Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма малых количеств

    В качестве примера кратко рассмотрим схему определения примесей висмута, мышьяка и сурьмы в металлической меди. Как видно из табл. 3, содержание каждого из этих элементов в металлической меди составляет величину порядка нескольких сотых или тысячных долей процента. Если даже подобрать соединения, например, для В , 5Ь и Аз с достаточно малой растворимостью, то, тем не менее, отделить фильтрованием такие малые количества осадков будет очень трудно. Образование коллоидных растворов, прилипание осадка к стенкам сосуда и другие явления могут совершенно исказить результаты. Поэтому предварительно получают концентрат примесей, причем в качестве коллектора применяют обычно гидроокись железа, которую получают непосредственно в анали- [c.90]


    Так, в аналитической химии довольно точно производят определение малых количеств ртути, мышьяка, фосфора, сурьмы, хлора, сульфатов и других веществ. Затрата времени на эти определения значительно меньше, чем при весовом анализе. [c.349]

    Сурьма — один из давно известных и довольно часто используемых элементов. Она входит в состав многих сплавов цветных металлов, типографских шрифтов, подшипниковых сплавов. Сурьма и ее соединения используются в резиновой, красильной, спичечной, стекольной, фармацевтической, аккумуляторной, приборостроительной и в ряде других отраслей промышленного производства. Сурьма применяется при изготовлении солнечных батарей, инфракрасных детекторов, ферромагнитных приборов, огнестойких соединений, сурьмяных электродов для рН-метров. Особенно важной областью потребления сурьмы является полупроводниковая промышленность. В ряде случаев требуется сурьма очень высокой чистоты. В то же время содержание сурьмы в земной коре очень мало и не превышает 4-10 %. В связи с этим аналитическая химия сурьмы характеризуется очень большим разнообразием методов ее отделения и определения, широким диапазоном определяемых концентраций и большим разнообразием анализируемых материалов. Особенно быстро аналитическая химия сурьмы развивалась за последние 25 лет в связи с прогрессом полупроводниковой промышленности. За это время возник и успешно развивался ряд новых разделов аналитической химии сурьмы, в том числе такие, как аналитическая химия сурьмы высокой чистоты и ее соединений, методы определения очень малых количеств сурьмы в различных материалах и т. п. [c.5]

    За период с 1970 по 1975 гг. из общего количества извлеченного вторичного свинца 55 % составлял свииец, содержащий сурьму, 30 % мягкий свинец и 15 % свинец в виде свинцовых и медных сплавов. С 1973 г. количество извлекаемого свинца, содержащего сурьму, снизилось с 57 до 49 %, полученных в 1976 г. Количество извлеченного мягкого свинца увеличилось с 1973 по 1976 г. с 28 до 44 %. Такие изменения связаны с возросшим производством аккумуляторных батарей, не требующих технического обслуживания, для изготовления которых используются свинцовые сплавы, ие содержащие сурьму или содержащие малые количества ее. Основными видами продуктов, из которых свинец не может быть извлечен, являются бензин и красители. Не извлекается также значительная часть свинца, входящего в состав боеприпасов, фольги, припоев, а также используемого в процессах отжига в свинцовой ванне и гальванизации. Более подробно процессы извлечения свинца из лома и их влияние на окружающую среду рассмотрены в обзоре Нака и др. [15]. [c.230]


    Сплавление с содой и натриевой селитрой. Применение метода возможно только при исключении из плана исследования определения соединений ртути , далее применение его возможно лишь при небольшом количестве объекта.- Таково добавочное разрушение при способе Фрезениуса и Бабо органических веществ, отделенных с сернистыми соединениями мышьяка, сурьмы и олова (см. стр. 122), разрушение пилюль, органических красок, органических препаратов мышьяка (например, сальварсана), остатка мочи—при малых количествах его. Особенно удобен этот способ при специальном исследовании перечисленных объектов на мышьяк. [c.100]

    Реакции мешают сурьма и мышьяк в количествах более 1 мг в реакционном объеме. Недостаток реакции заключается в том, что при малых количествах (10—5 мкг) окраску комплекса наблюдать трудно. [c.335]

    Вполне естественно, что выделение столь малых количеств элемента № 49 отделение его от массы других элементов — цинка, кадмия, сурьмы, меди, мышьяка и прочие - дело очень сложное. Но игра стоит свеч индий нужен, индий дорог. [c.34]

    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]

    Определение малых количеств молибдена в свинце может быть проведено после предварительного отделения молибдена от свинца соосаждением молибдата свинца с какой-нибудь труднорастворимой солью в качестве коллектора. Этим коллектором может служить, например, присутствующий в свинце мышьяк, образующий труднорастворимый осадок арсената свинца. Если свинец является чистым (марки С-00, С-000) и не содержит больших количеств мышьяка, то в качестве коллектора можно использовать другие труднорастворимые соли свинца. Осаждение малых количеств молибдата свинца проводили фосфатом свинца. Для удержания в растворе висмута и железа использовали комплексон III. Осадок фосфата свинца вместе с молибденом захватывал также мышьяк и сурьму. Для их удаления осадок обрабатывали горячей соляной кислотой и затем проводили упаривание с серной кислотой. При этом мышьяк и большая часть сурьмы отгонялись в виде хлоридов. После отделения сульфата свинца в фильтрате колориметрически определяли молибден по окраске его роданидного комплекса, который извлекали изоамиловым спиртом. При содержании молибдена больше 0,0001 % для колориметрирования брали аликвотную часть с содержанием 0,04—0,1л г молибдена. При [c.275]

    В бронзе, других сплавах и рудах иодометрическому определению могут мешать некоторые сопутствующие меди элементы. Медные сплавы содержат цинк, свинец и олово, а также малые количества железа и никеля, в то же время в медьсодержащих рудах часто встречаются железо, мышьяк и сурьма. [c.342]

    Часть определений осуществлялась фотометрическими и спектрофотометрическими методами определение железа в серной кислоте и медном купоросе, малых количеств мышьяка, сурьмы, висмута, никеля, олова и фосфора в различных продуктах. Применяли фотоэлектроколориметры ФЭК-56, ФЭК-Н-57, спектрофотометр СФ-4А. [c.151]

    Метод определения малых количеств (0,05—5 мкг) сурьмы в органических веществах основан на разложении основы путем обработки концентрированными азотной и серной кислотами, восстановлении сурьмы до стибина при помощи иодида натрия и тетрагидробората натрия в гидридном генераторе, атомизации стибина в нагреваемой кювете и измерении атомного поглощения [335]. Навеску пробы 2 г в высоком стакане из боросиликатного стекла вместимостью 250 мл увлажняют 4 мл воды, добавляют 5 мл концентрированной серной кислоты, стакан закрывают крышкой, осторожно перемешивают и нагревают на песочной бане 5 мин при 150°С. Затем по каплям вводят концентрированную азотную кислоту, повышая температуру бани до 320 °С, и продолжают прибавлять по каплям кислоту до полного окисления органического вещества. После этого нагрев продолжают до полного испарения азотной кислоты и появления паров серной кислоты. Стакан охлаждают, прибавляют 4—5 мл воды и 1 мл 5%-ного раствора сульфита натрия. Через [c.240]


    Предварительное отделение очень малых количеств висмута, мышьяка, сурьмы, селена и теллура от больших количеств меди проводится лучше всего прибавлением 0,1—0,2 г железа (III) или алюминия в виде их солей и осаждением аммиаком (стр. 359). Большие количества селена и теллура лучше всего отделять осаждением двуокисью серы в солянокислом растворе (стр. 386). [c.283]

    Электролитическое осаждение меди с цепью только ее отделения от других элементов применяется редко, за исключением отделения меди от кадмия (стр. 299) Это объясняется отсутствием уверенности в полноте осаждения меди и тем, что большое количество других элементов может частично или даже полностью отложиться на катоде вместе с медью. Отделять медь от кадмия этим способом лучше всего из азотнокислого раствора. Малые количества кадмия можно отделить от меди электролизом в серно-азотнокислом растворе. Никель, кобальт, цинк и умеренные количества железа не мешают. В присутствии первых трех элементов электролиз лучше проводить в азотнокислом или в азотно-сернокислом растворе. Электролиз в аммиачном растворе или в таком же растворе, но с добавлением фторидов дает хорошее отделение меди от солей мышьяка и сурьмы [c.284]

    Относительно лучших условий осаждения арсенат-ионов магнезиальной смесью мнения расходятся. По нашим опытам, осаждение надо проводить двукратно, избыточных количеств аммонийных солей следует избегать, магнезиальную смесь надо добавлять в относительно большом избытке и промывать осадок умеренным количеством разбавленного (5 95) раствора аммиака, но ни в коем случае не раствором, содержащим хлорид или нитрат аммония. Добавлением тартрата или цитрата аммония можно почти полностью избежать загрязнения осадка оловом, сурьмой и, вероятно, германием. Малые количества мышьяка, медленно осаждающиеся или совсем не осаждающиеся, могут быть выделены замораживанием раствора, после чего выделившемуся льду дают расплавиться при комнатной температуре  [c.306]

    Малые количества сурьмы значительно лучше определяются колориметрическими методами, изложенными ниже (стр. 329—331). Прим. ред.  [c.324]

    При содержании сурьмы менее 0,1 мг ее лучше всего определять отгонкой в виде стибина Окраску, полученную при действии стибина /на полоску бумаги, пропитанной хлоридом ртути (П), сравнивают со стандартными окрасками, полученными при такой же обработке растворов, содержащих известные малые количества сурьмы. Мышьяк, сульфиды и фосфиды, также окрашивающие бумагу, пропитанную хлоридом ртути (II), должны отсутствовать. Мышьяк может быть отделен отгонкой его с соляной кислотой присутствия сульфидов и фосфидов легко избежать соответственной предварительной обработкой. [c.327]

    Примером более слол<ного анализа является определение примесей в металлическом германии свойства этого материала, применяющегося, например, в качестве полупроводника для детекторов, чрезвычайно сильно зависят от присутствия очень малых количеств примесей других элементов. Для определения микропримесей редкоземельных элементов, сурьмы, молибдена, меди и др. поступают следующим образом . В ядерный реактор вводят испытуемый образец германия и чистый образец с известным количеством введенных примесей. После облучения образцы растворяют, вводят в качестве носителей-коллекторов нерадиоактивные изотопы определяемых элементов. Германий отгоняют в виде легколетучего тетрахлорида, а остаток подвергают разделению химическими методами, осаждая отдельно группу редкоземельных элементов, отдельно сурьму, медь и другие определяемые элементы. Активность выделенных фракций сравнивают с активностью фракций эталона и на этом основании вычисляют содержание микропримесей в испытуемом образце. Таким методом удается определить миллионные доли процента примесей редкоземельных элементов— до З-Ю / о сурьмы, молибдена и др. [c.21]

    Родамин С — темные кристаллы с зеленоватым блеском или красновато-фиолетовый порошок. Растворимость в 100 мл воды 0,78 г, этанола 1,47 г, растворим в ацетоне. Нерастворим в бензоле, мало растворим в растворах кислот и щелочей. Этанольные и водные растворы синеватокрасного цвета с сильной красной флюоресценцией, особенно заметной в разбавленных растворах. Слабо растворим в растворах соляной кислоты и гидроксида натрия. Очищают перекристаллизацией из этанола. Применяют для обнаружения и определения сурьмы (П1), (5ЬС1б) , вольфра-матов, цинка, 2п(5СН)4]2- и ионов других элементов, а также в качестве люминесцентного реактива для определения малых количеств таллия (П1), галлия (П1) и др. В солянокислом растворе анионы хлоргаллата образуют с родамином С комплексное соединение, экстрагируемое органическими растворителями и флюоресцирующее оранжево-красным цветом. Наибольшая яркость флюоресценции наблюдается при его извлечении смесью бензола с эфиром в соотношении (8 5) из 6 н. соляной кислоты. Чувствительность реакции 0,01 мкг галлия в 1 мл. [c.194]

    Разделение As, Sb и Sn отгонкой в виде хлоридов исследовано с применением их радиоактивных изотопов при определепии в железе [1022], чугуне и сталях [1113]. Установлено, что при использовании навески 2 г и при отгонке As lg при 135° С одновременно с ним отгоняется до 5—10% Sb [1113]. Снижение температуры отгонки с 135 до 112° С хотя и значительно уменьшает переход Sb в дистиллят, но полностью его не устраняет, и загрязнение дистиллята сурьмой всегда имеет место при отделении малых количеств As от больших количеств Sb. В этих случаях необходимо полученный дистиллят подвергнуть вторичной перегонке в тех же условиях. Остаток присоединяют к основному раствору, содержащему Sb и Sn, для последующего отделения Sb. При отделении малых количеств Sb от больших количеств Sn оно также частично переходит в дистиллят, содержащий Sb. Для полного отделения Sb от Sn в таких случаях требуется повторная отгонка [150]. Введение a la в раст вор перед отгонкой (до 3,0—3,4 М) позволяет полностью отделять As от Sb из растворов, 2,4—5,0 М по НС1 [36]. [c.116]

    При определении с медным анодом допустимо соотношение Ад Си = 1 300. Примером использования внутреннего электролиза для определения малых количеств серебра является определение его в товарном свинце [73]. В качестве анода применяют проволоку из меди высокой чистоты, катодом служит платиновый сетчатый электрод. Электроды разделены алундовыми диафрагмами. Концентрация азотной кислоты в растворе должна быть достаточно высокой, чтобы предотвратить соосаждение висмута. Сурьма, мышьяк и олово в тех количествах, которые обычно содержатся в чистом товарном свинце, не влияют на осаждение, если они окислены до высшей степени окисления. Если содержание этих элементов достаточно велико, чтобы образовался осадок, то при растворении пробы вводят минимальное количество фтористоводородной кислоты (до получения прозрачного раствора). [c.70]

    Объемное определение для малых количеств сурьмы основано на выделении сурьмяной кислотой из иодистоводородной кислоты иода и отгонке последнего  [c.142]

    Несмотря на то, что оба электролита позволяют получать покрытия с малым количеством сурьмы, механизм их восстановления на катоде и их структурные составляющие значительно отличаются. Введение антимонил-тартрата в тартратнощ анидном электролите резко снижает I предельный ток и повышает П, смещая при этом по-тенщ ал восстановления серебра от -0,45 до -0,62 В. Добавка КОН сдвигает кривую катодной поляризащ И в область больших отрицательных потенциалов. [c.167]

    При изготовлении фотоэлектроколориметров и спектрофотометров применяют, как правило, сурЬ мяно-цезиевые и кислородно-цезиевые фотоэлементы Сурьмяно-цезиевый фотоэлемент получают кон денсацией паров сурьмы на поверхности стекла при этом получается почти непрозрачный слой ме таллической сурьмы толщиной около 150 нм. При последующем прогреве слоя сурьмы в парах цезия образуется химическое соединение (вероятно, ЗЬСзд) с очень рыхлой поверхностью, обладающее полупроводниковыми свойствами. На поверхности полупроводникового слоя адсорбируются атомы цезия, снижающие работу выхода катода. Для увеличения чувствительности готовая поверхность фотоактнвного слоя подвергается действию малых количеств кислорода или паров серы (сенсибилизация фотоэлемента). [c.44]

    Отделение молибдена. Наилучшим методом отделения малых количеств других элементов группы мышьяка от молибдена, по-видимому, является введение в раствор достаточного количества соли железа и осаждение этих элементов вм жте с железом добавлением аммиака, 1 ак описано в гл. Молибден , стр. 359. Метод этот оказался весьма удовлетворительным для отделения молибдена от мыщьяка и сурьмы, и нет оснований предполагать, что отделение олова, германия, селена и теллура не будет проходить так же хорошо. Для отделения от молибдена больших количеств этих элементов могут служить следующие методы перегонка с соляной кислотой — для удаления мышьяка и германия восстановление сернистьш ангидридом — для удаления теллура и селена восстановление свинцом — для удаления сурьмы и осаждение сероводородом в присутствии щавелевой или фтористоводородной кислоты — для отделения олова, [c.100]

    Суспензия окиси цинка не должна показывать щелочной реакции по фенолфталеину. В присутствии большого количества железа (III), что имеет место, например, при анализе стали, после окЕСЛения раствора пробы, осадок от окиси цинка будет содержать все железо, вольфрам, ванадий, хром, уран, цирконий, титан, алюминий, фосфор, мышьяк, олово и почти полностью медь, молибден и кремний. Железо (II), вольфрам (если они не полностью окислены) и малые количества кремния, меди, молибдена, сурьмы и свинца могут оказаться в фильтрате, если они присутствовали в первоначальном растворе в значительных количествах. Фильтрат содержит марганец и кобальт почти полностью если осадок переосадить и соединить фильтраты, то отделение марганца и кобальта можно считать полным. Отделение никеля не так удовлетвори- [c.108]

    Малые количества висмута, так же как и малыё количеств мышьяка и сурьмы, могут быть осаждены аммиаком вместе с гидроокисью железа. Для этого в раствор предварительно вводят небольшое количество соли железа (III), если последнее не находилось уже в растворе в достаточном количе( тве (стр. 360). В связи с этим надо отметить, что осаждение висмута аммиаком или едкими ш елочами протекает не полно, если в растворе отсутствуют другие осаждаемые этими реактивамк элементы. Осаждение аммиаком протекает, однако, почти количественно в присутствии избытка хлорида аммония . [c.272]

    Предложен также способ осаждения висмута в виде соли иодовис-мутовой кислоты с хинальдином СвНвКСНд НВ114. Осадок можно затем растворить и определить содержание иода титрованием раствором иодата калия. Этим способом в разбавленном (1 9) сернокислом растворе можно осадить даже такое малое количество висмута, как 0,3 мг, в присутствии свинца, меди, кадмия, сурьмы, олова, мышьяка, марганца, никеля, кобальта, цинка, железа, хрома, урана, алюминия, бериллия и фосфора. Определению мешают ртуть, серебро и большие количества хлорид-ионов. [c.280]

    В анализе горных пород малые количества мышьяка не создают затруднений, так как мышьяк (П1), остающийся в растворе после разложения образца горной породы, улетучивается во время выпаривания с соляной кислотой при обезвоживании кремнекислоты. Мышьяк (V) осаждается в виде основного арсенита железа или алюминия вместе с осадком от аммиака и, вероятно, целиком восстанавливается и улетучивается при последующем сожжении фильтра с осадком и прокаливании. Иное дело при анализе продуктов металлургического производства, навеску пробы которых обьгчно обрабатывают окисляющими растворами. Например, при анализе черных металлов присутствие мышьяка затрудняет определение в них фосфора при анализе сплавов цветных металлов присутствие мышьяка может помешать определению олова, сурьмы и меди. [c.302]

    В обычных случаях ход отделения следующий. Приготовляют кислый, содержащий мышьяк (V) раствор, свободный от указанных выше мешающих элементов. Если мышьяк был отогнан в вйде хлорида мышьяка (III),, то сперва осаждают его в виде сульфида (стр. 309), растворяют осадок в малом количестве раствора едкого натра при помрщи окислителя, например перекиси водорода, подкисляют раствор азотной кислотой и кипятят до малого объема. Затем разбавляют до 100 мл водой, если присутствует не более 0,1 г Мышьяка, и прибавляют 25 мл магнезиальной смеси (стр. 66). В присутствии олова, германия или сурьмы прибавляют 3 г-лимонной или винной кислоты и 50 мл магнезиальной смеси. Затем приливают раствор амйиака по каплям и при постоянном перемешивании, [c.306]

    Оставля1рт стоять на ночь, фильтруют через бумажный фильтр и про- мывают осадок двумя порциями по 20 мл разбавленного (5 95) раствора аммиака,. Фильтрат сохраняют, если надо определять олово, сурьму и пр. ОсаДок растворяют в возможно малом количестве разбавленной (1 2) соляной кислоты, прибавляют 10 мл магнезиальной смеси, разбавляют до 25—100 мл, в зависимости от количества мышьяка, и снова осаждают медленным прибавлением раствора аммиака, которого под конец приливают избыток, равный 5% по объему. Оставляют стоять на несколько часов, лучше на ночь, фильтруют, осадок очень умеренно промывают, как прежде, разбавленным (5 95) раствором аммиака и соединяют фильтрат с ярежде полученным фильтратом. Затем растворяют осадок в горячей соляной или азотной кислоте и ведут определение мышьяка как указано на стр. 309. > [c.307]

    Прекрасным методом предварительного отделгиия мышьяка, встречающегося в малых количествах во многих материалах, является осаждение его аммиаком в виде основного арсената железа. Этот метод применяется при анализе медных и молибденовых руд. В этих случаях разложение исходного материала ведут так, чтобы весь мышьяк получился в пятивалентной форме, затем прибавляют 0,1—0,2 г соли железа (III) (если последнее не присутствует уже в растворе в достаточном количестве) на каждые 10 мг мышьяка и осаждают, как указано в гл. Молибден (стр. 360). Ряд других элементов селен, теллур, фосфор, вольфрам, ванадий, олово и сурьма — также осаждается этим методом. Применение соли алюминия вместо соли железа (III) не дает таких удовлетворительных результатов. [c.308]

    Малые количества мышьяка (<0,1 мг) могут быть извлечены из раствора соосаждением их с фосфатом магния и аммония, с которым аналогичная соль мышьяка образует смешанные кристаллы. Для этого мышьяк надо сначала перевести в пятивалентное состояние, прибавить двузаме-, щенный фосфат аммония в таком количестве, чтобы в 500 мл раствора содержалось 0,5 г PgOg, осадить магпезйальной смесью, отфильтровать и промыть осадок, как это делается при определении фосфат-ионов (стр. 784). Мешающего влияния железа, сурьмы, олова, алюминия и цинка можно избежать, прибавляя винную кислоту в количестве, достаточном для удержания этих элементов в растворе. Промытый осадок затем растворяют и в полученном растворе, определяют содержание мышьяка любым способом. [c.308]

    Охфеделение превращением мышьяка в арсенат серебра и титрованием методом Фольгарда. Осаждение мышьяка (V) в виде арсената серебра, растворение последнего в азотной кислоте и титрование серебра в полученном растворе методом Фольгарда является очень хорошим споеобом определения мышьяка, особенно пригодным для применения после отгонки мышьяка е соляной кислотой и отделения его в виде сульфида. Германий и те малые количества сурьмы и олова, которые могут в этом случае сопровождать мышьяк, определению не мешают. Этот метод не может применяться для анализа веществ неизвестного качественного состава, так как имеется болыАе число анионов, также осаждающихся в виде солей серебра, например фосфат-, ванадат-, молибДат- и хро мат-йоны. Следует избегать большого избытка аммонийных и натриевых солей. [c.310]

    Выделение малых количеств сурьмы из растворов таких веществ, как медные и молибденовые руды, осаждением их аммиаком совместно с гидроокисью железа (III) является вполне удовлетворительным методом, так же как и аналогичное отделение малых количеств мйшьяка (стр. 308). Соэса-ждение сурьмы с гидроокисью алюминия вместо гидроокиси железа протекает менее удовлетворительно [c.323]

    По-видимому, наиболее точным методом определения сурьмы, когда количество ее превышает несколько миллиграммов, является объемный метод, в котором сурьма (И1) титруется до сурьмы (V) в серно-солянокислом растворе раствором перманганата. Положительной стороной этого метода является то, что после титрования сурьмы тот же раствор может быть использован для иодометрического определения олова (стр. 338). Весовые методы определения сурьмы в виде сульфида сурьмы (И1) ЗЬзЗд или четырехокиси сурьмы SbgO менее удовлетворительны их целесообразно применять лишь в тех случаях, когда содержание сурьмы настолько мало, что ошибки титрования становятся ощутимыми. Очень малые количества сурьмы (0,1 мг и менее) лучше всего определять выделением сурьмы в виде сурьмянистого водорода (стибина) и сравнением окраски, полученной нри действии этого газа на полоску бумаги, пропитанную хлоридом ртути (II), со стандартной шкалой окрасок [c.324]


Смотреть страницы где упоминается термин Сурьма малых количеств: [c.595]    [c.63]    [c.69]    [c.100]    [c.27]    [c.189]    [c.142]    [c.132]    [c.329]    [c.48]    [c.111]    [c.968]    [c.158]    [c.240]    [c.311]   
Судебная химия (1959) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Определение малых количеств сурьмы в электролитах



© 2024 chem21.info Реклама на сайте