Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия вакуумная

    Наконец, подставив (52,29) в (52,23) и сравнив с (52,26), найдем энергию вакуумного состояния новых невзаимодействующих элемен гарных возбуждений [c.233]

    Длина волны, при которой органическая молекула поглощает излучение, зависит от того, насколько прочно связаны с ней различные электроны. Так, спаренные электроны одинарной связи, такой как углерод — углерод или углерод — водород, удерживаются прочно и для их возбуждения необходима энергия вакуумного УФ-излучения (Ж 180 нм). Получить спектр в этой области не так просто, поскольку здесь поглощают компоненты атмосферы по этой причине поглощение одинарной связью не имеет большого значения в аналитической практике. [c.140]


    Большие экономические преимущества достигаются при строительстве комбинированных установок первичной перегонки нефти, включающих ряд технологически и энергетически связанных процессов ее подготовки и переработки. Такими процессами являются электрообезвоживание, электрообессоливание, атмосферная перегонка нефти, вакуумная перегонка мазута, стабилизация легких бензинов, абсорбция газов, выщелачивание компонентов светлых продуктов, вторичная перегонка бензиновых фракций и др. Иногда процессы первичной перегонки комбинируют со вторичными процессами— каталитического крекинга, коксования и др. При комбинировании процессов на нефтеперерабатывающих заводах достигается компактное размещение объектов основного производства, уменьшается количество технологических и энергетических коммуникаций, сокращается объем энергетического, общезаводского хозяйства, уменьшается число обслуживающего персонала. На комбинированных установках удельные расходы энергии, металла, капитальных вложений по сравнению с предприятиями с индивидуальными технологическими установками намного меньше. [c.8]

    Топливоснабжение. Топливо на установках АВТ расходуется в большом количестве и является основным видом энергии, обеспечивающим проведение процессов перегонки. На установках первичной перегонки топливо сжигается в печах блоков атмосферной перегонки нефти, вакуумной перегонки мазута, в блоках стабилизации легких бензинов и вторичной перегонки широкой бензиновой фракции. [c.200]

    В связи с введением промежуточных циркуляционных орошений в колоннах атмосферной перегонки нефти и вакуумной перегонки мазута установок АТ и АВТ появились новые источники тепловой энергии с большим содержанием потенциального тепла. [c.207]

    Как было отмечено выще, тепловая энергия горячих нефтепродуктов на установках АВТ используется также для подогрева химически очищенной и промышленной теплофикационной воды. Например, на установке АВТ производительностью 3 млн. т/год нефти за счет тепла гудрона нагревается 111 ООО кг/ч теплофикационной воды с 70 до 130 °С. На этой же установке за счет тепла третьего циркуляционного орошения вакуумной колонны дополнительно нагревается в таких же температурных пределах 19 800 кг/ч теплофикационной воды. Теплофикационная вода в зимних условиях отапливает промышленные и коммунально-бытовые помещения тем самым исключается расход большого количества пара низкого и среднего давления. [c.215]


    Шумана — Рунге). Слабые поглощения имеются в области Л<С <240 нм. Воздух и насыщенные углеводороды начинают поглощать лучистую энергию в далекой УФ- и вакуумной областях-спектра при длинах волн, меньших чем 200 нм. Все это давало-основание исследователям считать, что излучение не имеет существенного значения для пламенных систем [145]. Однако проведенные в последние годы исследования взаимодействия электромагнитных волн с каким-либо веществом, выполненные с использованием лазерной техники, позволяют пересмотреть-ранее высказывавшиеся представления о роли излучения в пламенах. [c.115]

    Электромагнитная радиация, проходящая через вещество, поглощается при определенных энергетических уровнях в молекулах [174]. Существует хорошая интерпретация для результатов, полученных с легкими углеводородными газами и парами в вакуумном ультрафиолете (область Шумана). Цас- и тракс-изомеры легко различаются и идентифицируются [175] были получены значения потенциалов ионизации [176—177] и энергий диссоциации [178], которые хорошо совпадали с данными, полученными с помощью масс-спектрометра. [c.188]

    Расход энергии уменьшается в результате снижения энергетических затрат на вакуумную перегонку (применительно к сырью установки Мозырского НПЗ необходимый отбор дистиллятов уменьшается с 50 до 36% на мазут, причем большая часть фракций отгоняется на стадии окисления мазута), уменьшения объема вовлекаемого в переработку мазута при сохранении выработки битума, уменьшения объема перекачивания дистиллятов и орошений. Экономия энергии на вакуумном блоке превышает ее повышенный расход на блоке окисления (где используются двухсекционные колонны по типу установки Павлодарского НПЗ), вызванный необходимостью окисления более легкого сырья — мазута. Кроме того, по новой последовательности операций полнее утилизируется вторичное тепло, а топливо в окислительной колонне (окисление мазута с одновременным нагревом его перед вакуумной перегонкой) сжигается с более высоким к.п.д., чем в технологической печи. [c.126]

    В эксперименте УФС в качестве ионизирующего излучения используют вакуумный ультрафиолет обычно источником такого излучения является гелиевая [однократно ионизованный гелий, обозначаемый как Не(1)] резонансная лампа с энергией 21,21 эВ. Однако можно применять и другие разрядные лампы, например лампу Аг (I) или лампу с двукратно ионизованным гелием, Не(П). Энергия этих ламп ограничивает УФС исследованиями валентных электронов как правило, измерения проводят с использованием газообразных образцов. Известно несколько работ, посвященных исследованию растворов [29] и твердых веществ [30]. [c.333]

    Влияние соотношения давлений пермеата и исходного газа на концентрацию кислорода в пермеате для мембран с различной селективностью к кислороду представлено на рис. 8.27 [16, 81]. Из анализа рисунка понятно, почему для работы мембранной установки в режиме получения обогащенного кислородом потока предпочтительнее вакуумная схема — можно достичь высоких концентраций кислорода в пермеате. Кроме того, уменьшаются и затраты энергии — меньшая часть потока — пермеат — подвергается сжатию. [c.309]

    Электрический баланс средств обеспечения и средств управления печным процессом рассчитывают, исходя из расхода ее на работу всего механического оборудования печного комплекса, работающего на электрической энергии вентиляторы, дымососы, насосы, вакуумные установки, компрессоры, приводные механизмы транспортных средств, заслонок, задвижек, загрузочных и разгрузочных устройств, механизмы перепуска электродов и т. д., по паспортным и расчетным данным. [c.144]

    В однокорпусной выпарной установке на упаривание 1 кг воды расходуется около 1 кг пара. Стоимость тепловой энергии высока (до 0,966 руб. за 10 кДж тепла, исчисляемых по энтальпии пара), поэтому процесс выпаривания ведут таким образом, чтобы соковый пар первого корпуса установки являлся греющим для второго корпуса и т.д. Однако для этого нужно, чтобы температура греющего пара в каждом корпусе была выше температуры кипения раствора, т.е. необходимо переменное давление по ступеням. Отсюда возможны две основные схемы многокорпусных выпарных установок вакуумные и работающие под избыточным давлением. Каждая из этих схем обладает определенными преимуществами и недостатками. [c.21]

    Энергия расходуется на ожижение азота, работу вакуумного насоса и сжатие водорода. [c.82]

    Есть несколько способов осаждения металлических покрытий в вакууме, но наиболее производительно термическое осаждение (испарение) металлов. Испаритель с металлом для покрытия помещают в вакуумную камеру. К испарителю подают тепловую энергию обычно с помощью электронно-лучевой пушки, металл разогревается до температуры, при которой давление его паров достигает 1,33 Па. Стальная полоса непрерывно движется над испарителем, и пары металла, конденсируясь, образуют на ней плотное однородное покрытие. Одно из важных достоинств вакуумной металлизации — отсутствие горячих и вредных цехов, большого количества сточных вод, что устраняет вредное влияние на окружающую среду, повышает культуру производства и улучшает санитарно-гигиенические условия труда. Однако вакуумный способ нанесения покрытий требует применения дорогого и сложного оборудования, что связано с техническими трудностями и требует высокой квалификации обслуживающего персонала. [c.82]


    Принцип работы отбойных устройств следующий. Поток пара вместе с диспергированной в нем жидкостью, встретив на пути элемент отбойника (пластину, уголок, проволоку и т. д.), теряет часть кинетической энергии. В результате из потока на поверхностях отбойного элемента выделяются капли жидкости, которые затем коагулируют (укрупняются) и стекают с них вниз. Капли жидкости, находящиеся в потоке паров, не встречавшемся с поверхностями отбойного элемента, а также капли, частично уносимые потоком паров, обтекающим эти поверхности, встречают на пути второй ярус отбойных элементов, обычно расположенных в створе между элементами первого яруса. Число таких ярусов (слоев) отбойных элементов зависит от скорости паров в колонне и количества жидкости в них, типа технологического процесса (первичная перегонка, вакуумная перегонка и т. д.), а также от площади свободного сечения всех отбойных секций. [c.149]

    Этот вывод подтверждается приведенными в работе [46] данными по крекингу гидроочищенного вакуумного дистиллята. При жестких условиях реакции и высокой конверсии сырья кажущаяся энергия активации крекинга составляет 7,5 кДж/моль, что указывает на наличие внутридиффузионно о торможения. При этом в области высокой конверсии сырья непревращенными остаются менее реакционноспособные полициклические ароматические углеводороды (сумма ароматических углеводородов в остатке достигает 80—95% масс.), для которых наиболее вероятно диффузионное торможение. Полученные результаты свидетельствуют та кже о росте степени диффузионного торможения по мере повышения конверсии сырья за счет накопления полициклических углеводородов. [c.105]

    В настоящее время в отечественной и, зарубежной практике действует ряд комбинированных установок различного назначения с разными принципами работы. Весьма эффективны комбинированные установки по производству топлив и сырья для нефтехимии из вакуумных дистиллятов и мазута, включающие блок каталитического крекинга. Наиболее простым вариантом комбинированной схемы является сочетание вакуумной перегонки мазута, каталитического крекинга вакуумного дистиллята, ректификации продуктов крекинга и газоразделения. Подобная схема с большей или меньшей степенью рационального использования тепла и энергии, с исключением промежуточных резервуаров и перекачек применяется на многих НПЗ. [c.261]

    Существует несколько типов переходов. Возможны переходы со связывающей орбитали в основном состоянии на орбиталь с более высокой энергией это обычно переходы между о-орбиталями о->о -переходы, и между л-орбиталями я->л -переходы. Переходы а а наблюдаются в вакуумной УФ-области. Переходы наблюдаются начиная со 180 нм и выше причем полосы, соответствующие данным переходам, часто называют К-полосами их отличает высокая интенсивность поглощения (1 е 4). [c.8]

    В вакуумных плазменно-дуговых печах рекомбинационное излучение, поглощаемое охлаждаемым ограждением печи, несколько уменьшает коэффициент полезного использования энергии. [c.233]

    Благодаря регенерации тепла горячих потоков тепловая нагрузка печей уменьшается на 20—25%. Более эффективное использование тепла горячих потоков достигается при совмещении процессов, например электрообессоливания и атмосферно-вакуумной перегонки на установках ЭЛОУ—АВТ (рис. 1.49). Для нагрева нефти перед электродегидраторами необходимо затратить много тепловой энергии. Так, на установке производительностью 3 млн. т в год нефти для электрообессоливания при 115°С требуется 21,9 млн. Вт тепла, а в случае обессоливания при 180°С — 40,8 млн. Вт. На установке ЭЛОУ— АВТ производительностью 3 млн. т в год нефти от горячих нефтепродуктов в теплообменниках снимается около 71,1 млн. Вт (согласно проектным данным). При оптимальных теплообменных схемах температура нагрева нефти достигает 250 °С и выше. Благодаря утилизации тепла горячих нефтепродуктов значительно уменьшается расход охлаждающей воды. [c.139]

    Электронные спектры поглощения многоатомных молекул. Электронные спектры поглощения многоатомных молекул представляют собой набор полос поглощения. Каждая полоса соответствует переходу между электронными уровнями. В соответствии с энергиями электронных переходов электронные спектры делятся на спектры в вакуумной ультрафиолетовой, в ультрафиолетовой и в видимой частях спектра (см. табл. 1). [c.27]

    Осуществление а а -переходов требует наибольшей энергии возбуждения соответствующие полосы поглощения наблюдают в вакуумной ультрафиолетовой области при V > 50 ООО см" (А,-< 200 нм). Поглощение света в видимой области и поглощение ультрафиолетового излучения в ближней ультрафиолетовой области являются доказательством я- или п-электрон-ного состояния. Такие функциональные группы, как [c.229]

    Электронные спектры несопряженных систем, В спектрах соединений, в молекулах которых отсутствуют мезомерные эффекты, можно наблюдать полосы поглощения, соответствующие отдельным электронным переходам. В насыщенных углеводородах, как известно, встречаются только а-связи. Поэтому эти соединения поглощают в вакуумной ультрафиолетовой области при частотах выше 5-10 см (например, СаНа при 74 ООО см" - 135 нм). Поскольку я-электронные состояния возбуждаются легче, изолированная двойная связь этилена проявляет себя в полосе поглощения на границе вакуумного ультрафиолета при частоте примерно 55 000 см- - ( 180 нм). Насыщенные соединения с гетероатомами поглощают при несколько меньших волновых числах, чем обычные насыщенные углеводороды. Энергия [c.232]

    Для вычисления энергии вакуумного состояния системы (т. е. состояния без новых элементарных возбуждений), надо подста- вить в (52,14) значения (52,12) и результат приравнять (52,10) тогда получим [c.231]

    Одноступенчатый процесс гидрокрекинш вакуумных ДИС-.. тиллятов проводится в многослойном (до пяти слоев) реакторе с несколькими типами катализаторов. Для того, чтобы градиент темпере тур в каждом слое не превышал 25 °С, между отдельными слоями катализатора предусмотрен ввод охлаждающего ВСГ (квенчинг) и установлены контактно —распределительные устройства, обеспечивающие тепло— и массообмен между газом и реагирующим ПОТС ком и равномерное распределение газожидкостного потока над слоем катализатора. Верхняя часть реактора оборудована гасителями кинетической энергии потока, сетчатыми коробками и фильтрами для улавливания продуктов коррозии. [c.239]

    Тепловые ресурсы охлаждающей воды. Уходящая из конденсаторов и холодильников нагретая вода является источником большого количества низкопотенциального тепла. В случае оборотной системы водоснабжения вода поступает в технологические аппараты при 25—26 °С и уходит при 45—50 °С и выше. Размер тепловой энергии, содержащейся в сбрасываемой в канализационную систему воды, зависит от ее расхода. Так, на установке ЭЛОУ — АВТ производительностью 3 млн. т/год нефти охлаждающая вода уносит в канализацию около 70 Гккал/ч низкопотенциального тепла. На охлаждение отработанной охлаждающей воды до первоначальной температуры (25—26°С) в системе оборотного водоснабжения требуется большое количество дополнительной энергии. Кроме конденсаторов и холодильников вода расходуется в электродегидраторах обессоливающей установки (100—110°С), а также подается в барометрические конденсаторы узла вакуумной перегонки мазута (60—70 °С). В настоящее время тепловая энергия горячей воды применения на нефтезаводах не находит. [c.212]

    Возможно даже, что более много обещающей и интригующей тонкой структурой в спектрах РФС является структура, связанная с процессом встряхивания . Было бы очень удивительно, если бы все, что происходило при столкновении у-кванта очень высокой энергии с молекулой, ограничивалось бы фотоионизацией одного валентного электрона или электрона оболочки. Одновременно с фотоионизапией электрона может происходить возбуждение одного из оставшихся электронов до первоначально свободной орбитали. Это явление называется встряхиванием . Таким образом, структура пиков РФС с более высокой энергией и низкой интенсивностью, обусловленных электронами оболочки, может быть использована для изучения различных электронных переходов, происходящих одновременно с фотоионизацией. Эти пики-сателлиты обнаружены в диапазоне энергий, превьинающих на величину до 50 эВ энергии связей, характеризующие основные пики. Очевидно, электронное поглощение при 50 эВ ( = 404 ООО см = 25 нм) представляет собой поглощение с очень высокой энергией в области вакуумного ультрафиолета. [c.353]

    К числу важнейших преимуществ, которые дает переработка остатков с помощью ККФ, относится возможность при сравнительно (например, с гидрокрекингом) небольших эксплуатационных расходах практически полностью переработать сырье в дистиллятные продукты (значительную долю которых составляет бензин) и газ (табл, V. 5). Кроме того, при ККФ остатков образуется повышенное количество кохса, и тепло, выделяющееся при его сгорании в регенераторе и утилизируемое в виде водяного пара среднего давления, не только покрывает потребность установки ККФ в паре, но и в значительной степени может удовлетворить потребности в паре всего НПЗ. В этом смысле ККФ остатков можно рассматривать как энерготехнологический процесс. Наконец, переработка в процессе ККФ мазута позволяет исключить вакуумную перегонку, что дает дополнительный выигрыш в энергии. [c.106]

    Кинетика реакций гидрокрекинга. Кинетика реакций, проходящих при гидрокрекинге, изучена очень мало. Энергия активации гидрирования ароматических углеводородов на различных катализаторах имеет один порядок — около 42 кДж/моль (10 ккал/моль). Для кажущейся энергии активации бензинообразования при гидрокрекинге вакуумного газойля — величине в общем фиктивной — в литературе приведены значения порядка 125—210 кДж/моль (30—50 ккал/моль). Некоторое представление о соотношении скоростей различных реакций гидрокрекинга легкого газойля каталитического крекинга на катализаторе с высокой кислотной активностью при 10,5 МПа (105 кгс/см ) дает следующая схема (цифры на стрелках — значения относительной константы скорости)  [c.297]

    Кажущаяся энергия активации гьдрокрекинга вакуумного газойля, крекинг-остатков и мазута в температурном интервале 380— 460 °С составляет 125—210 кДж/моль. [c.308]

    Плотность криолита, алюминия и глинозема в твердом состоянии равны, соответственно 2,95 2,70 3,90 т/м . Притемпера-ту1>е электролиза плотность расплавленного алюминия составляет 2,3 т/м , а электролита около 2,0 т/м . Вследствие разности плотностей жидкий алюминий отделяется от криолито-глиноземного расплава и собирается на дне ванны. В процессе электролиза в результате охлаждения ванны наружным воздухом на поверхности расплава образуется твердый слой электролита (гарнисаж), который утепляет ванну и снижает расход энергии. Для извлечения из ванны расплавленного алюминия используют вакуумные ковши или сифоны, засасывающая труба которых вводится в ЖЩ1ШЙ юминий через слой гарнисажа. [c.34]

    Из рис. 3 видно, что возбужденный электрон на II орбите с амплитудой колебаний Дг, пересекает I, II, III орбиты и соответственно электрон на III орбите с амплитудой колебаний Дг- пересекает II, III, IV орбиты. Следовательно, электрон возбужденного атома находится на трех стационарных орбитах. Из этого рисунка также видно, что относительное время пребывания возбужденного электрона II орбиты распределяется Дт, > Дт, > Дтз и соответственно III орбиты ДТз > Дт, > ДХд. Следовательно, возбужденный электрон стационарной орбиты перескакивает на ту орбиту, где меньше время пребывания электрона. По соотношению неопределенностей Гейзенберга между энергией (ДЕ) и временем (Дт) по уравнению (8) с уменьшением Дт значение ДЕ возрастает. Поэтому воз-бужден1Ш[й электрон переходит на ту орбиту, где более интенсивные вакуумные колебания электромагнитного поля и электрон-позитронного поля с более интенсивными энергетическими возбуждениями. Такой переход может осуществляться лишь в том случае, если возбужденное состояние атома водорода достигнуто за время, меньше чем 10 сек. Следовательно, возбужденное состояние атома возникает путем сложения энергий упругих соударений за время существования возбужденного состояния (10" сек). [c.39]

    В случае неупругих соударений накопление энергии атомом водорода и переход его в возбужден юе состояние происходит также, как изложено в предыдущем параграфе, путем увеличения частоты и амплитуды колебаний радиуса около значений Дг. Это усиливает вакуумные колебания на стационарных орбитах, колебания радиуса кривизны АК и кривизны кривых силовых линий АК, а также согласно 7, частоты образования центральной силовой трубки, где взаимные притяже1М1я. электрона и протона происходят за время близкое к "мгновенному" действию. Следовательно, для ускорения каталитических и ферментативных реакций, повышения сопротивления трения при торможении всех видов воздушных, надземных, надводных и подводпых транспортных средств необходимо усилить вакуумные колебания па стационарных орбитах атомов, входящих в состав молекул поверхности и обтекающих сред, повысить частоту колебания радиуса кривизны, кривизны силовых линий, а также колебаний количества центральных силовых трубок, где взаимодействие разгюименных зарядов близко к их. мгновенному действию. [c.47]

    Применение вакуума возможно только при использовании кессонного охлаждения, так как требуется абсолютная тазоплотность ограждения. В данных случаях не может быть использовано понятие температуры в термодинамическом смысле, и поэтому нельзя говорить о разности температур между внутрипечным пространством и внутренней поверхностью ограждения. Тепло генерируется на внутренней поверхности ограждения за счет облучения ее плазмой (тормозное и рекомбинационное излучения), а также за счет кинетической энергии электронов и ионов, попадающих на внутреннюю поверхность ограждения вследствие эффекта рассеивания заряженных частиц и вторичной эмиссии электронов с анода. Сюда следует, однако, добавить непосредственное излучение раскаленного анода, а также поверхности расплава. Все вместе взятое создает приток тепла на внутреннюю поверхность ограждения, требующий отвода его за счет охлаждения водой. Унос тепла с водой охлаждения может быть существенным и в энергетическом балансе достигает 20—40%-Таким образом, ограждение вакуумно-дуговых и электроннолучевых печей энергетически несовершенно, однако этот недостаток перекрывается многими другими достоинствами печей данного типа, оправдывающими с технико-экономической точки зрения применение холодного ограждения. [c.243]

    С ростом содержания присадок в маслах расход кислоты и сорбентов при кислотно-контактной очистке повыщается. В результате возрастает количество трудноутилизируемых и экологически опасных отходов. Кроме того, сернокислотная очистка не обеспечивает удаление из отработанного масла ПА и высокотоксичных соединений хлора. Поданной схеме нельзя перерабатывать современные масла, совместимые с окружающей средой (растительные и синтетические), поскольку серная кислота разлагает их, увеличивая, в частности, выход кислого гудрона. В СНГ сернокислотную очистку в настоящее время практически не используют. В Германии наряде НПЗ по усоверщенствованной комбинированной схеме перерабатывают отработанные моторные, индустриальные, турбинные и трансформаторные масла. Схема предполагает использование стадий коагуляции, атмосферной перегонки, кислотной и адсорбционной очистки с последующей вакуумной перегонкой и контактной доочисткой высоковязкого компонента. По мнению специалистов, при проектировании новых подобных производств необходимо учитывать возрастающее загрязнение ОМ поверхностно-активными веществами при одновременном увеличении содержания воды, что вызывает дополнительные расходы энергии. [c.291]

    В данном сообщении будут представлены результаты работы, направленной на изучение возможности использования углеродных ГФХО пленок в качестве автокатодов в различных катодолюминесцентных источниках света. Нами были разработаны и исследованы несколько типов таких ламп, в виде вакуумных диодов с плоской и цилиндрической конфигурацией катода и анода, а также в виде триодньк вакуумных устройств. Комбинация высокой эффективности автоэлектронной эмиссии из углеродных катодов и высокой эффективности трансформации энергии электронов в свет в катодолюминесцентном процессе позволили достичь рекордно высоких характеристик изготовленных источников света. Полученная высокая яркость (до Ю кд/м ) и энергетическая эффективность (свыше 30%) делают разработанные нами источники света перспективными для широкого использования в различных областях науки и техники. [c.160]

    Вакуумная перегонка — самый современный технологический процесс. До недавнего времени ее использовали лишь в крайннзгслучаях, когда другие методы очистки по каким-либо причинам были невозможны. Причины последнего — сложное аппаратурное оформление процесса боязнь проникновения воздуха и образования взрывоопасных смесей трудности контроля и управления процессом. В последние годы, благодаря повышению технического уровня химического машиностроения и широкому внедрению автоматического контроля и управления, вакуумная перегонка все более вытесняет перегонку с водяным паром. Этому способствует компактность оборудования вакуумных установок, минимальные затраты труда, высокое качество производимой продукции, минимальные отходы производства, загрязняющие окружающую среду, и значительная экономия энергии. [c.226]

    Экспериментальные установки обычйо сочетают проведение в одной и той же вакуумной камере Оже-спектроскопии и измерений дифракции электронов низкой энергии. В результате получается информация как о химическом составе поверхности, так и о ее атомной структуре. Для изучения геометрической структуры поверхности используют электронный сканирующий микроскоп. Принцип действия этого прибора аналогичен передаче телевизионного изображения, только здесь на исследуемый объект направляется сфокусированный пучок электронов, а детектируется интенсивность отраженных электронов, которая затем передается на экран электронно-лучевой трубки. Движение сфокусированного пучка электронов вдоль исследуемого образца синхронизовано с движением луча электронно-лучевой трубки, в результате чего на ее экране получается изображение изучаемой поверхности. Разрешение современных сканирующих микроскопов составляет 5—10 нм. [c.86]


Библиография для Энергия вакуумная: [c.220]    [c.221]   
Смотреть страницы где упоминается термин Энергия вакуумная: [c.152]    [c.204]    [c.297]    [c.5]    [c.44]    [c.236]    [c.184]   
Растворитель как средство управления химическим процессом (1990) -- [ c.61 , c.62 ]




ПОИСК







© 2025 chem21.info Реклама на сайте