Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деструкция при многократной деформации

    Кроме того, разрушение эластомеров при многократных деформациях ускоряется механически активированными химическими процессами деструкции полимерных цепей. [c.329]

    В основе механической пластикации лежит деструкция цепных молекул каучука вследствие многократных деформаций растяжения, сдвига и кручения при обработке на оборудовании и действия кислорода воздуха активность которого возрастает с повышением температуры процесса. [c.12]


    Озонирование воздуха в результате разрядов статического электричества при вращении металлических поверхностей валков и роторов оборудования, применяемого при пластикации, увеличивает скорость деструкции каучука. При пластикации натурального каучука, кроме того, происходит механическое разрушение глобул вследствие многократных деформаций сжатия и сдвига. [c.12]

    Деструкцией (старением) полимера называют самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении. Этот процесс может ускоряться под действием света, при частой смене циклов нагрев—охлаждение, под воздействием среды — кислородной или озонной и т. п. Деструкция также может ускоряться под действием многократной деформации материала. [c.108]

    Как мы уже знаем, старение полимеров представляет сумму физико-химических изменений их исходной структуры, под воздействием химических реакций, протекающих под действием тепла, света, радиационных излучений, механических напряжений, кислорода, озона, кислот, щелочей. Эти реакции приводят к деструкции полимерных цепей или их нежелательному, неконтролируемому сшиванию, в результате чего полимеры становятся липкими и мягкими (деструкция) или хрупкими и жесткими (сшивание), а главное—менее прочными. В реальных условиях эксплуатации полимерных изделий на них действует одновременно несколько из перечисленных факторов. Например, солнечный свет, кислород воздуха, озон. Для стран с жарким климатом на это накладывается еще повышенная температура, влажность. При работе многие полимерные изделия разогреваются (иаиример, при многократных деформациях эластомеров) или используются для работы в условиях повышенных температур, в результате чего интенсивно развиваются термическое и термоокислительное старение полимеров. [c.201]

    Разрушение вулкаиизатов при многократных деформациях наступает значительно быстрее, чем при их статическом нагружении в сопоставимых условиях. Это, несомненно, является результатом механической активации разрушения. Большой интерес представляет сопоставление изменения работоспособности вулкаиизатов с повышением температуры в среде кислорода и азота. Начиная с 60 °С механическая активация способствует быстрому развитию окислительной деструкции, что проявляется в громадном различии (в десятки раз) работоспособностей вулкаиизатов в двух средах. Эти данные находятся в согласии с приведенными выше результатами по термомеханической активации окислительных процессов при пластикации. [c.238]


    Окислительная деструкция НК и его вулканизатов при хранении и эксплуатации вызывает так называемое старение, т, е, уменьшение прочности, эластичности при многократных деформациях и ухудшение других технических свойств. Процессы пластикации и вулканизации, старения и утомления в значительной степени зависят от химического состава товарного каучука (табл, 1-6), [c.29]

    Защищает резины от воздействия тепла, солей металлов (меди и марганца) и от растрескивания под влиянием атмосферных факторов. Особенно эффективно защищает бт разрушения при статических и многократных деформациях. Защищает бутадиен-стирольный каучук от деструкции при его получений. Окрашивает резину и контактирующие с ней материалы в коричневый цвет. Выцветает при содержании более 1 вес. ч. Несколько ускоряет процесс вулканизации. Используется в темных резинах из натурального и бутадиен-стирольных каучуков. Особенно рекомендуется для изделий, подвергающихся многократным деформациям. Во избежание выцветания вводят до 1, а иногда до 2 вес. ч. [c.354]

    В случае пространственно-структурированных полимеров изменение их структуры при механических воздействиях можно оценить по изменению величины равновесного набухания в соответствующей жидкости. Действительно, изучение набухания ненаполненных вулканизатов бутилкаучука и натурального каучука показало, что в результате действия многократных деформаций сдвига одноосного сжатия или растяжения способность к набуханию в значительной степени изменяется. Вулканизаты бутилкаучука в результате механического воздействия значительно повышали величину предельного набухания в вазелиновом масле. Вулканизаты натурального каучука после длительных многократных деформаций повышали степень набухания в полярных жидкостях и уменьшали ее в неполярных (например, в вазелиновом масле). При этом переход от возрастания набухания к его уменьшению происходил при тем большей полярности жидкости, чем более длительно деформировался вулканизат. Таким образом, в отличие от вулканизатов бутилкаучука вулканизаты натурального каучука в результате механической деструкции становятся более полярными веществами, что указывает на развитие реакций окисления каучука в процессе деформации. [c.318]

    В качестве примера того, насколько хи-мически более активны механические воздействия при переработке по сравне-нию с деформациями высокоэластичных тел в условиях эксплуатационных режи-MOB, заметим, что описанная в табл. 35 деструкция полиизобутилена под действием многократных деформаций, длившаяся одну-две недели, может быть достигнута за 20—30 мин. вальцевания. [c.325]

    В ряде случаев при деформировании под влиянием приложенных напряжений происходит деструкция полимера. Возникающие при этом свободные радикалы вступают в различные химические реакции, что может приводить к образованию разветвленных и даже пространственных полимеров. Вследствие большой вязкости полимеров вероятность столкновения радикалов, способных реагировать друг с другом, мала. Поэтому при однократной деформации процесс структурирования полимера протекает сравнительно медленно. Многократная деформация образца повышает вероятность столкновения радикалов и, следовательно, ускоряет структурирование. Таким образом, чтобы предотвратить утомление полимерных материалов, необходимо создать условия, при которых было бы невозможно образование свободных радикалов. [c.201]

    Общей чертой, характерной для пластикации и утомления, является развитие механически активированных химических процессов, в особенности окислительных. Если при пластикации значителен вклад механического инициирования, обусловленного механической деструкцией молекулярных цепей, то при утомлении, даже при самых жестких режимах механического воздействия, роль механической деструкции невелика. Было показано что полиизобутилен при многократных деформациях в вакууме деструктируется и его молекулярный вес снижается в 6 раз при 75 °С. Однако поведение полиизобутилена является весьма специфическим, так как его молекулярные цепи ослаблены внутренними напряжениями и деструктируются даже при слабом механическом воздействии. [c.48]

    В зависимости от свойств каучуки подвергают механической или термоокислительной пластикации. В основе процесса механической пластикации лежит деструкция цепных молекул каучука вследствие многократных деформаций растяжения, сдвига и кручения при обработке на оборудовании и действия кислорода воздуха, активность которого возрастает с повышением температуры процесса. [c.9]

    Озонирование воздуха в результате разрядов статического электричества при вращении металлических поверхностей валков и роторов оборудования, применяемого при пластикации, увеличивает скорость деструкции каучука. При пластикации натурального каучука, кроме того, происходит механическое разрушение глобул вследствие многократных деформаций сжатия и сдвига. Механическое воздействие на каучук наиболее эффективно при низких температурах (30—50 °С), так как при этом подвижность молекул каучука незначительна. При повышении температуры ускоряется окислительная деструкция молекул. Продолжительность пластикации зависит от свойств каучука, его первоначальной и конечной заданной пластичности, выбора оборудования, температуры процесса. [c.9]


    В зависимости от условий эксплуатации один из этих факторов может стать превалирующим. Так, в случае приложения больших напряжений при разрыве, при действии концентраторов напряжений главную роль играют процессы физического (механического) разрушения без активного воздействия окружающей среды. При длительном воздействии небольших напряжений в статических условиях, при многократных деформациях, износе, особенно в присутствии активной среды, существенными становятся процессы взаимодействия эластомера в первую очередь с кислородом, озоном, влагой воздуха или со специфической средой, в которой он эксплуатируется. Это взаимодействие активируется наложенным напряжением как за счет увеличения вероятности процессов деструкции полимера, так и, в меньшей степени (из-за малого действующего напряжения), за счет снижения энергии активации реакции. Образующиеся при интенсивном механическом воздействии (утомление, износ) свободные полимерные радикалы участвуют во вторичных процессах, которые могут усугублять разрушение. [c.221]

    После облучения всех видов волокон в результате значительной деструкции уменьшаются модуль и устойчивость волокна к многократным деформациям. [c.134]

    Зависимость механических свойств волокон от степени полимеризации полимера на иболее отчетливо выявляется у природных волокон, для которых возможность изменений конфигурации макромолекул и их взаимного расположения путем вытягивания ограничена. При одной и той же структуре полимера степень полимеризации оказывает существенное влияние на основные показатели волокна — прочность при разрыве (см. стр. 112), удлинение, стойкость к многократным деформациям и истиранию. С уменьшением степени полимеризации (в результате частичной деструкции макромолекулы) до известного предела прочность природных волокон не изменяется при дальнейшем уменьшении происходит закономерное, все более значительное ухудшение этого показателя, а ниже определенного значения волокно полностью теряет прочность и рассыпается. [c.32]

    Во всех случаях многократных деформаций имеет место разрыв макромолекул. Уменьшение молекулярного веса полимера в процессе многократных деформаций наблюдалось как на примере полиизобутилена [23], так и на примере капронового волокна [14]. Обрыв макромолекул сопровождается образованием реакционноспособных свободных радикалов. Образовавшиеся свободные радикалы могут приводить к деструкции полимера вследствие рекомбинации или взаимодействия с низкомолекулярными веществами. Реагируя с соседними цепями, свободные радикалы вызывают структурирование полимера. Возможны случаи, когда свободные радикалы инициируют окислительные цепные процессы, приводящие либо к деструкции, либо к структурированию. В настоящее время механохимические явления, сопровождающие утомление полимеров, изучены достаточно подробно. [c.286]

    В процессе хранения и эксплуатации изделий из полимеров под действием света, теплоты, радиоактивных излучений, кислорода, различных химических вешеств может происходить излишне глубокое сшивание макромолекул, которое также является причиной ухудшения свойств полимера появляется хрупкость, жесткость, резко снижается способность к кристаллизации. В итоге наблюдается потеря работоспособности изделий из полимеров. Поэтому проблема защиты полимеров от вредных воздействий различных структурирующих и деструктирующих факторов имеет самое актуальное значение. Нежелательное изменение структуры полимеров увеличивается при приложении к ним неразрушающих механических напряжений, приводящих к развитию деформаций. Особенно этот эффект заметен при приложении многократно повторяющихся механических напряжений. При этом протекает деструкция и сшивание цепей, образуются разветвленные структуры, обрывки беспорядочно сшитых макромолекул, что изменяет н целом исходную молекулярную структуру полимера. Все эти нежелательные изменения приводят к старению полимеров. [c.239]

    Отклонения от принципа аддитивности связаны с особенностями химич. и физич. процессов, протекающих в полимерном теле при циклич. нагружении. Для полимеров в высокоэластич. состоянии несоблюдение принципа аддитивности обусловлено в основном химич. процессами — термомеханич. деструкцией и различными реакциями образующихся при этом свободных радикалов. Кроме того, при нагружении существенно ускоряется химич. взаимодействие полимера со средой и с ингредиентами композиции из-за понижения в механич. поле энергии активации химич. реакций (см. Механохимия). Вероятность реакций свободных радикалов велика из-за высокой подвижности сегментов гибких макромолекул. При циклич. нагружении многократное изменение величины и знака деформации еще более повышает вероятность этих процессов. Поэтому для эластомеров число циклов нагружения влияет на У. значительно сильное, чем время нагружения, и выносливость практически не зависит от частоты, т. е. Я,- 0. [c.350]

    Механизм износа. Износ — сложный вид разрушения матерпала, связанный со спецификой как поверхностных слоев, так и процессов, происходящих в местах контакта с истирающим контртелом. Износ полимерных материалов осложняется спецификой их поведения при механич. нагружении, ролью физич. состояния и его связью с режимом нагружения, механизмом деформирования, процессами деструкции и т. д. Материал изнашивается вследствие неровностей, всегда имеющихся на поверхности трения. В местах контакта неровностей возникают местные напряжения и деформации. При скольжении происходит многократное нагружение зон контакта и их усталостное разрушение. Число актов нагружения, необходимых для разрушения, зависит от исходной прочности материала, его сопротивления утомлению и от условий нагружения и может достигать миллиона. При этом износ идет как фрикционно-контактный усталостный процесс. В частном случае, когда контактные напряжения достигают исходной прочности материала (либо материал непрочен, либо велико воздействие), разрушение происходит за один или несколько актов воздействия. При этом наблюдаются наиболее интенсивные виды износа, различающиеся способом отделения частиц абразив-н ы й, когда велико внедрение выступов контртела (микрорезание), и когезионный, когда уд. силы трения достигают прочности ( схватывание — для твердых тел, скатывание — для резин). Различные виды износа характеризуются разной картиной поверхности истираемого полимера (рис. 1). [c.455]

    В случае многократных механических воздействий с постоянной амплитудой деформации деструкция (или структурирование) будет приводить к снижению (повышению) напряжений и, следовательно, к замедлению (ускорению) разрушения тела. Наоборот, в случае режима воздействия с постоянной амплитудой напряжения деструкция (структурирование) будет уже приводить к повышению (уменьшению) величины амплитуды деформации и, следовательно, к ускорению (замедлению) разрушения. [c.319]

    При многократных деформациях происходят механохимиче-ские реакции деструкции макромолекул. В полимере всегда существуют микронеоднородности структуры как в виде трещин и механических включений, так и в виде захлестов, переплетений макромолекул, которые испытывают фактически более высокое напряжение, чем среднее в образце. Это облегчает механодеструкцию. [c.210]

    Стабилизаторы применяют для защиты иолимеров от старения. Основные виды стабилизаторов антиоксиданты, к-рые являются ингибиторами термической деструкции и термоокислительной деструкции антиозонанты — ингибиторы озонного старения светостабилизаторы — ингибиторы фотоокислителъной деструкции антирады — ингибиторы радиационной деструкции. К стабилизаторам отпосятся также и про-тивоутомители — вещества, повышающие усталостную выносливость резни при многократных деформациях. [c.421]

    Наиболее характерными примерами сильного влияния напряжения на поведение эластомеров являются катастрофиче-С7<ое разрушение растянутых резин из ненасыщенных каучуков под действием следов озона при практически неизменных их свойствах в результате контакта с ним ненапряженных резин [5, 7] и резкий сдвиг температуры хрупкости резин в сторону уменьшения при растяжении и некоторое ее повышение при сжатии по сравнению с недеформированными образцами. Отсюда очевидно, что характер напряжения также играет существенную роль. По действию агрессивных жидкостей на механические свойства предложена различная классификация резин по их стойкости при растяжении, сжатии, многократных деформациях, трении по гладкой поверхности [9]. Изменение механических свойств, однако, является конечным результатом влияния напряжений на направление химических реакций, в том числе иа соотношение процессов деструкции и структурирования,-на диффузию ингредиентов [10], что проявляется, например, в различной скорости старения разных участков резин, находящихся в сложно-напряженном состоянии [И], на разрушение и образование физических структур, в частности на развитие процессов кристаллизации [12]. [c.9]

    В процессе многократных деформаций поверхностного слоя при одновременном воздействии повышенных температур и кислорода воздуха происходит ме-ханохимическая и термоокислительная деструкция и структурирование полимера, разрушение сажевых и каучукосажевых структур и другие изменения молекулярной и надмолекулярной структур. Анализ крошки, образовавшейся при истирании, свидетельствует о глубоких химических изменениях поверхностного слоя резины, связанных с окислением каучука, деструкцией молекулярных, цепей и вторичным структурированием. [c.79]

    Механохимические явления при многократной деформации эпастомеров Общей чертой, характерной дпя поведения эпастомеров при многократной деформации (утомлении) является развитие механически активированных химических процессов, в особенности окислительных. Если при пластикации - процессе многократной деформации эпастомеров на стадии переработки - значителен вклад механического инициирования, обусловленного деструкцией молекулярных цепей, то при утомлении роль механической деструкции снижается, а число свободных радикалов при каждом цикле деформации ничтожно Е50, 703- [c.129]

    Явление механической активации окислительных процессов в вупканизатах при многократных деформациях впервые описано в 1950 г. [77, 783 при ж -следовании влияния многократных деформаций на скорость расхода ингибитора, избирательно реагирующего с пероксидными радикалами, и расхода стабильного радикала, избирательно реагирующего со свободными радикалами при атоме углерода, установлено активирующее влияние амплитуды и частоты деформации на кинетику окислительного процесса, протекающего без предварительной деструкции молекулярных цепей. При многократных деформациях вулканизатов снижается энергетический барьер их окисления  [c.129]

    Приложение напряжения, даже если его значение ниже критического, может вызвать разрыв полимерных цепей вследствие термоокислительной деструкции полимера, активируемой действием механических сил, которые еще до разрыва цепи вызывают изменение валентных углов, увеличение межатомных расстояний, увеличение потенциальной энергии цепи. Деформированные связи находятся в более высоком энергетическом состоянии и поэтому более реакционноспособны. Таким образом, разрушение молекул полимеров под действием напряжений легче протекает в присутствии кислорода и других химически активных веществ [446, 900, 901, 1125, 1126]. Как известно из технологии резины, началу озонного растрескивания благоприятствуют высокие напряжения [508]. При усталостных испытаниях резин было установлено, что приложение напряжения также интенсифицирует окислительную дрртрукцию. Если образец резины не растянут, окислительные реакции протекают главным образом на поверхности. Если же он растянут, может произойти растрескивание материала, способствующее более интенсивному окислению. Например, на воздухе процесс образования трещин при многократной деформации происходит в 4 раза быстрее, чем в атмосфере азота. Этот вопрос был рассмотрен в [448]. [c.18]

    Деструкция полимера по закону случая и деполимеризация могут протекать при нагревании полимера термическая деструкция) действии на него света фотодеструкция)] радиации с высокой энергией радиационная деструкция)-, деформации сдвига, ультразвука, многократного и быстрого замораживания полимерного раствора, перемещивания с высокой скоростью механодеструкция)-, химических агентов хемодеструкция)-, ферментов, бактерий, грибков биодеструкция). [c.237]

    Подобные же результаты были получены для натурального и бутилкаучуков. В случае полимеров с пространственной структурой изменения при воздействии механических сил могут быть оценены, как ни странно, по равновесному набуханию в определенных растворителях. Так, изучение набухания ненаполнен-ных вулканизатов бутилкаучука или натурального каучука, подвергнутых деформациям сдвига, одноосного сжатия или растяжения, выявляет заметное изменение способности к набуханию и разрыву поперечных связей, способствующее проникновению растворителя между молекулярными цепями. Способность к набуханию вулканизатов бутилкаучука в вазелиновом масле сильно повыщается после механических воздействий. В случае вулканизатов натурального каучука после многократных продолжительных деформаций степень набухания растет в полярных жидкостях и уменьшается в неполярных (например, в вазелиновом масле). Следовательно, в отличие от вулканизатов бутилкаучука вулканизаты натурального каучука вследствие механической деструкции становятся более полярными, что указывает на развитие реакций окисления во время процесса деформации. [c.188]

    При многократных механических воздействиях с постоянной величиной деформации деструкция уменьщает напряжения в материале и соответственно замедляет его разрущение структурирование вызывает противоположные эффекты. При постоянных нагрузках деформация увеличивается, способствуя быстрейшему разрушению нагруженного тела. Очевидно, при низком содержании макрорадикалов и при большом содержании ингибитора инициирование нежелательной химической реакции будет невозможно, и нри разрыве даже большого числа макромолекулярных цепей существенных изменений свойств полимеров не будет происходить. Однако для разрушения полимерных материалов валены не столько непрерывные изменения структуры в целом, сколько структурные изменения, внезапно возникающие в определенных микрообластях, даже если последние и малочисленны. [c.189]

    Деструкция поли.меров происходит при самых разнообразных механических воздействиях. Еще в 1934 г. Штаудингер установил, что при многократном пропускании растворов полимеров через капилляр вязкость раствора вследствие деструкции макромолекул уменьшается, Ме-ханическая деструкция протекает также при раз.моле, вальцевании, интенсивном перемешивании растворов полимеров скоростными. мешалками. Полимеры деструктируются под действием ультразвука, при заморая<и-ванш в водной среде, а также при деформации изделий в -процессе эксплуатации. [c.281]


Смотреть страницы где упоминается термин Деструкция при многократной деформации: [c.254]    [c.193]    [c.234]    [c.195]    [c.90]    [c.614]    [c.371]    [c.447]    [c.447]    [c.178]    [c.458]    [c.178]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.286 ]




ПОИСК







© 2024 chem21.info Реклама на сайте