Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

морской воде напряжением

    Так как возможности ряда напряжений для предсказания электрохимического поведения металлов ограничены и этот ряд не включает сплавы (условия равновесия твердых сплавов со средой еще недостаточно изучены), можно составить так называемый электрохимический (или гальванический) ряд, в котором металлы и сплавы расположены в соответствии с их действительными потенциалами, измеряемыми в данной среде. Потенциалы, определяющие положение металла в электрохимическом ряду, могут включать как обратимые, так и стационарные значения, поэтому в ряду представлены сплавы и пассивные металлы. Ниже приводится электрохимический ряд металлов, контактирующих с морской водой [5а] (потенциалы возрастают сверху вниз)  [c.41]


    Существенно, что сплав N1-Си с 30 % N1 относительно более стоек к коррозионному растрескиванию под напряжением по сравнению с аналогичными сплавами, содержащими 10—20 % N1, или латунями 2п-Си с 30 % 2п. Подробное обсуждение поведения медно-никелевых сплавов (особенно о 10 % N1) в морской воде проведено Стюартом и Ла Кэ [36]. [c.340]

    Эти кислоты можно получить в лаборатории, пропуская сероводород через воду, насыщенную ЗО . Для понимания механизма наблюдаемых разрушений следует учесть, что при протекании коррозионных процессов эти кислоты легко катодно восстанавливаются. В связи с этим политионовые кислоты действуют в качестве катодного деполяризатора, который способствует растворению металла по границам зерен, обедненным хромом. Еще одна форма влияния, возможно, заключается в том, что продукты их катодного восстановления (НгЗ или аналогичные соединения) стимулируют абсорбцию межузельного водорода сплавом, обедненным хромом. Под напряжением этот сплав, если он имеет ферритную структуру, подвергается водородной коррозии вдоль границ зерен. Аустенитный сплав в этих условиях устойчив. Показано, что наличие в морской воде более 2 мг/л серы в виде На З либо продуктов катодного восстановления сульфитов 50з" или тиосульфатов ЗзО вызывает водородное растрескивание высокопрочных сталей о 0,77 % С, а также ферритных и мартенситных нержавеющих сталей [67]. Предполагают, что и политионовые кислоты оказывают аналогичное действие. [c.323]

    ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту. Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии. Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично. Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда [c.218]

    Так как напряжение на поверхности концентрируется в вершине надреза или в области дефекта, там и происходит быстрый рост трещин. Поверхностные дефекты (например, питтинги или усталостные трещины) действуют как эффективные концентраторы напряжений. К тому же в достаточно глубоких поверхностных дефектах электрохимический потенциал, как отмечалось ранее, отличается от потенциала поверхности состав и pH раствора в местах поражений также изменяются вследствие работы элементов дифференциальной аэрации. Эти изменения в сочетании с повышенным локальным напряжением способны инициировать КРН или ускорить рост трещины. Именно поэтому титановые сплавы с гладкими поверхностями устойчивы к КРН в морской воде, но разрушаются, если на поверхности образовались коррозионноусталостные трещины [44]. Действительное напряжение в вершине трещины глубиной а в напряженном пластичном твердом теле может быть рассчитано как коэффициент интенсивности напряжения Кг- Для образца, изображенного на рис. 7.9, Кх вычисляется по формуле [45, 46] [c.146]


    Проволока с нанесенной на нее изоляцией поступает в охлаждающую ванну, где в качестве охлаждающей среды обычно используют воду. Длина охлаждающей ванны зависит от скорости экструзии, диаметра проволоки (или кабеля) и толщины изоляции. Длина ванны для охлаждения изоляции из кристаллических полимеров больше, чем для охлаждения изоляции из аморфных полимеров, так как процесс кристаллизации является экзотермическим. Для охлаждения кабелей, эксплуатируемых в морской воде, ванны (длина которых достигает 90 м) разделены на отдельные отсеки, содержащие воду с последовательно понижающейся температурой (обычно в интервале 80—100 °С), что предотвращает резкое охлаждение поверхности изоляции, которое может вызвать термические напряжения .  [c.495]

    Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции Т + + 2ё Л составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов Т " [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует ТЮ . Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Т , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение (Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией. [c.372]

    Расчет омического падения напряжения в электролите производится следующим образом. Сопротивление слоя раствора электролита длиной I см и площадью поперечного сечения 5 см равно 1/яЗ Ом, где и — удельная электропроводимость. Таким образом, омическое падение напряжения в вольтах равно /7/х, где / — плотность тока. Для морской воды х = 0,05 Ом см следовательно, при плотности тока 1-10" А/см (0,1 А/м ), создаваемой при катодной защите стали, поправка на омическое падение напряжения при расстоянии между носиком и катодом 1 см равна (1X X 10" В)/0,05 = 0,2 мВ. Эта величина незначительна при установлении критической минимальной плотности тока для надежной катодной защиты. Однако в мягкой воде, где х может быть 10" Oм" м" соответствующее омическое падение напряжения может достигать 1 В/см. [c.50]

    В сжатой информационной форме в виде графиков и таблиц, а также пояснений к их использованию, представлен материал об электрохимических методах катодной защиты от коррозии. Описаны методы пассивной и катодной защиты. Приведены данные о гальваническом влиянии высокого напряжения и способы коррозионных измерений, необходимые сведения об измерительной технике, о локальной катодной защите, катодной защите в морской воде и внутренней катодной защите. [c.159]

    В морской воде почти все обычно используемые металлы и конструкционные стали проявляют склонность к коррозии. Кроме того, повышенная опасность коррозии возникает при составных конструкциях из различных металлов вследствие хорошей электропроводности морской воды. Для оценки контактной коррозии могут быть использованы ряд напряжений различных металлов в морской воде (табл. 2.4) и правило площадей по формуле (2.43). Кроме того, существенное влияние оказывают сопротивления поляризации [см., формулу (2.42)]. Общее представление об этих условиях дают диаграммы контактной коррозии [12, 13]. К образованию контактных коррозионных элементов могут привести и участки с различной структурой в о>дном и том же [c.355]

    Через 1 мин после включения протяжки ленты вольтметра и амперметра блок электродов опускают в сосуд с искусственной морской водой. Одновременно включают секундомер. Время, при котором напряжение перестает расти, фиксируют как момент окончания активации элемента. При разряде периодически измеряют напряжение по контрольному [c.249]

    Ест расположить металлы и сплавы, находящиеся в электролите (кислоты, растворы солей, морская вода, влажный грунт и др.). в электрохимический ряд напряжений, начиная от анодного, менее благородного (корродирующего), в направлении к катодному, более благородному (защищенному), то они образуют следующий ряд магний, цинк, алюминий, кадмий, железо и углеродистая сталь, чугун, легированные стали (активные), свинец, олово, латунь, медь, бронза, титан, никель, легированные стали (пассивные), серебро, золото. При помощи этого ряда можно предсказать, какой из двух металлов при их контакте в электролите станет анодом, а какой -катодом. [c.39]


    Стационарные потенциалы U н (мВ) некоторых широко употребляемых металлов а — во фталатном буферном растворе при pH=6 б — в искусственной морской воде [811 при температуре 25 °С, насыщенной воздухом и находящейся в движении. Заключение в скобки ( ) означает, что эти стационарные потенциалы с течением времени изменяются в сторону более положительных значений вследствие образования поверхностного защитного слоя. (Значения в практическом ряду напряжений зависят от среды и условий работы ) [c.59]

    Для контроля эффективности катодной защиты измеряют потенциал защищаемого сооружения в среде. В случае сооружений, расположенных в морской воде, электрод подводят возможно ближе к защищаемому объекту, например с лодки или подвешиванием измерительного электрода на постоянно закрепленных тросах вдоль несущих труб, при помощи стационарно установленных измерительных электродов или с привлечением водолазов. Как уже отмечалось, прерывать катодный защитный ток нет необходимости, так как падения напряжения в морской воде невелики. Однако поблизости от анодов измерение обычно дает слишком большой отрицательный потенциал. В общем случае силы токов и потенциалы систем катодной защиты сооружений в прибрежном шельфе контролируют ежемесячно. Преобразователи систем катодной защиты на мостах для разгрузки танкеров должны располагаться по возможности за пределами взрывоопасной зоны. В ином случае они должны изготовляться во взрывобезопасном исполнении [17]. [c.351]

    Исследования зависимости электродного потенциала от пластической деформации и влияния ее, на скорость коррозии меди в проточной дистиллированной воде [78] показали, что приложение напряжений приводит к увеличению скорости коррозии и фактором, ее лимитирующим, является разрушение и залечивание (после стабилизации или снятия напряжения) окисной пленки. Изучение влияния упругого и упруго-пластического растяжения на потенциал меди в морской воде также показало, что скорость растворения металла контролируется скоростью залечивания пленки. [c.90]

    Добавка олова повышает стойкость латуни к морской воде, добавка марганца — к воде и пару, алюминий способствует улучшению защитных свойств при воздействии горячей воды и пара. Добавки мышьяка и сурьмы снижают склонность латуни к избирательной коррозии, т. е. к преимущественному растворению цинка из твердого раствора. Коррозионные трещины в однофазных и двухфазных латунях образуются при одновременном воздействии механических напряжений и некоторых компонентов внешней среды. [c.36]

    Тнтан и его сплавы находят все большее применение в совре-мен.чом машиностроении, авиастроении, судостроении, турбостроении, в производстве вооружения. Особенно ценен титан как материал для изготовления частей конструкций, работающих в напряженных условиях. Критерием пригодности таких материалов является отиошение их прочности к весу. Титан и его сплавы используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, они тнироко применяются для изготовления деталей самолетов, космических аппаратов, ракет, трубопроводов, котлоз высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. Одной из наиболее перспективных областей применения титана является судостроение, где решающее значение имеет высокая прочность нри малой плотности и высокая стойкость к коррозии и эрозии в морской воде. Сущестг енное значение имеет использование титана в виде листов для обшивки корпусов судов, литых деталей из титана, выдерживаюнтих длительное пребывание в морской воде, а также для покрытия изнутри смесительных барабанов, предназначенных для перемешивания агрессивных материалов и для других це.тен. В связи с дороговизной листового титана большой практический интерес для судостроительной, химической и других отраслей промышленности представляет применение титана в качестве плакировочного материала для изготовления биметаллических стальных листов. [c.274]

    Высокопрочные легированные стали (при напряжениях выше предела текучести) Вода морская вода и атмосфера, загрязненная отходами промышленности [c.105]

    Использование ингибиторов коррозии - универсальный, эффективный и экономичный метод защиты металлов от коррозии. Он может быть внедрен без нарушения существующей технологии, практически не требуя дополнительного оборудования. Ингибиторную защиту от коррозии и коррозии под напряжением можно внедрять в любой отрасли народного хозяйства. Ингибиторы используются фактически в любых агрессивных средах в пресной и морской воде, в оборотных водах и охлаждающих растворах, в растворах минеральных и органических кислот и оснований, в эмульсионных системах, в атмосферных условиях и тл. [c.107]

    В растворах хлоридов с концентрацией 5 М напряжение пробоя составляет 12—14 В [122], но при увеличении температуры может снижаться до 5—9 В [123] в зависимости от условий и длительности поляризации.. По другим данным [123], при электролизе морской воды напряжение пробоя может снижаться до 7 В. Потенциал пробоя титана ВТ-1 в морской воде с содержаниед соли 35 /од был определен по поляризационной кривой и составлял 22 В. Однако было показано, что при длительной поляризации потенциал пробоя снижается до 14—15 В [124, 125]. При небольшом содержании соли (до 20/до) он снижается до 9 —10 В. [c.127]

    Пресная и, в большой степени, морская вода сильно снижают усталостную прочность стали. Сплавы никеля, медь и сплавы меди хорошо сопротивляются коррозионной усталости в различных водных средах. Это обусловлено их более высоким сопротивлением коррозии в этих средах. Чистые металлы (ие склонные к коррозии под напряжением) подвержены коррозн-оппой усталости. [c.455]

    В ряду напряжений никель отрицател ен по отношению к водороду, но положителен по отношению к железу. В отсутствие растворенного кислорода он реагирует с разбавленными неокислительными кислотами (например, H2SO4 и НС1) весьма медленно. Никель устойчив в деаэрированной воде при комнатной температуре в этих условиях продуктом коррозии является N1 (ОН)г. Никель пассивен во многих аэрированных водных растворах, однако пассивирующая пленка не столь устойчива, как, например, на хроме. (Фладе-потенциал никеля Ер = 0,2 В [1]). При контакте с морской водой на никеле наблюдается питтинговая коррозия. [c.359]

    Браун с сотрудниками показали [33], что титановые сплавы, обладающие при прочих равных условиях превосходной стойкостью в морской воде, подвергаются транскристаллитному КРН, если на поверхности есть концентраторы напряжений. Гладкие образцы могут быть стойкими. Отмечают, что КРН технического титана, содержащего большое количество кислорода (0,2—0,4 %), и различных других сплавов, включая 8-1-1, происходит только в водных растворах в присутствии С1 , Вг и 1 . Ионы F , SO4", ОН , S , NOi и lOj не только не вызывают КРН, но могут замедлять распространение трещин в некоторых сплавах, склонных к КРН в дистиллированной воде (например, эффективна добавка 100 мг/л KNO3) [34, 35]. Некоторые из указанных анионов также ингибируют КРН в присутствии галогенид-ионов в этом отношении их действие сходно с влиянием посторонних анионов на поведение аустенитных нержавеющих сталей (см. разд. 18.5.3). [c.377]

    В в Ш растворе НС1 и 0,45 В 0,1М растворе Na l [471, указывают на склонность металла к питтингу в морской воде. Он подвергается межкристаллитному КРН в безводных метиловом и этиловом спиртах, содержащих НС1, однако этого не наблюдается в присутствии малых количеств воды [481. Такое поведение циркония, подобное поведению технического титана, указывает, что наличие напряжений не является обязательным условием для возникновения трещин, и разрушения, возможно, лучше объясняются межкристаллитной коррозией.  [c.379]

    Непосредственно примыкающий к поверхности Земли слой атмосферы характеризуется довольно закономерным изменением температуры — последняя понижается примерно на 6 град с каждым километром высоты. Слой этот — т р о п о с ф е р а— простирается на высоту около 18 км у экватора и 7 кл у полюсов. Между йим и Землей существует известная разность потенциалов (с напряженностью поля у земной поверхности порядка в/слг), причем тропосфера заряжена положительно, а земная по-верх.чость отрицательно. Основное значение для поддержания такой разности потенциалов имеет, по-видимому, постоянное поступление в атмосферу множества мельчайших кчпелек морской воды, срываемых ветром с гребней океанских волн и приобретающих при этом значительный положительный заряд. [c.37]

    Проведение электролиза при высоких концентрациях хлорида натрия способствует снижению потенциала выделения хлора, сокращению потерь тока на выделение кислорода и увеличению выхода по току гипохлорита натрия. Помимо этого повышение концентрации хлорида натрия увеличивает электропроводность электролита и тем самым снижает напряжение на электролизере. Однако, если учитывать все показатели, влияющие на экономику процесса, то оказывается, что повышение концентрации Na l в электролите увеличивает удельный расход хлорида натрия, так как снижается экономически оправданная степень превращения хлорида в гипохлорит. Обычно электролизу подвергают растворы, содержащие 50—100 кг/м Na l, а в некоторых случаях и около 20 кг/м (морская вода). [c.140]

    При электролизе морской воды содержание гипохлорита пе превышает 3 кг/м . Применение более концентрированного питающего раствора позволяет увеличить содержание гипохлорп-та до 5—6 кг/м . Электролизер Синклор на нагрузку 0,4 кА содержащий 6 ячеек, позволяет получить 2,7 кг/ч активного хлора. При содержании гипохлорита натрия 2,5—4,5 кг/м и температуре 15—40 °С напряжение на электролизере составляет 32 В, выход по току 85—90%, удельный расход хлорида натрпя 8—9 кг/кг гипохлорита натрия. Если для электролиза использовать неочищенный раствор хлорида натрия, то через 14 сут работы необходима промывка катодов электролизера 10%-ой хлороводородной кислотой. При питании электролизера черноморской водой рекомендуется ограничивать плотность тока 0,5—0,7 кА/м летом, не более 0,3 кА/м — зимой содержание гипохлорита в электролите не повышать более 1,0—1,5 кг/м . [c.144]

    Недостаток аустенитных нержавеющих сталей — их склонность к коррозии под напряжением в морской воде. Однако стойкость их несколько повышается при увеличении содержания никеля. Например, сплав Инколой состава [c.21]

    В расчетах на прочность технологической аппаратуры конструктору часто приходится учитывать общую равномерную по поверхности коррозию металлов и сплавов, для чего необходимо знать проницаемость материала в мм/год при заданных рабочих условиях агрессивной среды (концентрация, температура, давление). Она учитывается при выборе величины прибавки на коррозию к рассчитанной толщине стенки аппарата. В ряде случаев при конструировании технологической аппаратуры необходимо учитывать также и другие виды коррозионного разрушения материалов. Например, в химических аппаратах, выполненных из кислотостойкой стали и находящихся под постоянным повышенным давлением, при совместном действии коррозионной среды и растягивающих напряжений в ряде случаев наблюдается коррозионное растрескивание металла, происходящее обычно внезапно без видимых изменений материала, Это явление не имеет места при наличии в металле напряжений сжатия. Кроме того, коррозионное растрескивание происходит в небольшом количестве агрессивных сред и зависит от величины давления и температуры, Известно, что ускоренное растрескивание аппаратуры из кислостойких сталей, находящейся под постоянно действующей нафузкой, имеет место в растворах Na I, Mg l,, 7,т)С , Ь1С1, Н 8, морской воде и т,д. Латуни обнаруживают склонность к коррозионному растрескиванию в среде аммиака. [c.9]

    Несмотря на низкое движущее напряжение около 0,2 В, цинковые протекторы в настоящее время еще составляют около 90 % всех видов протекторов для наружной защиты морских судов [15]. В военно-морском флоте ФРГ для наружной защиты судов протекторами обязательно предписывается применять цинк [6]. Для внутренней защиты сменных танков в танкерах цинковые сплавы являются единственным материалом протекторов, допускаемым без ограничений [16] (см. также раздел 18.4). Для наружной защиты трубопроводов в морской воде применяют цинковые протекторы в виде браслетов, приваренных в продольном направлении к скобам, соединенным с трубой, или в виде насан<енных полуоболочек (см. раздел 17.2.3). В случае солоноватых или сильно соленых вод, получаемых, например, при добыче нефти или в горном деле, цинковые протекторы применяют и для внутренней защиты резервуаров (см. раздел 20). Возможности применения цинковых протекторов в пресной воде весьма ограничены. При низкой электропроводности среды стационарный потенциал и поляризация с течением времени обычно значительно повышаются. Это относится и к применению в грунте. Если не считать эпизодического применения стержневых и ленточных протекторов в качестве заземлителей, цинковые протекторы используют только при сопротивлении грунта менее 10 Ом-м. Чтобы уменьшить пассивируемость и снизить сопротивление растеканию тока, протекторы должны укладываться с обмазкой активатора — см. раздел 7.2.5. [c.182]

    Обычно протекторы размещают непосредственно на объекте защиты. Однако при использовании в грунте их для лучшей токоотдачи располагают отдельно и соединяют с объектом защиты при помощи кабеля. В данном случае кабель должен иметь особенно низкое омическое сопротивление, чтобы и без того малое напряжение защиты не было бы еще уменьшено омическим падением напряжения. Следовательно, при больщой длине проводов поперечные сечения кабелей следует принимать достаточно большими. Обычно достаточно применить кабели с оболочкой МУМ с поперечным сечением медного провода 2,5 мм . Иногда требуются более мощные кабели со специальной изоляцией, например ЫУУ 4 мм . Подсоединительные кабели, укладываемые в грунте, должны иметь бросающуюся в глаза окраску, например белую. При прокладке в морской воде иногда как и в системах с наложением тока от постороннего источника могут потребоваться кабели, стойкие к повышенной температуре, маслу и морской воде. [c.191]

    Компактную (цельную) платину как материал для анодов на станциях катодной защиты предложил Коттон [14]. Такие аноды при подходящих условиях могут работать с плотностью анодного тока до Ю" А-м-2. Действующее напряжение практически не ограничивается, а скорость коррозии (в предположении об оптимальности условий) очень мала — порядка нескольких миллиграммов на 1 А в год. Впрочем, это обеспечивается преимущественно при сравнительно низких плотностях тока в морской воде прн эффективном отводе образующейся подхлор-ной кислоты. Если приходится применять благородные материалы для получения высоких плотностей анодного тока в плохо проводящих электролитах, то анодное растворение платины увеличивается вследствие образования хлорокомплексов и в таком случае становится непосредственно зависящим от плотности тока [15—17]. Кроме того, в воде с низким содержанием хлоридов при преобладании образования кислорода на поверхностях анодов образуется предпочтительно легче растворимый окисел РЮг вместо РЮ, вследствие чего расход платины тоже увеличивается. Тем не менее потери остаются малыми, так что цельная платина может практически считаться идеальным материалом для анодов. Однако такие аноды ввиду большой плотности платины (21, 45 г см-2) получаются очень тяжелыми, а ввиду весьма высоких цен на платину (28 марок ФРГ за 1 г по состоянию на сентябрь 1979 г.) они неэкономичны. Вместо них применяют аноды из других несущих металлов, рабочая поверхность которых покрыта платиной. [c.204]

    Каждая электродная реакция имеет свой стандартный потенциал (см. 2.3). Это Потенциал, которглй возникает в условиях, когда все вещества, участвующие в электродной реакиии, имеют активности, равные 1. Если расположить электродные реакции в соответствии со значениями стандартных потенциалов, получим злектрохими-ческий ряд напряжений (табл. 2). Металл, которому соответствует относительно высокий стандартный потенциал, например медь, называется благородным металлом. Металл, которому соответствует низкий стандартный потенциал, например натрий или магний, называется неблагородным металлом. Необходимо отмешть, что ряд напряжений применим только для чистых (не окисленных) металлических поверхностей в растворах собственных ионов металла с такими их активностями (концентрациями), для которых действительны стандартные потенциалы. В действительности поверхности металлов часто бывают покрыты оксидом, а активности их ионов в растворе могут существенно отличаться от 1, особенно, когда ионы металла связаны с другими составляющими раствора в так называемые комплексные ионы. Эти обстоятельства могут привести к тому, что измеренное значение потенциала будет очень сильно отличаться от приведенного в ряду напряжений. Если металлы, погруженные в исследуемый электролит, например морскую воду, расположить в соответствии с измеренными электродными потенциалами. [c.15]

    Для деталей, подвергающихся воздействию атмосферы (в том числе промышленной), воды, работающих в контакте с почвой Для деталей, подвергающихся высокотемпературному окислению или воздействию горячих газов Для деталей, подвергающихся воздействию агрессивной среды, погружаемых в воду или почву для защиты алюминиевых сплавов от коррозии под напряжением Для деталей, подверженных воздействию влаги, морской воды, хлористых солей, паров органических веществ для поверхностей, требующих хорошей плавкости для зажимов с резьбой низкого скручивающе- [c.92]

    На рассмотреннь1е выше виды коррозии, а также и на коррозию под механическим напряжением могут накладываться, существенно ускоряя коррозионное разрушение, такие факторы, как трение, воздействие микроорганизмов (биокоррозия), а также явления кавитации. Биокоррозия особенно активна в морской воде в результате обрастания металлических объектов водорослями и живыми организмами. [c.31]

    V Сопротивление сТали коррозионной усталости зависит и от формы цикла (от закономерности, по которой изменяются напряжение и деформации при циклическом нагружении). Форма цикла определяется условиями эксплуатащш деталей и конструкций и бывает различной синусоидальной, пилообразной, трапецеидальной и прямоугольной. Цикл нагружения может быть как симметричным, так и асимметричным. Форма цикла влияет на процессы упрочнения металла в зоне перед вершиной трещины (зона предразрушения), а также на процессы накопле-Ш1я искажений кристаллической решетки, отдыха и перераспределения там напряжений. Кроме того, форма цикла, определяя скорость деформирования, а также время пребывания материала в деформированном состоянии, влияет на электрохимические (коррозия и наводороживание) процессы в трещине. При малоцикловом нагружении в синтетической морской воде и других средах наименьшая долговечность наблюдается для синусоидальной формы цикла при переходе к трапецеидальной форме, а затем к прямоугольной долговечность металла несколько возрастает. Отмечено, что форма цикла сказывается на сопротивлении усталости также при многоцикловом усталостном нагружении, однако в условиях малоцикловой усталости это влияние проявляется сильнее [21,71,72]. [c.51]

    Установлено, что нанесение цинксиликатных покрытий повышает предел коррозионной усталости стали в синтетической (3 %-м водном растворе Na l) и натуральной морской воде практически до уровня предела коррозионной усталости на воздухе, Эти покрытия весьма эффективны и при заицгге металла от корроэионного растрескивания. Есть основание считать, что эффективность указанных покрытий при коррозии под напряжением в значительной степени связана с их протектирующим воздействием на защищаемый металл [46,47], [c.123]

    В зависимости от условий эксплуатации в конденсаторах и нагревателях наблюдается язвенная коррозия, избирательная коррозия, коррозия под напряжением и эрозионная коррозия. В автомобильных радиаторах, изготовленных из рифленой латунной ленты или плоскостенных труб, поражения происходят в основном из-за локального обесцинкования, приводящего к пробоям. В водонагревателях энергетических сооружений усиленную общую коррозию вызывает вода, умягченная сульфитом натрия. Легирование алюминием порышав устойчивость латуней к коррозионному действию хлоридов, содержащихся в охлаждающей и морской воде. [c.119]

    Из сплавов цветных металлов для изготовления оборудования химических производств, работающего в морской воде, используют главным образом сплавы меди с никелем типа МНЖ 1-5 или монель-металл НМЖМц 28-2,5-1,5, поскольку использование латуней сопровождается их коррозионным обесцинкованием. Не подвержены обесцинкованию сплавы типа томпак, содержащие 80—85 % меди, легированной цинком, однако для них, как и для латуни, характерно коррозионное растрескивание. Для его предотвращения необходим отжиг аппаратов при 250—300 °С, обеспечивающий снятие внутренних напряжений [10]. [c.30]


Смотреть страницы где упоминается термин морской воде напряжением: [c.429]    [c.77]    [c.188]    [c.143]    [c.429]    [c.188]    [c.144]    [c.352]    [c.16]    [c.16]    [c.54]   
Коррозия металлов Книга 1,2 (1952) -- [ c.596 , c.598 ]

Коррозия металлов Книга 2 (1952) -- [ c.596 , c.598 ]




ПОИСК





Смотрите так же термины и статьи:

Морская вода

испытания морской воде коррозия под напряжением

морской воде при высоких температурах под напряжением



© 2024 chem21.info Реклама на сайте