Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фишера растворимость

    Прекрасная растворимость нитро- и ацетилцеллюлозы в нитрометане была установлена Эмилем Фишером еще в 1907 г. [152]. [c.317]

    Как и при других процессах, подобных окислению парафинов, в реакцию вступает только та часть кислорода, которая растворена в парафине., Поэтому скорость окисления будет тем больше, чем больший процент кислорода растворится в парафине. Повышение растворимости кислорода в свою очередь почти пропорционально его давлению. Следовательно, окисление протекает тем быстрее, чем выше давление. Фишер и Шнейдер исследовали эту зависимость и получили результаты, приведенные в табл. 121 [64]. [c.451]


    Чистые углеводороды несколько легче растворяются в воде, причем эта растворимость падает по мере увеличения их молекулярного веса для членов одного и того же гомологического ряда С Н2 2, молекулярный вес которых последовательно увеличивается книзу колонки, что видно из данных Фишера (табл. 20). [c.72]

    МПа Фишер получил из каменных углей общий битум (сумма битумов А и В). При дальнейшей обработке его петролейным эфиром получаются твердый (нерастворимый) и маслообразный (растворимый в петролейном эфире) битумы. [c.157]

    Фишер и Шрадер [64] использовали и другой восстановитель — формиат натрия, который при температуре выше 360 °С разлагается с образованием атомарного водорода. При нагревании бурых углей с расплавленным муравьинокислым натрием выход первичной смолы при полукоксовании возрос от 4,6 до 15,6%. Смесь бурых углей с формиатом натрия обрабатывали в автоклаве при 350, 400 и 450 °С в продолжение 3 ч и определяли выход растворимых в эфире веществ в смеси жидких и твердых продуктов, полученных при обработке углей. Авторы установили, что при 350 и 400°С получаются преимущественно масла (28,8 и 44,9%), в то время как при 450°С жидкие продукты составляют 7,97о, а большая часть органической массы углей превращается в газообразные вещества. [c.176]

    Учитывая большую гигроскопичность растворителя ацетон-МТБЭ по отношению к растворителю МЭК-толуол, были проведены эксперименты по снижению его растворяющей способности к воде добавлением толуола. В табл. 12 представлены результаты растворимости воды в растворителе ацетон-МТБЭ-толуол (32 48 20) и в растворителе МЭК-толуол (40 60). Содержание воды определялось по методу Карла-Фишера. [c.17]

    Пурин (т. пл. 216 °С) впервые получен Э. Фишером (1899 г.) при восстановлении 2,6,8-трихлорпурина. Представляет собой растворимое в воде слабое основание (р/Са = 2,4) и образует с кислотами соли. В то же время благодаря наличию МН-группы является слабой кислотой (р/Са =8,9) и образует соли с металлами. [c.601]

Рис. 42. Затворы сосудов растворимости (а, 6) и аппаратов Киппа (в), Геккеля (г) и Фишера (й) Рис. 42. <a href="/info/64465">Затворы сосудов</a> растворимости (а, 6) и <a href="/info/14778">аппаратов Киппа</a> (в), Геккеля (г) и Фишера (й)
    Для определения воды в семенах, зернах злаков и в траве Харт и сотр. [104] проводили экстракцию метанолом. (Эти авторы ранее разработали методику измельчения и экстракции в изолированном объеме для анализа с помощью реактива Фишера.) После оседания суспендированного материала из метанольной вытяжки отбирали прозрачную пробу в кювету длиной 1 см и записывали спектр поглощения в области 1,8—2,0 мкм относительно метанола. Поглощение при 1,93 мкм служит количественной мерой содержания воды. Необходима поправка на фоновое поглощение, его принимают равным поглощению в области около 1,8 мкм, где отсутствует поглощение воды. Содержание воды определяют по градуировочному графику, построенному по поглощению растворов метанола с известным содержанием воды. Стандартное отклонение составляло 0,24% для 65 анализов влажности зерна (в том числе пшеницы, кукурузы, овса, ячменя, сорго и риса), семян масличных культур (льняное семя, соя, арахис), пищевых бобов, трав (люцерна, овсяница, клевер) и семян овощных культур (огурцы, редис, лук, свекла и салат). Содержание воды колебалось от 3,4 до 18,5%, и результаты анализа удовлетворительно сходились с данными титрования реактивом Фишера. По-видимому, в анализируемых материалах не содержалось растворимых в метаноле веществ, наличие которых препятствовало бы проведению измерений при 1,93 мкм. Главная погрешность анализа, вероятно, обусловлена различием температур в рабочей и сравнительной кюветах и наличием суспендированных частиц в метанольном экстракте. Различие температуры в 13 °С приводит к ошибке определения, равной примерно 5% (отн.). Ниже приведены данные, иллюстрирующие ошибки при определении воды в экстракте соевых [c.444]


    Содержание растворимых смол определяется путем быстрого испарения крекинг-бензинов в условиях, при которых не происходит дальнейшего окисления и смолообразования. Быстрое испарение крекинг-бензинов в струе пара как будто является операцией, полностью удовлетворяющей вышеупомянутым условиям. Этот метод может применяться для определения растворимых смол. Ганн, Фишер и Блек-вуд [25] показали, что в этом определении струя пара может быть заменена струей воздуха без заметного окисляющего действия при условии, если время опыта будет коротким. Испытание производится в фарфоровой или стеклянной чашке. Применение металлических чашек не рекомендуется вследствие каталитического действия многих металлов на окисление углеводородов. [c.313]

    Для сульфохлорирования в промышленном масштабе, как это было детально рассмотрено выше, можно применять только продукты синтеза по Фишеру и Тропшу, т. е. когазины I и II и их фракции. Наибольший интерес до сих пор представляет сульфохлорирование когазина II (смесь углеводородов с пределами выкипания 230—320°), так как из сульфохлоридов с этой величиной молекулы при омылении щелочами получают растворимые в воде соли сульфокислот, которые обладают очень хорошими смачивающими и моющими свойствами и которые в широких масштабах используют в качестве сырья для производства моющих веществ. [c.399]

    Остановимся на особенностях применяемого катализатора. Несмотря на то что катализатор твераый, кинетику процесса можно выразить через концентрации газообразных реагентов (парциальные давления), а не как функцию поверхности катализатора, на которой адсорбируются реагенты и продукты реакции (как в случае классического гетерогенного катализа, например, р реакции Фишера — Тропша). Другими словами, оксосинтез можно рассматривать как своего рода гомогенный процесс. Это объясняется тем, что роль катализатора играют группы карбонила кобальта, образующиеся в ходе реакции, растворимые в органических соединениях. [c.218]

    На основании работ Ф. Фишера и Шрадера Г. Л. Стадников приходит к заключению, что . целлюлоза отмершего растения легко и быстро разрушается микроорганизмами без образования при этом гуминовых веществ п что, следовательно, .. . приведенный экспериментальный материал заставляет нас отказаться от прежнего взгляда на целлюлозу, как на материнское вещество ископаемых углей Мы не можем оспаривать столь авторитетное заключение, но считаем необходпмыл привести здесь результат исследовательской работы Н. Д. Штурма который сформулирован так .. . под влиянием аэробных целлюлозу разлагающих бактерий клетчатка превращается в слпзеподобное коллоидальное дисперсное вещество, которое обладает общими свойствами с гумусом почвы коллоидальностью, устойчивостью по отношению к воздействию микробов, содержанием органического азота (следствие автолиза) и растворимостью в разведенных щелочах . Противопоставлением результатов этих исследований мы и ограничимся. [c.330]

    Растворимость газов в нефтяных фракциях зависит от природы газа Фишер и Цербе показали, что нефтяной эфир уд. веса 0,668 при 20 " растворяет 1,34% метана. Более тяжелые бензины растворяют меньше. Давления способствуют растворению. Более тяжелые 1 азы растворяются легче, напр., изобутилен и т. п., но здесь наблюдаются при испарении растворенного газа отступления от закона Генри [см. Гурв1п (403)]. [c.134]

    Экстракция водным раствором метанола 1214, 217—219, 222, 225, 233, 234, 2391, известная под названием метод Метасольван, является чисто физическим процессом. В качестве растворителя применяется водный раствор метанола (70—80 вес. %). Увеличение концентрации метанола повышает растворимость, но снижает избирательность экстракции, кроме того уменьшается разность плотностей метаноловой и масляной фракций, что затрудняет разделение фаз. Кроме фенола, в растворе метанола растворяется еще и некоторое количество компонентов масла (до 20%), которые невозможно отделить путем дистилляции. Чтобы уменьшить содержание этих масел, к метанолу добавляют еще так называемые вспомогательные растворители либо ими промывают ме-таноловую фракцию. Эффективными оказались насыщенные углеводороды с низкими температурами кипения, например гексан, относительно легкие фракции (60—100 Т.), полученные из нефтяного газолина, из продуктов синтеза Фишера—Тропша и даже из жидких продуктов сухой перегонки. Так как из масел при контакте с метаиолом выделяются хлопьевидные осадки, для экстракции пользуются только механическими колоннами [233, 239] или установками типа мешалка—отстойник. [c.416]

    Металлические соли сульфокислот. Соли сульфокислот обычно выделяются из реакционной смеси по одному из двух следующих методов. Реакционная смесь может быть разбавлена водой и нейтрализована углекислым кальцием пли барием с образованием растворимой солп сульфокислоты и нерастворимой сернокислой солп щелочноземельного металла. Соль кристаллизуется прп упаривании фильтрата. Добавлением к фильтрату растворимого в воде сульфата или карбоната можно получить любую другую соль сульфокислоты. Более простой метод, особенно полезный прп получении солей щелочных металлов, заключается в выливании реакционной смеси в крепкий раствор хлорида щелочного м. талла. Растворимость солей ароматических сульфокислот снижается благодаря присутствию избытка хлорида п сорной 1Л1СЛ0ТЫ, оставшейся по окончании сульфирования [7]. По данным Фишера [8], растворимость натриевой соли В-нафталинсульфо-к1 слоты в 5 н. соляной кислоте при 23,9° (2,42 г в 100 г воды) в 2,5 раза меньше, чем в воде (6,0 з в 100 г воды). Повидпмому, II в других минеральных кислотах растворимость меньше, чем в воде. Подробно изучена растворимость натриевой сол т 2-наф-та п1нсульфокислоты в воде при разных температурах, а также в растворах хлористого и сернокислого натрия [9]. [c.198]


    По данным Фишера парафиновые углеводороды от пентана до октана имеют показатели растворимости в воде, пр иведенные в табл. 56. [c.71]

    По Фишеру, прн действии на бензол прн повышенной температуре безводного треххлористого хрома образуется окрашенный в желт1> й цвет катион дибензолхрома [Сг(СбНб)д]+, из которого могут быть получены различные соли. При их восстановлении получается дибензолхром (СсНг,)2Сг, который перегоняется в высоком вакууме при 150° и образует растворимые в бензоле темно-коричневые кристаллы его дипольный момент равен 0. [c.194]

    Несколько менее многочисленны соединения, в которых кобальт входит в состав комплексного аниона. Из них наиболее важными являются гексани-трокобальтаты. Они получаются при взаимодействии раствора смеси нитрата кобальта Со (N03)2, нитрита натрия и уксусной кислоты. В этих условиях образуется растворимая в воде соль, отвечающая формуле Ыаз [Со (N02)6] В присутствии солей калия выпадает Кз [Со (N02)] (соль Фишера) в виде блестящего ярко-желтого осадка, не растворимого в воде, спирте и эфире. Образование соли Фишера или гексанитро-(П1) кобальтата калия может быть представлено следующими уравнениями  [c.375]

    Чистоту препарата проверяют по отсутствию перехода окраски с индикатором при прибавлении не бмее 0,05 мл 0,1 п. раствора соляной кислоты, отсутствию мышьяка, тяжелых металлов не бапее 0,001 о, свободного хлора (пробой с йодидом калия и крахмала), содержанию хлоридов не более 0,01 о, примесей, не растворимых в толуоле не более 0,01 %, влаги не более 0,05% (по Фишеру), сульфатной золы не более 0,01 "о. [c.115]

    Метод выделения алюминия в виде хлорида предложен Гучом и Хэвенсом [748], в дальнейшем усовершенствован другими авторами [715, 716, 1157]. Метод основан на малой растворимости хлорида алюминия в смеси соляной кислоты и эфира, насыщенной хлористым водородом. Оптимальные условия для отделения концентрация эфира в смеси 50% и температура 0° С. По данным Зайделя и Фишера [1157], растворимость AI I3 падает до 0,8 мг А1/100 мл 44,3%-НОЙ H I при 0""С. В 100мл смеси НС1 и эфира (1 I) при 0°С растворимость еще ниже — 0,15 мг алюминия [715]. Метод позволяет отделять алюминий от Ве, Fe(III), Со, Zn, Мп, a,S04, PO-,. Ввиду малой растворимости хлоридов Ni, Mg, К, NHj и Na эти металлы могут присутствовать только в очень небольших концентрациях. Отделение от хрома неудовлетворительно. В присутствии больших количеств титана или ванадия необходимо переосаждение. Методика отделения приводится Гиллебрандом и др. [89]. [c.168]

    В большинстве случаев раздельное извлечение карбоновых кислот (включая окси-, альдегидо- и кетокислоты) и фенолов из смесей органических веществ основано иа различии в их кислотности. Несмотря на то что карбоновые кислоты являются слабыми, они все же сильнее угольной кислоты, и поэтому, взаимодействуя с бикарбонатами и карбонатами щелоч1Ш1Х металлов, вытесняют ее. Фенолы не способны вытеснять угольную кислоту из ее солей и переходят в феноляты лишь в щелочных средах. Соли карбоновых кислот и феноляты в отличие от свободных кислот и фенолов практически нерастворимы в углеводородах и серном эфире [1], но хорошо растворимы в водно-спиртовых и водных средах. Поэтому карбоновые кислоты удается извлечь из их смесей с углеводородами экстракцией водным раствором соды. К- Бауер [2] указывает, что в растворах карбонатов щелочных металлов фенолы нерастворимы. Этот взгляд разделяют и другие исследователи [31. Изучая возможность селективного извлечения карбоновых кислот из продуктов окисления, содержащих фенолы, 10%-ным раствором карбоната натрия, Н. И. Черпожуков и С. Э. Крейн [4] иришли к выводу, что в условиях анализа увлечение фенолов содой настолько незначительно, что не может отражаться на точности результатов. Однако в литературе есть и противоположные указания. Ф. Фишер [5] наблюдал образование фенолятов при кипячении фенолов с раствором соды. Вайбель 6] рекомендует применять бикарбонат, отмечая, что большинство кислот растворимо в 5%-ном растворе бикарбоната натрия, между тем как другие растворимые в щелочах соединения в раствор не переходят за исключением тех, которые растворимы в воде. [c.206]

    Глутаминовая кислота, например, кристаллизуется прямо из концентрированного гидролизата, насыщенного хлористым водородом, цистин и тирозин отделяют благодаря их плохой растворимости в воде. Селективное отделение ароматических аминокислот удается выполнить с помощью адсорбции на активированном угле. Полученную при гидролизе смесь аминокислот лучше всего разделить хроматографически. Выделению отдельных компонентов предшествует обычно разделение на кислые, основные и нейтральные группы аминокислот, при этом большое значение имеют электрофорез и специфические иоиообменники. Раннее распространенные методы разделения, такие, как фракционная перегонка эфиров (по Фишеру), экстракция моноаминокарбоновых кислот н-бутиловым или амиловым спиртом (по Дакину), осаждение гексоновых оснований лизина, аргинина и гистидина фосфорновольфрамовой кислотой или флавиановой кислотой, теперь имеют только второстепенное значение. [c.39]

    В последни.х публикациях Фишер и другие [38, 116—120] сообщили, что они подвергали действию микроорганизмов сле-дуюп(ие виды лигнина феноллигнин бука (15,35% метоксилов) щелочной лигнин пшеничной соломы (14,2% метоксилов) аммонийный лигнин пшеничной соломы (2,1% азота) амиловый н, природный растворимый лигнин ели (14,5% метоксилов) лигносульфонат кальция. [c.699]

    Найдено [10], что при действии хлорокиси фосфора (130—135°) из 3-этил-мочевой кислоты получается 8-хлор-З-этилксантин. Попытки применения хлорокиси фосфора или смеси ее с пятихлористым фосфором для хлорирования самой мочевой кислоты оказались безуспешными [11]. Мочевая кислота слишком плохо растворима в хлорокиси фосфора, а при добавлении пятихлористого фосфора она подвергалась окислительному расщеплению. Однако при нагревании калиевой соли мочевой кислоты с хлорокисью фосфора в запаянной трубке до 160—170° Фишеру 111] удалось получить с выходом 40—50% 2,6-дихлор- [c.235]

    Перед Э. Фишером, поставившим перед собой задачу установить строение и синтезировать все предвидимые теорией химического строения альдогексозы и кетогексозы, возникли значительные трудности. Эти трудности удалось преодолеть. Э. Фишер нашел эффективный реактив для разделения оптических изомеров сахаров. Это был фенилгидразин СбНз—НН—ННг, синтезированный им еще в 1875 г. При действии этого вещества на сахара в определенных условиях образуются озазоны, представляющие собой кристаллические тела, плохо растворимые в воде, легко выделяемые и обладающие характерными свойствами. Метод Э. Фишера оказался весьма удобным и эффективным при индентификации многочисленных изомеров гексоз. Э. Фишеру удалось выделить и синтезировать четырнадцать из шестнадцати возможных альдогексоз и пять, из восьми предвидимых теорией, кетогексоз и установить их строение. При этом он прибегал к упрощенным структурным формулам (метод Проекций) и разработал шестнадцать оптических изомеров альдогексоз в виде восьми пар формул, представляющих зеркальные отображения друг друга (в каждой паре). Если он изображает [c.183]

    Винные кислоты НООССН(ОН)СН(ОН)СООН — бесцветные, растворимые в воде кристаллические вещества с приятным кислым вкусом. Молекулы их содержат два асимметрических углеродных атома с одинаковым набором заместителей известны два оптически активных изомера (+) и (—), оптически неактпвная рацемическая ( )-винная кнслота и оптическая неактивная мезовинная кислота, которую невозможно расщепить на оптические антиподы (см. гл. VII. 3.3). Ниже изображено пространственное строение винных кислот при помощи формул Фишера, клиновидных проекции и формул Ньюмена. Клиновидные проекции изображают два кон( юрме-ра, один из которых соответствует ф ормуле Фишера. Для обозначения стереоизомеров применена / ,5-система  [c.613]

    Для полуколичественного определения воды в порошкообразных веществах применяли силикагель, обработанный хлоридом кобальта(П) и фосфорной кислотой [37 ]. Этот реактив может быть использован и в качестве индикатора влажности. Так, например. Асами [5] показал, что для определения влажности кислорода, особенно если ее значения лежат в интервале 1—2%, удобно применять хлорид кобальта, нанесенный на силикагель. Индикатор влажности для жидкостей, в которых растворимость воды мала, можно приготовить, пропитывая активированный силикагель раствором, содержащим 2—3% СоВга и около 0,5% НВг [67]. Такой индикатор при 44 °С четко, но в то же время обратимо изменяет свой цвет по мере изменения содержания воды во фреоне 114 (дихлортетрафторэтан) от 10 до 20 млн . При уменьшении содержания воды до значения, меньшего чем 15 млн" , цвет индикатора меняется от розового до зеленого, а при достижении прежнего уровня влажности восстанавливается исходная розовая окраска. О пригодности такого индикатора можно судить на основании следующих данных. Титрованием с использованием реактива Фишера было установлено, что содержание воды в образцах фреона 114, окрашивавших индикатор в зеленый цвет, составляло соответственно 6, 9, 11, 14, 15 и 19 млн В образцах, в которых [c.349]

    При определении воды в стироле [1111 или меркаптанах [125] точку помутнения можно наблюдать непосредственно. Лейн [111 ] определял растворимость воды в стироле и наоборот, отмечая момент появления мутности при медленном охлаждении образца. Автор отдает предпочтение титрованию реактивом Фишера и отмечает неплохое совпадение результатов, полученных обоими методами (рис. 11-2). Мацуяма [125] приводит график зависимости обратной температуры помутнения от логарифма содержания [c.540]

    Существует некоторая зависимость между содержанием растворимых смол в крекинг-бензинах и смолообразованием в моторах. Вурхис и Эйзингер [54] и Ганн, Фишер и Блеквуд [25] показали, что бензины, содержащие в 100 см до 10 мг растворимых смол, определенных ис- [c.313]

    Как уже говорилось в сообщении [9], реактив К. Фишера позволяет определять всю воду, содержащуюся в экстракте. Для определения гидратных чисел из общей концентрации воды в экстракте таллия вычитали концентрацию воды в холостом экстракте, полученном в тех же условиях, что и основной экстракт. При этом может быть допущена погрешность вследствие изменения растворимости воды в органическом растворителе в присутствии таллия и соэкстракцпи Li l, е которым также может быть связана вода. Однако, по нашему мнению, такая ошибка мала и не влияет на зависимость гндратного числа от условий эксперимента. [c.112]


Смотреть страницы где упоминается термин Фишера растворимость: [c.215]    [c.166]    [c.288]    [c.133]    [c.91]    [c.479]    [c.523]    [c.524]    [c.235]    [c.282]    [c.314]    [c.194]    [c.767]    [c.120]    [c.539]    [c.125]    [c.333]    [c.92]   
Основы органической химии (2007) -- [ c.44 , c.379 ]




ПОИСК





Смотрите так же термины и статьи:

Фишер



© 2025 chem21.info Реклама на сайте