частиц, не взаимодействующих с растворителем, например для веществ с молекулярным строением — органических соединений, газообразных неорганических веществ. В частности, растворимость газов (Нг, N2, О2) прямо пропорциональна давлению и обратно пропорциональна температуре (см. 3-), [c.147]

    Твердые и жидкие топлива состоят из весьма сложных соединений, молекулярное строение и свойства которых недостаточно изучены. В состав этих топлив также входят влага и минеральные примеси, определяющие так называемвиг внешний балласт топлива. [c.13]

    Важным преимуществом диэфиров является возможность синтезировать соединения высокого молекулярного веса с лшлой испаряемостью из доступных алифатических спиртов и кислот с низким молекулярным весом. Наличие в таких соединениях двух реакционно способных групп позволяет получить соединения различного строения и свойств в зависимости от требований эксплуатации. К настоящему времени получены и исследованы десятки тысяч различных диэфиров, многие из которых могут служить основой высококачественных масел. [c.144]

    Добавление к бензолу хинолина, обработанного серой, бром-тиофена или тиохинантрена, т. е. введение яда, позволило остановить реакцию на стадии альдегида (с выходом 75—80% от теории) [22]. Следует отметить, что уже при изготовлении катализаторов в их состав целесообразно вводить вещества, травляющие те ак- / тинные центры катализатора, на которых происходят реакции, снижающие селективность. При изучении отравления катализаторов была установлена связь между токсичностью и молекулярным строением яда. Это явление Мэкстед назвал якорным эффектом [33]. При сравнении ядов, содержащих, например, ядовитый атом серы, оказалось, что токсичность яда, приходящаяся на 1 г-ат серы, тем больше, чем больше молекулярный вес соответствующего соединения серы [22, 44]. [c.68]

    Изучено влияние соединений различного строения, полученных сополи-мернзацией азотсодержащего мономера, эфиров метакриловой кислоты и спиртов С —С12, при добавлении этих соединений в топливо, содержащее хромовую соль СЖК. Показано, что синергетический эффект зависит от строения сополимерных соединений, он практически не изменяется при повышении содержания азота в сополимере и возрастает при снижении молекулярной массы сополимера. [c.169]

    Многие положения концепции В. И. Касаточкина вполне приложимы и к объяснению молекулярной структуры нефтяных асфальтенов. Мы имеем в виду прежде всего такие фундаментальные положения этой точки зрения, как зависимость физических свойств от элементного состава этих соединений, утверждение, что основной структурной единицей (блоком) молекулярного строения является плоская гексагональная атомная сетка или копланарно конденсированные бензольные кольца с алифатическими короткими цепями на периферии этих плоских структурных блоков. Размеры и структура этих плоских структурных блоков могут сильно различаться, так же как могут различаться алифатические цени по числу С-атомов, по степени разветвленности и по количеству и характеру функциональных групп в них. Эти структурные блоки образуют трехмерные молекулы за счет валентных связей посредством боковых цепей. Распределение сопряженных кратных связей в основной структурной углеродоатомной сетке, подобной [c.96]

    Соединениями постоянного состава являются вещества молекулярного строения, поскольку состав молекул однозначно определяется строением их образующих aroMOFj. Ь сли же кристаллическое вещество имеет атомное или ионное строение, то оно характеризуется более или менее переменным составом. Причиной этого являются точечные дефекты в кристалле. В реальном кристалле возможны дефекты двух типов. Рассмотрим кристалл двухэлементного соединения АВ. В идеальном случае в кристал/ю заняты все узлы кристаллической решетки атомами (ионами) А и В (рис. 66, а). В реальном же кристалле могут быть не заняты узлы кристаллической решетки, отвечающие атому (иону) А и (или) атому (иону) В (рис. 66, в). Кроме того, в междоузлиях решетки могут располагаться избыточные атомы (ионы) А и (или) В (рис. 66, б). [c.105]

    Среди неорганических веществ почти 95% не имеют молекулярного строения и, следовательно, являются нестехиометрическими соединениями. Часто отклонения от стехиометрического состава так невелики, что при химическом анализе их установить не удается. (Этим и объясняется тот факт, что закон постоянства состава считали справедливым на протяжении столь долгого аремени.) Однако исследование свойств веществ, например электрической проводимости, окраски, магнитных и др., свидетельствует о наличии переменного состава. [c.107]

    С возникновением и развитием мезофазы формирование состава и молекулярной структуры КМ происходит за счет термохимических превращений в объемах газопаровой и конденсированных изотропных и жидкокристаллической фаз (гомогенный процесс) и на границах раздела этих фаз (гетерогенный процесс). Однако и в этом случае КМ представляет собой объединение множеств органических соединений, развивающееся в направлении накопления углерода за счет образования полициюшческих конденс1фованных ароматических молекулярных структур. Поэтому вопрос о составе и молекулярном строении КМ на этом и последующих этапах формирования нефтяного углерода приобретает особое значение, поскольку именно на стадии мезофазных превращений формируется надмолекулярная структура высокотемпературных форм нефтяного углерода [100]. Однако молекулярная структура нефтяного углерода в рассматриваемом аспекте изучена слабо, преимущественно методами, дающими информацию о среднестатистической молекуле или молекулярноструктурной единице, относящейся ко всей массе объекта исследования, базируясь на известных гипотезах о молекулярной структуре углеродных материалов [35,36,40,93,116]. [c.40]

    Важное значение имеет конформационное состояние макромолекул в растворе, которое зависит от ее строения, природа дисперсионной среды, концентрации ВМС в растворе, температуры и наличия микроэлементов, которые являются причиной образования внутри- и межмолекулярных комплексов. Для нефтяных ВМС возможность образования той или иной конформации прежде всего определяется их молекулярным строением. Так, анализ данных [170] предполагает, что в состав асфальтенов могут входить ВМС, молекулы которых имеют плоскую конформацию вследствие того, что состоят из крупных конденсированных нафтено-ароматических фрагментов, соединенных непосредственно или через короткие мостики, не позволяющие молекуле сгибаться или складываться за счет вращения вокруг связей. Характерными для нефтяных систем могут бьггь макромолекулы, в которых нафтено-ароматические фрагменты с алифатическим и гетероа-томным "обрамлением" связаны между собой через несколько линейно связанных атомов углерода или гетероэлемента. В этом случае создается возможность складывания макромолекулы за счет сближения плоских фрагментов. Степень их сближения, которую можно характеризовать величиной угла пересечения плоскостей, проведенных вдоль плоских фрагментов, зависит от гибкости и длины связующего звена и стерических препятствий, создаваемых алифатическим обрамлением " плоских фрагментов, и их нафтеновой или гетероатомной частью. В результате образуется слоистая вторичная молекулярная структура с параллельной или непараллельной (зигзагообразной или спиралевидной) укладкой плоских фрагментов. Если макромолекула представляет собой разветвленную цепь плоских разнозвенных фрагментов, то слоистые структуры могут образовываться за счет складывания плоских фрагментов каждой ветви, и тогда макромолекула может рассматриваться как "гроздь" вторичных молекулярных складчатых структур, или за счет параллельной или почти параллельной укладки плоских фрагментов, входящих в состав различных ветвей макромолекулы, с образованием менее разветвленной вторичной молекулярной структуры. Образование такой конформации макромолекулы энергетически выгодно [c.82]

    Соединение молекулярной формулы 8HllN, взаимодействуя с азотистой кислотой, образует спирт состава СзНюО, который при окислении превращается в о-фтале-вую кислоту. Напишите формулу строения соединения QHuN. [c.138]

    Минералы можно подразделить на три типа природные элементы, силикаты и не-силикатные соединения. Силикаты шире всего распространены в природе. Структурной основой этих миниралов являются силикатные тетраэдры 8104, которые путем обобществления атомов кислорода способны связываться друг с другом, образуя цепи, слои и каркасные структуры. Мы обсудили, каким образом макроскопические свойства некоторых силикатов, например способность к разрушению, отражают их молекулярное строение. Во многих минералах ионы 81 замещены ионами А1 , что приводит к образованию алюмосиликатов, к числу которых относятся полевые шпаты. Силикаты являются важными компонентами при получении стекла и цемента процессы получения этих веществ кратко рассматриваются в тексте главы. Однако силикаты в настоящее вре- [c.365]

    ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ — химические соединения, молекулярная масса которых может быть равна от нескольких тысяч до нескольких миллионов. Атомы В. с. соединены друг с другом валентными связями. Атомы нли атомные группировки в молекулах В. с. располагаются в виде длинной цепи (линейные В. с., напр,, целлюлоза), либо в виде разветвленной цени (разветвленные В, с,, напр., амнлопектин), либо в виде трехмерной сетки, состоящей из отрезков цепного строения (сшитые В. с., напр., феполформальдегидные смолы). В. с., состоящие из большого числа повторяющихся групп одинакового строения, называют полимерами. В. с., молекулы которых содержат несколько типов повторяющихся групп, называют сополимерами. В зависимости от химического состава, В. с. делятся на гете-роцепиые (в основной цепи содержатся атомы различных элементов) и гомоцеп-ные (в цепи — одинаковые атомы). В. с. применяются во всех отраслях народного хозяйства. На основе В. с. изготовляют резины, волокна, пластмассы, пленки, покрытия, различные изделия, посуду, мебель, клен, лаки и др. Все ткани живых организмов состоят из В. с. [c.61]

    Теории валентности и стереохимия развивались в прошлом столетии в очень тесной связи, так что достижения одной обычно были результатом успехов другой. В 1852 г. Фрэнкленд предложил концепцию валентности и показал, что элементы при образовании соединений реагируют с определенными количествами других элементов, и эти количества теперь называют эктшвалентными. Кекуле в 1858 г. и Кольбе в 1859 г. расширили представление о валентности и постулировали, что атом углерода четырехвалентен. В 1858 г. Кекуле предположил, что атомы углерода соединяются друг с другом в неограниченном числе, образуя цепи в том же году Купер ввел концепцию валентной связи и нарисовал первые структурные формулы. Термин химическое строе-ние ввел в 1861 г. Бутлеров, который отметил важность написания простейших формул соединений, показывающих, как соединены атомы в молекулах. Он также установил, что свойства соединений определяются их молекулярным строением, п если известно строение, то можно предсказать свойства. Однако только в 1874 г. был сделан первый основной шаг к наглядному представлению молекулярного строения в трех измерениях. В этом же году Вант-Гофф и ле Бель независимо друг от друга постулировали тетраэдрическое расположение четырех связей атома углерода и таким образом дали возможность классической органической стереохимии по крайней мере. на двадцать лет опередить неорганическую стереохимию. [c.191]

    Законы постоянства состава, простых кратных отношений эквивалентов, простых объемных отнощений известны как стехио-метрические. Они строго применимы для в еществ с молекулярным строением (молекул, кристаллов с молекулярной структурой). Для веществ с немолекулярной структурой постоянство состава и вытекающие из него следствия не являются критерием образования химических соединений. К ним относятся практически все соединения в твердом состоянии, так как за счет дефектов их рещ ток для них характерно отклонение состава от стехиометрии. [c.19]


Смотреть страницы где упоминается термин соединения, молекулярное строение: [c.237]    [c.7]    [c.7]    [c.280]    [c.7]    [c.7]    [c.7]    [c.236]    [c.329]    [c.51]    [c.114]    [c.153]    [c.103]    [c.25]    [c.176]    [c.148]    [c.277]    [c.137]    [c.101]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость между вязкостью, строением соединения и его молекулярным весом

Классификация высокомолекулярных соединений по строению молекулярных цепей карбоцепные и гетероцепные полимеры

Применение молекулярной рефракции для установления строения органических соединений

Применение молекулярной рефракции и дисперсии для установления строения химических соединений

Применение молекулярной рефракции и дисперсии для установления строения химических соединений Аддитивность молекулярной рефракции органических веществ

Применение теории молекулярных орбиталей для описания электронного строения координационных соединений

Применение теории молекулярных орбиталей для описания электронного строения координационных соединений. Теория поля лигандов

Электронное строение твердых молекулярных соединений

галоидные соединения, межмолекулярные расстояния в них и молекулярное строение

галоидные соединения, молекулярное строение

соединения, содержащие группу СН межатомные расстояния и молекулярное строение, таблица



© 2025 chem21.info Реклама на сайте