Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан относительная

    В органических молекулах имеет значение также взаимное влияние атомов, не связанных друг с другом непосредственно. Так, в метиловом спирте под влиянием кислорода увеличивается реакционная способность не только атома водорода, связанного с кислородом, но и атомов водорода, непосредственно с кислородом не связанных, а соединенных с углеродом. Благодаря этому метиловый спирт довольно легко окисляется, тогда как метан относительно устойчив к действию окислителей. Это объясняется тем, что [c.463]


    В органических молекулах имеет значение также взаимное влияние атомов, не связанных друг с другом непосредственно. Так, в метиловом спирте под влиянием кислорода увеличивается реакционная способность не только атома водорода, связанного с кислородом, но н атомов водорода, непосредственно с кислородом не связанных, а соединенных с углеродом. Благодаря этому метиловый спирт довольно легко окисляется, тогда как метан относительно устойчив к действию окислителей. Это объясняется тем, что кислород гидроксильной группы значительно оттягивает на себя -пару электронов в связи С о соединяющей его с углеродом, электроотрицательность которого меньше. В рез-ультате эффектив- [c.448]

    Природные газы содержат не только метан, относительная плотность которого близка к 0,6, но и этан, пропан и более тяжелые углеводороды, а также азот, сероводород и двуокись углерода. Поэтому плотность природных газов обычно выше 0,6. Для определения влагосодержания газа, относительная плотность которого выше 0,6, в уравнение (3) вводится поправочный коэффициент  [c.29]

    Нарушения в работе конвертора. В процессе получения азотистого технологического газа для синтеза аммиака при низком давлении, когда концентрация кислорода и скорость его взаимодействия с метаном относительно малы, возможны случаи постепенного перемещения зоны начала реакции вглубь конвертора и появления в конвертированном газе значительных количеств метана, когда большая часть катализатора выключается из работы. В этом случае температура катализатора в конической части конвертора и частично в ци- [c.216]

    Эти олефины содержатся в большом количестве в крекинг-газах находятся они там в качестве побочного продукта. Первоначально эти газы были относительно богаче этиленом. С совершенствованием крекинг-нро-цесса содержание этилена в продуктах крекинга уменьшается и вследствие этого затраты на его извлечение постоянно возрастают. Это вынуждает к поиску иных источников получения этилена и других газообразных олефинов. Таким является прежде всего пиролиз природного газа, содержащего пропан, который нри этом расщепляется на этилен и метан. Затем следует приобретающий первостепенное значение процесс пиролиза этана. При нагреве до высокой температуры этан расщепляется на этилен и водород (термическое дегидрирование). [c.35]

    Относительная реакционная способность типичных водородных атомов понижается от третичных к вторичным и первичным. При 300° скорости их окисления относятся как 10 2 1. Поэтому изобутан окисляется очень легко. Метан и этан, содержащие только первичные водородные атомы, чрезвычайно устойчивы к окислению. Пронан и бутан, имеющие первичные и вторичные водородные атомы, занимают среднее положение. В настоящее время еще не известен промышленный способ окисления метана в метиловый спирт пли формальдегид. [c.150]


    Этилен — горючий, бесцветный газ относительная плотность по воздуху 0,974, с воздухом образует взрывоопасные смеси. Область воспламенения 3—32% (об.). Устойчив приблизительно до 350°С. Выше этой температуры начинает разлагаться на метан и ацетилен. При более высоких температурах этилен разлагается на ацетилен и водород. [c.80]

    Нелинейная молекула имеет три момента инерции относительно трех взаимно перпендикулярных осей, фиксированных в молекуле. Если все три момента инерции равны (как, например, в метане), молекула может быть уподоблена сферическому волчку и уровни се вращательной энергии определяются тем же уравнением, которое используется для линейных молекул- [c.306]

    Стимулом для развития промышленных процессов окисления простых парафинов до различных алифатических кислородных соединений послужила относительно низкая их стоимость. Эти углеводороды в больших количествах производятся нефтеперерабатывающими заводами, а также легко могут быть получены из природного газа. Углеводороды от пропана до пентана можно получить в достаточно чистом виде путем фракционирования природного бензина и сжиженного нефтяного газа, получаемого на газобензиновых установках. Эти установки могут также давать в большом количестве этан. В случае необходимости этан можно получать путем низкотемпературной абсорбции или конденсацией сухого газа. Метан и этан можно транспортировать посредством трубопроводов, сжиженные углеводороды посредством трубопроводов, в цистернах и океанских танкерах. [c.341]

    В определенных условиях метан способен к термическому разложению с образованием водорода и углерода. Варьируя условия реакции (температуру, продолжительность нагревания, давление, состав исходной смеси и т. д.), можно при термическом разложении метана получить, наряду с водородом и углеродом, другие продукты. Относительные скорости разложения метана (по выходу водорода) в кварцевой трубке при- отсутствии катализаторов, атмосферном давлении и длительности нагревания 10 мин приведены ниже  [c.24]

    Бензиновые двигатели автомобилей легко переделать под двойное топливо бензин или сжатый природный газ. Баллон со сжатым природным газом, в основном метаном, удобно размещается в багажнике автомашины. Одной заправки хватает примерно на 250 миль. В США сейчас около 30 ООО автомашин используют сжатый природный газ, в странах бывшего Советского Союза — около полумиллиона машин на газовом топливе. Использование природного газа — экологически относительно чистого топлива — одно из стратегических направлений решения проблемы нефтяных ресурсов. [c.228]

    В присутствии металлических катализаторов (Ре, Со, N1) (рис. I. 1) к этому равновесию удалось приблизиться с обеих сторон выше температуры инверсии [Г,- = 570° С (Кр = 1, АР > = 0)] метан должен спонтанно разлагаться. Косвенные термохимические расчеты показывают, что СН4 является наиболее устойчивым членом парафинового ряда С Нг +2, а из формулы Паркса [2] совершенно ясно, что при температурах выше комнатной все парафины при п > 2 термодинамически неустойчивы относительно распада на углерод и водород свободная энергия образования парафинов равна  [c.10]

    Метан и относительно более легкие УВ, слабее адсорбирующиеся на породе и имеющие более высокие коэффициенты диффузии, опережают другие компоненты смеси, движущиеся через породу. Поэтому вначале доля их в газовом растворе, выходящем из породы, велика, но по мере появления других УВ доля их уменьшается до тех пор. пока при дальнейшей фильтрации концентрация всех углеводородов в растворе не сравняется с их начальной. [c.126]

    В качестве метода дальнейшего снижения потерь этилена предлагается на верхние тарелки колонны вводить относительно нелетучий компонент, который позволяет снизить летучесть этилена по отношению к метану и тем самым способствует снижению потерь этилена. В качестве такого компонента в ХТС производства этилена может быть использован пропан. На рис. 1У-22 представлена схема № 8, в которой перед последним холодильником на линии потока питания Т4 введен поток пропана. [c.186]

    Плотность углеводородных жидкостей. Плотность различных нефтей можно найти в стандартных таблицах. Однако, если нефть содержит значительное количество примесей с высокой упругостью паров (метан, этан, азот), то эти таблицы применять нельзя. Молекулы веществ, имеющих высокую упругость паров, обладают значительной кинетической энергией, которая влияет па плотность смеси. Для определения плотности жидких углеводородов с относительной молекулярной массой ниже 33, молярная доля азота, кислорода и изо-парафинов в которых менее 5%, моишо воспользоваться формулой, которая применима в интервале температур —(140+-184,4)° С, [c.37]


    Рис, 117, Относительная стоимость охлаждения С [76] при использовании различных хладагентов (—40° С — пропан —101,1° С — этилен —156,7° С — метан —195,6° С — азот —251,1° С — водород —268,9° С — гелий) [c.195]

    Метан и этак (относительно пропана и бутана) могут в заметных количествах растворяться в воде, содержащейся в водном растворе моноэтанол- [c.8]

    Среди процессов газификации, в которых применяется компрессорный воздух, описываемый процесс осуществляется при относительно низком (около 7 кгс/см , или 0,7 ГПа) давлении, но вследствие достаточно высокой рабочей температуры газификации метан образуется в газе в весьма небольшом количестве или не образуется совсем. Мощность установки метанизации полученного газа для получения ЗПГ должна быть значительной. Газ, получаемый в этом процессе, практически не содержит жидких и ненасыщенных побочных продуктов, поэтому нет необходимости предусматривать оборудование для сепарации смол, ароматических углеводородов, пироуглерода и т. п. [c.168]

    При относительно невысоких температурах (600—700 °С) и атмосферном давлении пропилен разлагается на бутадиен, бутилен, этилен, метан, водород и жидкие продукты сложного состава, выход которых составляет 50% (масс.) на превращенный пропилен. В этих условиях распад аллильного радикала проходит значительно медленнее, чем реакция присоединения его по двойной связи  [c.72]

    По способу, применяемому в 1939—1943 гг. в некоторых странах, метан окисляли кислородом в реакционной камере нри температуре 1200—1400° С. За относительно короткое время (0,1—0,2 сек) происходило превращение большей части вводимого метана. После реакции в пламени (в гомогенной фазе) процесс завершался при каталитической гетерогенной реакции (степень превращения метана в этой стадии доходила до 0,2%). [c.96]

    Для рещения этого вопроса на рис. 20 приведена зависимость изменения свободной энергии образования- некоторых углеводородов от температуры в пределах 300—1200 К. Эти данные позволяют установить относительную стабильность углеводородов. Повыщение температуры снижает прочность углеводородов. Как видно из рис. 20, метан при всех температурах устойчивее других соединений термическая устойчивость парафиновых углеводородов понижается при переходе к высшим членам гомологического ряда. Следовательно, при нагревании в первую очередь расщепляются углеводороды с длинной цепью. Место разрыва связи с повышением температуры сдвигается к краю цепи, и образуются более устойчивые углеводороды с короткими цепями вплоть до метана. Однако и метан выше 820 К начинает разлагаться на углерод и водород. Метановые и нафтеновые углеводороды при низких температурах (ниже 500 К) более стабильны, а при высоких температурах более устойчивы ароматические углеводороды и олефины и поэтому при высоких температурах они будут накапливаться в продуктах расщепления. [c.63]

    Паровая конверсия метана без катализатора протекает с приемлемой скоростью и глубиной превращения на шамотной насадке только-при температурах 1250—1350 °С [19]. Опыты, выполненные в пустотелом кварцевом реакторе [20], показали, что при объемной скорости 200 ч , отношении пар газ, равном 2 1, и атмосферном давлении даже при 1000 °С степень конверсии метана не превышает 8—9%, а при 900 °С она равна всего 1,1%. При температурах 760—800 °С паровая конверсия метана вообще не протекает [21]. В случае нагревания гомологов метана в смеси с водяным паром без катализатора выше 500—600 °С протекают с большой скоростью процессы пиролиза с образованием непредельных углеводородов (этилена, пропилена и др.). В процессе пиролиза образуются также метан, этан, пропан п в относительно небольших количествах — водород. [c.79]

    При получении газа с относительно низким содержанием метана процесс риформинга является эндотермическим. В простейшем случае, когда исходным сырьем является метан, протекает следующая обратимая реакция  [c.83]

    Использование горючего газа для бытового и промышленного потребления началось еще в прошлом столетии. Его получали в результате термической обработки углей. Этот газ, в котором горючими компонентами были метан, окись углерода и водород, начал применяться в качестве бытового топлива впервые в Англии в 1830— 1840 гг. В дореволюционное время в Москве, Петербурге и некоторых других городах России существовали газовые заводы, вырабатывавшие из угля горючий газ, который использовался главным образом в газовых плитах в крупных жилых домах. Газопроводная сеть в этих городах была невелика, и газ подавался лишь в относительно небольшое число жилых домов и предприятий. Масштаб потребления его был очень незначителен. [c.197]

    Особое внимание уделяется тепловой изоляции резервуаров, которые делают двухстенными с зазором между стенками 1 м, заполненным изоляционным материалом. В качестве такого материала применяют пробку и пористые пластмассы. Несмотря на изоляцию, происходит некоторый теплообмен через стенки резервуара, что приводит к испарению и потере метана. Однако эта потеря невелика, и чем больше объем резервуара и меньше отношение поверхности к объему, тем меньше и относительная потеря метана. Поэтому наиболее выгодно хранить жидкий метан в шаровых резервуарах, у которых поверхность минимальная для данного объема жидкости. [c.213]

    При темиературе же 610° С и атмосферном давлении пропен превращается на 61% в жидкость и на 39% в газообразные продукты разложения (водород, метан, этилен). При дальнейшем повышении температуры относительное значение процессов разложения продолжает усиливаться. Так, при 688° О газообразных продуктов разложения пропена образовалось уже 47%, а при 726° С 49%. [c.119]

    Последовательность процесса стабилизации. Общепринято считать, что стабильность углеводородов снижается с уменьшением относительной молекулярной массы. Метан, например, является наименее химически активным соединением во всем классе парафинов. По уменьшению термической стабильности (увеличению реакционной способности) углеводороды располагаются в следующем порядке метан, этан, пропан, изобутан, нормальный бутан, неопентан, нормальный пентан, изопентан, нормальный гексан, 2-метилпентан. [c.37]

    А вот с метаном на пиролизном производстве сделать пока ничего не могут. Это безвозвратная потеря, когда относительно дорогое пиролизное сырье обращается в топливный газ. Хуже всего, что выход метана трудно уменьшить, так как он возрастает с повышением жесткости пиролиза. [c.108]

    В органических молекулах проявляется также взаимное влияние атомов, не связанных друг с другом непосредственно. Так, в метиловом спирте под влиянием кислорода увеличивается реакционная способность не только атома водорода, связанного с кислородом, но и атомов водорода, непосредственно с кислородом не связанных, а соединенных с углеродом. Благодаря этому метиловый спирт довольно легко окисляется, тогда как метан относительно устойчив к действию окислителей. Это объясняется тем, что кислород гидроксильной группы значительно оттягивает на себя пару электронов в связи С —> соединяющей его с углеродом, э.лектроотрицательность которого меньше. В результате эффективный заряд атома углерода становится положительным, что вызывает дополнительное смещение пар электронов также и в связях Н- С в метиловом спирте, сравнительно с т ми же связями в молекуле метана. При действии окислителей атомы Н, связанные с тем же атомом углерода, с которым связана группа ОН, значительно легче, чем в углеводородах, отрываются и соединяются с кислородом, образуя воду. При этом атом углерода, связанный с группой ОН, подвергается дальнейшему окислению (см. разд. 29.12). [c.558]

    Дэнби [12], используя масс-спектрометрические и кинетические дан-йые, обнаружил метан в самом начале разложения этана. Начальная скорость образования метана того же порядка, что и разложение этана на этилен и водород. Однако по мере накопления этилена порядок реакции образования метана меняется до второго относительно реакции образо- [c.84]

    Гомогенное окисление метана водяным паром или двуокисью углерода является в высшей степени эндотермической и относительно медленной реакцией. Скорость ее хорошо измерима при температуре около 1000° С, когда со значительной скоростью происходит также термическое разложение метана. Действительно, один из экспериментаторов [6] утверждает, что при температуре около 1000° С пар и метан непосредственно ые вступают в реакцию друг с другом, а в реакции участвуют более реакционно-способные продукты термического разложения мотана, которые и образуют окись углерода и водород. Среди легко выделяемых и идентифицируемых продуктов пиролиза метана следует отметить этилен и ацетилен [25, 26, 27 . Последние могут реагировать с водяным паром, образуя спирты, которые затем разлагаются с образованием окиси углерода, метана и водорода. Все это носит лишь предположительный характер, так как нет данных, подтверн дающих этот механизм. Реакция метана с двуокисью углерода является, по-видимому, еще более сложной, чем с водяным парол]. [c.311]

    Метан. Нашими знаниями относительно окисления метана при низком давлепии во многом мы обязаны Норришу [48]. Льюис и Эльбе [32] недавно составили обзор всей имеющейся по этому вопросу литературы, а Гор и Уолш [27] рассмотрели влияпие поверхностей па процессы окисления. [c.321]

    Головным потоком пронановой колонны является метан, этан п часть пропана, боковым погоном — пропан, а кубовым остатком — изобутан и более тяжелые фракции. Отбор пропана в виде бокового, а не головного погона позволяет получать пропан в чистом виде. Кубовый остаток подвергается дальнейшему разделению в бутановой колонне на смесь бутанов и газовый бензин. Бутановая колонна работает при относительно высоком давлении (12,3 ати), что исключает необходимость последующего сжатия неконденсирующихся паров. [c.24]

    Интересно отметить, что при гидрокрекинге дурола и изодурола на катализаторе (А1 + Со +Мо), ускоряющем радикальные реакции, образуются в основном метан и триметилбензолы, т. е. в данном случае протекает ярко выраженная реакция деметилирования. Используя метод меченых атомов, удалось показать, что при гидрокрекинге дурола протекают как реакции деметилирования, так и реакции метилирования полученных углеводородов 2. При этом оказалось, что в ряду С — Сщ относительные скорости реакций метилирования уменьшаются, а относительные скорости деметилиро-вання возрастают. [c.316]

    Еще одним моментом, специфичным для данного процесса, является удаление углерода из стали и ее охрупчивание под воздействием высоких температур и относительно высоких давлений водорода. Это воздействие объясняется тем, что водород проникает к внутренним кристаллам металла и превращает некоторое количество элементарного или связанного углерода в метан, который выделяется в виде пузырька в объеме металла. Этот пузырек увеличивается, дополнительно снижая прочность ул е обезуглерол енного и ослабленного металла. [c.144]

    Парафиновые углеводороды термодинамически неустойчивы относительно распада на углерод и водород при следующих температурах метан 900 К, этан 500 К, пропан 400 К, н-бутан 350 К, нпентан 320 К, н-гексан и парафиновые углеводороды с большим числом углеродных атомов —при 300 К. Кроме распада на элементы термодинамически возможен ряд реакций. Ниже приведены реакции и температуры (в К), при которых они термодинамически возможны (АО отрицательно), для некоторых парафиновых углеводородов  [c.60]

    Крекинг алканов. Алканы термодинамически неустойчивы относительно распада иа водород и углерэд при следующих температурах (в К) метан з 900, этан бОО, проиаи 400, бутан 350, иентаи 320, гексан и алканы с большие числом углеродных атомов — при 300. [c.119]

    Для выделения водорода и метана из очищенного газа пиролиза на современных установках используется низкотемпературная ректификация под давлением. Коэффиг.иент относительной летучести ключевой пары компонентов метан — этилен, как следует из табл. 9.4, достаточно высок, поэтому метановая колонна имеет 30 тарелок. Деэтанизация — выделение этан-этиленовой фракции (ключевые компоненты этан и пропилен) осуществляется также сравнительно легко в колоннах, имеющих 40 тарелок. [c.172]

    Существующие методы выделения этилена из газовых смесей можно разделить на две большие группы низкотемпературная ректификация (конденсационный метод) и абсорбционно-ректнфика-ционный метод. В нервом случае применяют весьма низкие температуры —от —120 до —160° С. Так, метановая колонна работает при температуре в верхней части от—150 до—158° С (абсолютное давление 1,5—2 ат) и в нижней — около —80° С. Выбор низкого давления и в связи с этим столь глубокого охлаждения объясняется низкой критической температурой метана (—82,5° С), а также более высоким значением коэффициента относительной летучести смеси метан-этилен в области низких давлений. [c.314]

    В последнее время стала развиваться радиационная химия углеводородов и появились исследования радиол иза алканов, доложенные на симпозиуме по радиационной химии углеводородов в 1957 году [146]. Под влиянием облучения таза пучком электронов с энергией порядка 1,5 мэв при обыч-ной температуре могут свободно происходить процессы расщепления молекул алкана на радикалы и непосредственного отщепления молекул водорода и метана На основе изучения цримесей этилена и пропилена в качестве веществ, поглощающих атомы водорода и метил-радикалы, а также результатов изотопического исследования радиолиза смеси этана и полностью замещенного дейтероэтана на масспектрометре, было показано, что большая часть водорода образуется при радиолизе этана путем прямого отщепления его молекул от молекул этана в первичном процессе [146]. Изучение изото-лического распределения метана, образованного при радиолизе системы этан и дейтероэтан, дало доказательство того, что метан возникает путем непосредственного отщепления его молекулы от исходных молекул этана. Таким образом, процессы радиолиза алканов могут происходить под воздейст- вием больщой энергии облучения при обычных температурах по другому механизму, с отщеплением молекул в первичном акте, без участия радикалов. В этом отношении радиолиз несколько схож с высокотемпературным крекингом, при котором относительный вес радикально-цепных процессов снижается и возрастает роль процессов распада, проходящих по молекулярному механизму, что соответствует более высоким порядкам энергий в том и другом случаях. Интересно также, что в условиях радиолиза (25°) могут возникать горячие радикалы, энергия которых соответствует гораздо более высоким температурам, чем температура экспериментов, т. е. распределение по энергиям для таких радикалов не является Максвелл-Больцмановским. С другой стороны, при действии радиации на алканы возникают и радикалы, которые могут тшициировать процессы распада. В этих случаях важной характеристикой инициированного крекинга является общий выход радикалов, способных индуцировать крекинг, отнесенный к определенному количеству поглощенной энергии. Вследствие того, что ионизирующее излучение поглощается молекулами не избирательно, количество поглощенной энергии пропорционально общему числу электронов в единице объема и не зависит от химического строения алкана [147]. В то же время выход радикалов, отнесенный к одинаковой поглощенной энергии, весьма зависит от строения поглощающих молекул. С процессами образования радикалов конкурируют процессы спонтанной де.чактивации возбужденных молекул алканов, связанной с превращением энергии элект- [c.71]

    Рассмотренные выше результаты показывают, что с увеличением глубины крекинга и давления наблюдается небольшой сдвиг в сторону процессов деметанизации, вследствие реакций изомеризации нормальных бутильных радикалов во вторичные бутильные радикалы и третичных изобутильных—в первичные изобутильные радикалы. В частности, наблюдаемое в крекинге изобутана аномальное уменьшение относительного выхода водорода по сравнению с метаном с Звеличением температуры связано с изомеризацией третичных изобутильных радикалов в первичные. [c.105]


Смотреть страницы где упоминается термин Метан относительная: [c.53]    [c.103]    [c.280]    [c.36]    [c.127]    [c.79]    [c.146]    [c.168]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.97 ]

Справочник по разделению газовых смесей (1953) -- [ c.78 ]




ПОИСК







© 2025 chem21.info Реклама на сайте