Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установки газов крекинга

    При работе технологических установок весьма важен не только контроль отдельных параметров процесса. Поэтому на установках каталитического крекинга, кроме показывающих и регистрирующих прибо[ ов, применяются и приобретают все большее значение автоматические регулирующие приборы. Па установках каталитического крекинга в наиболее ответственных местах применяются автоматические регуляторы давления, например, их устанавливают на линиях, по которым подается топливо в форсунки печей. Повышение давления в системе, как это указывалось выше, может привести к-осложнениям и авариям, например, при повышении давления в реакторе может прекратиться движение катализатора и вследствие этого создаться аварийное положение. Для предупреждения чрезмерного повышения давления на линиях устанавливают клапаны, отрегулированные на определенное давление. Такой клапан установлен на линии сброса газа на факел. [c.118]


    Предупредив обслуживающий персонал газофракционирующей установки, направляют газ с установки каталитического крекинга на прием газовых компрессоров. Далее принимают меры но налаживанию режима во фракционирующей части установки. [c.146]

    Каталитический крекинг — сложный физико-химический процесс. На качество получаемых на установке газа и нефтепродуктов влияют многие факторы. [c.164]

    Жирный газ с установки каталитического крекинга, пройдя две ступени сжатия в компрессорах и охлаждения, смешивается с нестабильным бензином и поступает в аккумулятор 6, где происходит отделение газа от жидкой фазы. [c.170]

    В технологической взаимозависимости работы обеих установок. С увеличением количества газа, образующегося при крекинге, необходимо вводить в работу дополнительный компрессор на абсорб-ционно-газофракционирующей установке во избежание повышения давления на установке каталитического крекинга. С увеличением конца кипения нестабильного бензина приходится изменять режим бутановой колонны, чтобы не снизить глубину отбора бутановой. фракции. [c.172]

    На самих установках каталитического крекинга за счет тепла высокотемпературных потоков (газы регенерации, выводимые из ректификационной колонны горячие жидкости) производят большие количества водяного пара давлением 12—40 ати, как правило, одновременно двух-трех разных давлений. Этот водяной пар получают из конденсата или очищенной воды в паровых котлах-утилизаторах. [c.12]

    Однократное атмосферное) испарение мазута и легкий термокрекинг полугудрона (рис. 20). При данном варианте переработки мазута в отличие от двух предыдущих вариантов не осуществляется вакуумная перегонка остатка. Мазут, пройдя змеевики первой печи, поступает в атмосферный испарителе Полученные в результате однократного испарения мазута пары солярового дистиллята направляются с верха этого испарителя непосредственно в реактор установки каталитического крекинга. Туда, же вводятся из второго испарителя углеводородные газы и пары [c.56]

    Колонна 3 состоит из двух секций нижней — скрубберной (для удаления и возврата в реактор коксовой пыли) и верхней — фракционирующей. Уровень жидкости внизу колонны точно регулируется, чтобы предотвратить переток загрязненного коксом дистиллята в реактор. Этот дистиллят присоединяется к сырью секции коксования. Боковой дистиллят с пределами кипения 220—540° является компонентом сырья установки каталитического крекинга. С верха колонны отводятся бензин коксования и газ. [c.69]


    Несмотря на некоторую разноречивость приведенных выше данных, анализ их позволяет сделать следующие выводы 1) алюмосиликатный катализатор крекинга является также обессеривающим катализатором 2) сера сырья не концентрируется в бензине 3) значительная часть (иногда до 50%) серы сырья выводятся с установки в составе соответствующих компонентов газов крекинга и регенерации. [c.220]

    Оценка окислительной активности катализаторов при работе с такими многокомпонентными видами сырья, которыми являются тяжелые нефтяные остатки, представляет достаточно сложную задачу. Поэтому для корректной оценки окислительной активности были выбраны газообразные продукты окисления (СО2, СО, 50,). В табл. 1.3 приведены характеристики газообразных продуктов, определенные в начальные моменты ОКК маз та на различных катализаторах, содержащих оксиды металлов. Основным продуктом окисления, присутствующим во всех газах, является СО2. Наличие в газах промышленной установки каталитического крекинга СО2 свидетельствует о том, что при промышленном каталитическом крекинге углеводороды сырья претерпевают превращения не только по традиционным карбоний-ионному и радикально-цепному механиз.мам, но и вступают в окислительновосстановительные реакции с образованием газообразных и жидких продуктов окисления. [c.19]

    На промышленной установке каталитического крекинга типа Г-43-107 были проведены опытно-промышленные пробеги по определению оптимального количества топливного газа, необходимого для предотвращения образования фено- [c.121]

    К термическим процессам деструктивной переработки нефтяного сырья относятся термический крекинг и коксование,—Невысокие эксплуатационные свойства как получаемых котельных топлив, так и бензинов термического крекинга и интенсивное развитие каталитических процессов способствовали тому, что новые установки термического крекинга почти не сооружаются, а многие из существующих реконструируются в установки прямой перегонки нефти. Термический крекинг как процесс получения бензина уже в 40-х годах начал интенсивно вытесняться каталитическим крекингом и риформингом. Основным видом термического крекинга остался так называемый висбрекинг, направленный на получение из тяжелых/ нефтяных остатков (гудронов, полугудронов) котельного топлива При этом образуются также углеводородный газ и бензин. Более [c.70]

    Особое внимание следует уделить вопросу регенерации тепла на установках каталитического крекинга. Выжиг смолисте-коксо-вых отложений на, поверхности катализатора создает огромные ресурсы дополнительного тепла. Тепло дымовых газов в настоящее время используется для получения водяного пара высокого давления путем установки на потоке дымовых газов котлов-утилизатор ов. Дымовые газы, отходящие из регенератора, содержат от 4,5 до 10% объемн. окиси углерода СО. Дополнительное сжигание СО в других специальных котлах-утилизаторах, позволит сэкономить большое количество топлива на производство водяного пара и уменьшить отравление атмосферы угарным газом. Покажем это на примере. [c.83]

    В нашем расчете были взяты минимальные выходы как СО, так и кокса. В действительности, когда установки каталитического крекинга переходят на переработку более тяжелого сырья, выход кокса составляет до 7—8% на сырье, а содержание СО в дымовых газах достигает 7—10%. [c.83]

    Пример 9. 5. Определить объем инертного газа, вводимого в стояк регенератора для доведения плотности катализатора до = 550 кг/м на установке каталитического крекинга с циркулирующим пылевидный алюмосиликатным катализатором производительностью 1700 т/сутки вакуумного отгона. Кратность циркуляции катализатора равна 5, насыпная плотность его = 750 кг/л , плотность инертного газа (дымовых газов) при нормальных условиях Ог = = 1,29 кг/м . [c.187]

    Из регенератора (диаметром 1,22 м) установки каталитического крекинга отбирали пробы газа в различных точках псевдоожиженного слоя катализатора . Входное отверстие пробоотборника было снабжено фильтром для задержки катализатора, а отводная трубка — рубашкой для охлаждения отбираемого газа. Скорость газа в регенераторе во время отбора проб составляла примерно 45 см/с, причем 72,5% частиц катализатора равномерно распределялись по размеру в диапазоне от 40 до 100 мкм. Состав газа во всех точках слоя был примерно одинаковым, что указывает на быстрое перемешивание. Содержание кислорода, измеренное в слое, составляло —0,2 мол.% (в отходящих дымовых газах — 1,1%). Это было объяснено проскоком газа, богатого кислородом, с пузырями, часто минующими пробоотборник. [c.258]

    На фиг. 8 приведена схема установки каталитического крекинга с пылевидным катализатором (модель IV), в которую внесены последние усовершенствования по ведению процесса. На установке изменена система циркуляции (отсутствуют напорные стояки), для улавливания катализатора внутри реактора и регенератора смонтированы двухступенчатые циклоны,- Для уменьшения абразивного износа применены катализаторопроводы без резких поворотов, а для более полного улавливания катализатора—реконструированы циклоны. Диаметры реактора и регенератора уменьшены и, соответственно, скорости паров и газов [c.52]


    Как известно, целью дебутанизации мотобензина является извлечение из него пропан-пропиленовой и бутан-бутиленовой фракций, являющихся балластом при каталитической очистке и вместе с тем используемых в качестве сырья для нефтехимического синтеза. Дебутанизация мотобензина производится на газофракционирующей установке одновременно с ректификацией жирных газов крекинга. При этом высшие углеводороды, содержащиеся в жирном газе, переходят в мотобензин. В результате количество дебутанизированного мотобензина увеличивается примерно на 3% по сравнению с количеством, взятым на переработку. [c.170]

    Выделение бутадиена из смесей углеводородов С4 является одной из крупных промышленны х проблем, решенных с помощью метода экстрактивной ректификации. Имеются два пути получения бутадиена на основе использования метода экстрактивной ректификации. Первый путь заключается в непосредственном выделении бутадиена из газов крекинга, в которых он содержится в количестве около 0,5%. Второй путь основан на выделении бутадиена из смесей, получающихся при последовательном. каталитическом дегидрировании бутана и бутиленов. В промышленности используются крупные установки по получению бутадиена обоими способами [258, 295]. [c.288]

    Реактор и регенератор установки каталитического крекинга в нсевдо-ожижеином слое представляют собо11 цилиндрические анпараты. В нижней части размещается газораспределительная решетка илп паук для равномерного распределения газового потока и катализатора. Вывод газов и наров из аппарата осуп с-ствляется через систему циклонных сепараторов. [c.286]

    Практически термический крекинг осуществляется следующим образом подлежащий крекингу исходный материал поступает в трубчатую печь, стальные трубы которой нагреваются непосредственно пламенем сжигаемого в форсунках жидкого топлива, в печи продукт нагревается до необходимой для крекинга температуры, приблизительно до 500—600° [3]. После нагрева до указанной температуры продукт пз печи поступает в реакционную камеру, где он остается некоторое время, необходимое для реакции крекинга, при той же температуре. Далее продукт поступает в испаритель, где в большей части испаряется, а легко коксующийся остаток удаляется из низаисна-рнтеля (крекинг-мазут). В современных установках (рис. 14) крекинг полностью протекает уже в трубчатой печи, что делает реакционную камеру излишней. В этих установках продукт из трубчатой печи поступает непосредственно в испаритель. Отделившийся в нем остаток в количестве, примерно равном количеству крекинг-бензина, применяется как котельное топливо. Испаренные в испарителе продукты крекинга направляются в ректификационную колонну, работающую при том же давлении, что и испаритель. Там они разделяются на газ, крекинг-бензин и высококипящую часть. Последняя возвращается на крекинг (рециркулят). Этот вид термического крекинга определяется как крекинг-процесс с работой на жидкий остаток. В этом процессе кокса образуется очень немного и возможен длительный, безостановочный пробег установки. После примерно трехмесячного пробега установки требуются ее остановка и очистка от кокса трубчатой печи и других элементов. [c.39]

    Продуктами процесса каталитического крекинга являются газ, содержащий до 50% (масс.) непредельных углеводородов и до 25% (масс.) изобутана, бензин, легкий и тяжелый газойли (фракции 190—350°С и выше 350°С соответственно). Часть тяжелого газойля после стадии разделения и смесь катализаторной пыли с тяжелым газойлем (шлам) после стадии отделения катализатора возвращаются на стадию реакции. Закоисованный катализатор поступает на регенерацию, а регенерированный возвращается на стадию реакции. Первые две стадии составляют реакторный блок, а последние две — блок разделения установки каталитиче1Ского крекинга (в последующем описании реакторный блок будет условно обозначаться в виде одного квадрата). [c.222]

    Температура низа колонны поддерживается в пределах 340— 360 С. При получении легкого и тяжелого газойлей колонна имеет два боковых вывода и одно промежуточное циркуляционное орошение при получении керосиновой фракции, легкого и тяжелого газойлей колонна имеет три боковых вывода и два промежуточных циркуляционных орошения. С верха колонны уходят газы и пары бензина. После частичной конденсации паров в конденсаторе-холодильнике они отводятся из емкости орошения, а углеводородный газ поступает для дальнейшего пяяделения на ГФУ или на специальный газовый блок установки каталитического крекинга. [c.223]

Рис. 7,3. Принципиальная технологическая схема установки термического крекинга дистиллятного сырья I — сырье II — бензин на стабилизацию UI — тяжелый бензин из К-4 V— вакуумный отгон V— термогазойль VI — крекинг-остаток VII — газы на ГФУ VIII — газы и водяной пар к вакуум-системе IX — водяной пар Рис. 7,3. Принципиальная <a href="/info/1471345">технологическая схема установки термического крекинга</a> <a href="/info/317718">дистиллятного сырья</a> I — сырье II — бензин на стабилизацию UI — <a href="/info/415128">тяжелый бензин</a> из К-4 V— вакуумный отгон V— термогазойль VI — <a href="/info/62741">крекинг-остаток</a> VII — газы на ГФУ VIII — газы и водяной пар к <a href="/info/1854167">вакуум-системе</a> IX — водяной пар
Рис. 8.4. Схема реакторного блока установки каталитического крекинга с движущимся слоем шарикового катализатора (43—102) 1 реактор 2— регенератор 3— сепараторы 4— до— зеры I— сырье И— продукты крекинга III— воздух IV— водяной пар V— дымовые газы VI— вода Рис. 8.4. Схема <a href="/info/1731764">реакторного блока установки каталитического крекинга</a> с движущимся <a href="/info/1619633">слоем шарикового катализатора</a> (43—102) 1 реактор 2— регенератор 3— сепараторы 4— до— зеры I— сырье И— <a href="/info/17668">продукты крекинга</a> III— воздух IV— водяной пар V— <a href="/info/34467">дымовые газы</a> VI— вода
Рис. 8.9. Принципиальная технологическая схема установки каталитического крекинга Г-43-107 I— ги1 роочищенное сырье II— газы на АГФУ 14— не табильный бензин на стабилизацию IV—легкий га.юйль V— тяжелый газойль VI— декантат VII— водяной пар VHI- дымовые газы IX— вода X— во >дух XI— катализаторная пыль Рис. 8.9. <a href="/info/671414">Принципиальная технологическая</a> <a href="/info/1336562">схема установки каталитического крекинга</a> Г-43-107 I— ги1 роочищенное сырье II— газы на АГФУ 14— не табильный бензин на стабилизацию IV—легкий га.юйль V— <a href="/info/823403">тяжелый газойль</a> VI— <a href="/info/840686">декантат</a> VII— водяной пар VHI- <a href="/info/34467">дымовые газы</a> IX— вода X— во >дух XI— катализаторная пыль
    К недостаткам схемы относятся загрузка реактора и всей крекинг-установки газами коксования невозможность вывода легких продуктов прямой гонкп в виде самостоятельных потоков слишком жесткое объединение в одной установке двух резко отличающихся по своему назначению процессов — термического коксования смесп гудрона с рециркулирующими тяжелыми фракциями и каталитического крекинга паров дестиллатов, разбавленных газами. [c.44]

    Обычно жирный газ с установки каталитического крекинга поступает на абсорбционно-газофракционирующую установку, откуда отдельные фракции направляются на последующую переработку. Большей частью бутан-бутиленовая фракция является сырьем установки алкилирования, где из бутиленов и изобутана олучают алкил—бензиз — ценный компонент авиабензина. [c.62]

    Как уже было сказано (см. главу вторую, 3), среднюю активность катализатора, циркулирующего между реактором н регенератором н состоящего из гранул разной степени отработки, называют равновесной актпвностью. Именно в присутствии такого катализатора п проводится на про льипленной установке процесс крекинга нефтяных дестиллатов. Равновесная активность поддерживается обычно на уровне 28—32 единиц путем периодической добавки (как правило, раз в сутки) от 0,15 до 0,3 т свежего катализатора на 100 т пропускаемого через реактор сырья. Свежий катализатор вводят в систему не только для того, чтобы компенсировать падение активности циркулирующей массы катализатора, но и для восполнения потерь его. Часть гранул катализатора дробится, истирается и уносится потоками газов и наров. [c.85]

    Легкий соляровый дистиллят отпариваотся водяным паром в выносной колонне 9 и направляется на установку каталитического крекинга. Часть этого дистиллята используется в абсорбере для поглощения фракций Сд и С4 из жирного газа. Отпарка насыщенного поглотителя осуществляется в колонне 1. Насыщенный поглотитель, вводится п эту колонну по линии 11, а выводится через холодильник 12 по линии 13. [c.67]

    Газы, крекинга содержат значительное количество пропан-пропиленовой фракции, которая преимущеотвенно (60-=в8%) состоит из проАйЛша. На многих установках большая часть (60— 75% вес.) фракции Сз извлекается и направляется в жидком виде вместе с бутан бутиленовой фракцией на установку каталитической полимеризации для производства полимер-бензина (табл. 47). [c.233]

    Процесс может быть направлен на получение сырья для нефтехимии увеличенного выхода газа, более богатого непредельными углеводородами, жидких продуктов, из которых могут быть выделены бензол, толуол и нафталин. Тяжелые фракции могут являться сырьем для производства технического углерода. В этом случае режим процесса более жесткий температура в реакторе 600 °С и коксонагрева-теле 670—700 С. Газойли коксования используют на некоторых заводах (иногда после гидроочистки) как компоненты сырья установки каталитического крекинга. [c.31]

    На рис. 52 показана схема установки для испытания катализаторов. Ее основными частями являн тся обычный проточный двухсекционный стеклянный реактор 2, вмещающий 100 мл катализатора, электропечь 3 мощность 1,5 кет, сырьевой насос-шприц 1 емкостью 2 мл и производительностью от О до 1800 мл ч, система конденсации 4 и сбора продуктов реакции 5 и аппаратура для дожига окиси углерода 8. Холодильники и приемники охлаждаются и термостатируются водой. Газы крекинга и продувочный азот собираются в газометре с сифонной трубкой для слива соляного раствора и создания некоторого разряжения. [c.156]

    Экспериментальные данные о перемешивании газа и твердых частиц в установках каталитического крекинга приведены в книге Крамского [1]. — Прим. ред. [c.258]

    Движение псевдоожиженных твердых частиц может происходить через отверстия в стенках аппарата или по вертикальным трубам, связывающим его с рядом стоящими аппаратами. В зависимости от того, происходит ли истечение из отверстий в свободное пространство или в другие псевдоожиженные слои, говорят о свободном или затопленном истечении. Во втором случае два соседних слоя могут находиться в общем сосуде частицы и газ будут перераспределяться между слоями в соответствии с перепадом давлений, устанавливающимся в зависимости от высоты слоев по разные стороны разделяющей перегородки. При движении плотной фазы твердых частиц по вертикальным трубам, связанным с аппаратами для псевдоожижения, мы имеем дело с движущимися псевдоожиженными системами их результирующая скорость относительно стенок сосуда отлична от нуля, а перепад давления — постоянен. Примеры движения псевдоожиженной плотной фазы через отверстия или по вертикальным трубам легко найти в нефтеперерабатывающей промыш.ген-ности циркуляция катализатора между реактором и регенераторо.ч в установках каталитического крекинга. [c.568]

    Пример 1П-4. На рис. П1-5 приведена схема потоков в одной секции регенератора установки каталитического крекинга с движущимся шариковым алюмосиликатным катализатором. Сверху в регенератор поступает катализатор, содержащей коксовые отложения. Двигаясь сверху вниз, он проходит 8—11 секций, в каждой из которых по периметру аппарата вводится кисло-родсодержашрй газ, окисляется кокс и выводятся продукты окисления (СО, СО2, Н2О). В отдельных секциях включены охлаждаюище змеевики, в которых тепло потока передается паро-водяной смеси это позволяет предотвратить перегрев катализатора. Нужно составить математическое описание реактора. [c.106]

Фиг. 1. Схема установки каталитического крекинга со стационарным слоем катализатора / водоотделитель 2— барометрический конденсатор 5 —отделитель неиспарившегося сырья 4 —паровой вжекгор 5 — реакционные камеры теплообменного типа 6 — нагревательнап трубчатая печь 7 — теплообменник в — турбокомпрессор 9 — воздухоподогреватель 10— ректификационная колонна II — конденсатор /2 — га-зосепаратор /5 — холодильник — насосы /5 —сырье /б — тяжелый газойль /7—легкий газойль /8 — бензин /5 — жирный газ 20 —тяжелые остатки неиспарившегося сырья (гудрон) 2/— воздух 22 вода 25 — пар Фиг. 1. <a href="/info/1336562">Схема установки каталитического крекинга</a> со <a href="/info/277379">стационарным слоем катализатора</a> / водоотделитель 2— <a href="/info/93805">барометрический конденсатор</a> 5 —отделитель неиспарившегося сырья 4 —паровой вжекгор 5 — <a href="/info/316863">реакционные камеры</a> <a href="/info/320685">теплообменного типа</a> 6 — нагревательнап <a href="/info/26508">трубчатая печь</a> 7 — теплообменник в — турбокомпрессор 9 — воздухоподогреватель 10— <a href="/info/24173">ректификационная колонна</a> II — конденсатор /2 — га-зосепаратор /5 — холодильник — насосы /5 —сырье /б — <a href="/info/823403">тяжелый газойль</a> /7—<a href="/info/1455277">легкий газойль</a> /8 — бензин /5 — жирный газ 20 —тяжелые остатки неиспарившегося сырья (гудрон) 2/— воздух 22 вода 25 — пар
    После включения нефтяных паров в реактор нужно следить за давлением в реакторе. Поьышение давления до 0,5—0,6 а/гаи не вызывает осложнения в работе и считается нормальным. При подъеме же давления выше 0,7 ати во избежание остановки циркуляции катализатора в системе выключают реактор с потока нефтяных паров и выясняют причины повышения давления. Повторно (после ликвидации дефектов) реактор вклю-чается и той же последовательности. По включении реактора образующийся крекинг-газ вытесняет остатки воздуха в аппаратуре йа факел. При появлении газа на факеле, после пре-Дупреждеийя обслуживающего персонала газонасосной станции и газофракционирующей установки, газ с последней направля- [c.149]

    Автоматические регуляторы применяются для регулирования температуры дымовых газов на перевале трубчатой печи, температуоы pea iTopa на установках каталитического крекинга с пылевидным катализатором, температуры вгрха ректификационной колонны, уровня в колоннах и т. д. [c.196]

    Лабораторный контроль установки каталитического крекинга с пылевидным катализатор(зм заключается в проверке качеств сырья, катализатора и вырабатываемых прсТдуктов газа, бензина, легкой и тяжелой флегмы. Анализ сырья, поступающего на установку, заключается в определении плотности, фракционного состава, группового химического состава, содержания смол и его коксуемости. Коксуемость сырья является одной из важных характеристик, так как ее повышение увеличивает процент кокса, отлагающегося на поверхности катализатора, что вызывает необходимость в снижении производительности установки. [c.206]

    Исмаилов Р. Г., К орнеев М. И. Комбинированный риформинг лигроиновых фракций в сочетании с легким крекингом мазута на двухпечных установках термического крекинга.. Нефть и газ № 7, 1959. [c.381]


Библиография для Установки газов крекинга: [c.106]   
Смотреть страницы где упоминается термин Установки газов крекинга: [c.226]    [c.135]    [c.79]    [c.26]    [c.120]    [c.193]    [c.39]    [c.167]    [c.368]   
Справочник по разделению газовых смесей (1953) -- [ c.305 , c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитическая полимеризация. Установка для полимеризации газа жидкофазного крекинга Пути химической переработки газов пиролиза

Обезвреживание отходящих газов установок адсорбционной очистки жидких парафинов и каталитического крекинга

Принципиальные особенности схем установок для разделения пирогаза и крекинг-газа

Схема установки для полного разделения крекинг-газа

Установка газов

Установка фракционирования крекинг-газа

Установки каталитического крекинга в кипящем слое анализ дымовых газов

Установки каталитического крекинга в кипящем слое догорание дымовых газов

Установки крекинг-газа

Установки крекинг-газа



© 2025 chem21.info Реклама на сайте