Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атмосферная коррозия металлов испытания

    Изменение внешнего вида образца необходимо фиксировать при любых испытаниях на коррозионную устойчивость. В некоторых случаях изменение внешнего вида дает достаточную характеристику его устойчивости (фиг. 70 и 71). К таким случаям, относится, например, испытание лакокрасочных, защитных покрытий, а также и металлических, многие случаи испытания на атмосферную коррозию металлов и сплавов и др. [c.113]


    Процесс атмосферной коррозии металлов очень сложен и зависит от множества взаимосвязанных, постоянно изменяющихся климатических факторов. Поэтому выработать универсальную методику коррозионных испытаний, пригодную для всех климатических областей и районов, не представляется возможным. [c.24]

    Таким образом, состояние атмосферы, типичное для данной местности, характеризуется своеобразным климатическим режимом и определяется в основном географическим расположением и рельефом местности. Знание закономерностей изменения климатических факторов дает возможность предвидеть величину атмосферной коррозии металлов в данном климатическом районе, анализировать результаты испытаний и предсказывать поведение различных конструкций, транспортных средств, машин, применяемых в тропических районах, в районах с аналогичными метеорологическими параметрами. [c.32]

    Целью морских коррозионных испытаний является установление коррозионной стойкости металлов в море, защитных свойств различных покрытий в морской воде, выяснение условий обрастания морских конструкций живыми организмами, а также влияния продуктов их жизнедеятельности яа характер и скорость коррозии металлов. Испытания в море, так же как и атмосферные испытания, проводятся на специальных станциях с применением специальных стендовых установок. Морские коррозионные станции располагаются, как правило, в защищенных бухтах. Размещение их в портах или вблизи от них не всегда целесообразно в связи с возможным засорением воды нефтью и другими отбросами порта. По условиям коррозии [322] испытания металлических сооружений в море можно разбить [323] на следующие группы  [c.209]

    В качестве показателей коррозии металлов при атмосферных испытаниях используют изменение внешнего вида образцов, время появления первого коррозионного очага, площадь, занятую продуктами коррозии основного металла и металлического защитного слоя, микроисследование, очаговый, глубинный, убыли массы, механический, отражательный показатели коррозии. [c.467]

    В районах с различными климатическими условиями во влажных субтропиках в центральном районе европейской части СССР (промышленная и сельская местность), в Заполярье. Эти испытания показали большое влияние на атмосферную коррозию металлов различных (газообразных и твердых) примесей воздуха, температуры и влажности воздуха. При этом было установлено, что основным фактором коррозионной агрессивности незагрязненной атмосферы является влажность, характеризуемая не общим количеством выпадающих в данной местности осадков, общим количеством дождливых дней либо значением средней влажности воздуха, а общим временем нахождения влажной пленки на поверхности металла (длительностью увлажнения поверхности металла) т, которое может быть представлено (по А. И. Голубеву и М. X. Кадырову) следующим уравнением  [c.380]


    Влияние географического фактора, т. е. местоположения, на характеристику коррозионной агрессивности атмосферы в настояшее время достаточно учитывается. В настоящее время как у нас в Союзе, так и за границей проводятся широкие испытания на коррозионных станциях, и в частности, многочисленные псследования по влиянию влажно-тропических условий на атмосферную коррозию металлов. [c.346]

    Для простейших лабораторных испытаний металлов на атмосферную коррозию исследуемые образцы одного или нескольких металлов помещают в закрытый эксикатор, на дно которого налита вода. Для более интенсивного осаждения влаги образцы один или два раза в сутки охлаждают в термосе, после чего. их переносят в эксикатор, имеющий комнатную температуру, для коррозионных испытаний. [c.445]

    Средние скорости атмосферной коррозии (мкм/год) различных металлов по результатам 10- и 20-летних испытаний [51 [c.173]

    Обобщение результатов, полученных при коррозионных испытаниях различных металлических систем на станциях ИФХ АН СССР, стран — членов СЭВ в тропических и арктических районах, позволило разработать и статистически обосновать простые математические модели атмосферной коррозии [78, 79]. Используя эти модели, возможно не только районировать территорию СССР по коррозионной активности атмосферы, но и составлять таблицы справочных данных о коррозионной стойкости металлов в различных географических районах [80]. [c.83]

    Испытания на атмосферную коррозию важны для поставщиков металла, инженеров и архитекторов, использующих металл в атмосферных условиях. Американским обществом испытаний и материалов составлены обзоры, включающие стандарты на атмосферную коррозию и методы испытаний [29, Зо]. [c.179]

    Косвенные лабораторные испытания проводят для определения возможной коррозионной стойкости металлов при изменении некоторых их физических или химических свойств, если известна связь между этими свойствами и коррозионной стойкостью металлов в природных или эксплуатационных условиях. Например, известны экспериментальные данные о корреляции между толщиной, пористостью и стойкостью электрохимических покрытий к атмосферным явлениям. Поэтому нецелесообразно проводить длительные коррозионные испытания. Имея данные по накопленным за длительное время испытаниям, достаточно определить толщину и пористость покрытий, и если покрытие не отвечает предъявляемым требованиям, можно считать его непригодным. К этой группе можно отнести и испытания, которые проводят в стандартных условиях, и по полученным результатам судить о реальных коррозионных процессах. Например для оценки склонности металла к межкристаллитной коррозии проводят испытания, которые невозможно воспроизвести в условиях эксплуатации. [c.91]

    Кроме массовых (гравиметрических) способов измерения потерь металла при оценке скорости коррозии нередко прибегают к объемным (волюметрическим) способам. Это возможно в тех случаях, когда окисление металла сопровождается расходом или выделением газа. Так, при атмосферной коррозии расходуется кислород, а при кислотной выделяется водород. Объем израсходованного кислорода или выделившегося водорода пропорционален массе окислившегося металла. При этом следует помнить, что на 1 моль израсходованного кислорода окисляются 4 моля металла, а при выделении водорода на один моль водорода окисляются два моля металла. Измерение объема менее точно, чем взвешивание, но при массовом определении скорости коррозии необходимо прерывать испытание, удалять продукты коррозии и лишь после этого определять уменьшение массы образца. Поэтому найденная скорость коррозии представляет собой некоторую усредненную величину аа 1 ерйод испытания. При этом предполагается, что скорость процесса не изм яялась в течение опыта, что не всегда справедливо. За изменением объема газа в некоторой замкнутой системе можно следить, не прерывая испытания, что дает более содержательную информацию о кинетике процесса коррозии. Массовую потерю металла (г) при атмосферной и кислотной коррозии вычисляют по формуле [c.11]

    Этот недостаток особенно ярко проявляется в том случае, когда разбрызгивание нейтральной соли показывает, что для защиты стали лучше использовать кадмий, а не цинк. Известно, что в атмосфере промышленной среды цинк обеспечивает лучшую коррозионную защиту, чем кадмий, а в морских условиях целесообразность применения того или иного покрытия зависит от окружающей среды. Причины этих очевидных аномалий, вероятно, связаны с разной природой данных металлов и растворимостью продуктов коррозии, образующихся в различных условиях. Обильное количество электролита хорошей проводимости, обеспечиваемое при испытаниях на атмосферную коррозию, препятствует какому-либо защитному действию продуктов коррозии, которое может проявляться лишь при высыхании и повторном увлажнении, происходящих естественным путем. Кроме того, переоценивается эффективность действия протекторной защиты, создаваемой анодными покрытиями этого типа. [c.157]


    Наименьшая скорость коррозии стали наблюдалась в мае на атмосферной площадке, что объясняется отсутствием частого смачивания. Длительные (примерно в течение 3 лет) испытания стали на воздухе показали, что значительное влияние на ускорение процесса коррозии металла оказывают небольшие осадки в начале эксперимента. В течение 15 сут после начала проведения опыта скорость коррозии возросла, после чего началось постепенное замедление, что объясняется накоплением продуктов коррозии и действием солнечной радиации (182 ч), способствующей уплотнению про- [c.65]

    Рассчитанные величины скорости коррозии рассматриваемых металлов сопоставляли с результатами, полученными зарубежными исследователями при коррозионных испытаниях в аналогичных климатических районах, а также в районах с одинаковой загрязненностью атмосферы [68, 69]. Хорошая корреляция сопоставленных данных свидетельствует о достоверности предлагаемых справочных данных о скорости атмосферной коррозии. [c.86]

    Ускоренные испытания на атмосферную коррозию. Ускоренные коррозионные испытания металлов и средств защиты являются частью проблемы прогнозирования надежности приборов, машин и прозе [c.86]

    В последние годы ускоренные испытания, имеющие своей целью прогнозирование коррозионной стойкости металлов или покрытий, получили дальнейшее развитие. В табл. 12 сопоставлены наблюдаемые и рассчитанные из результатов ускоренных испытаний скорости коррозии цинка, кадмия и алюминия в различных климатических зонах. В расчетах использовали вышеприведенные модели атмосферной коррозии. Полученный к настоящему времени экспериментальный материал [84, 85] свидетельствует о хорошей корреляции рассчитанных по результатам ускоренных испытаний и реально наблюдаемых величин коррозии. [c.88]

    Существует несколько способов повышения скорости коррозии. Применительно к атмосферной коррозии или случаям периодического смачивания электролитом металла наиболее простым является увеличение продолжительности контакта металлической поверхности с электролитом. Поскольку в атмосферных условиях продолжительность воздействия электролита на металл ограниченна, при ее увеличении сокращается продолжительность испытания. В атмосферных условиях процесс контролируется скоростью кислородной деполяризации, и испытания необходимо проводить таким образом, чтобы металл подвергался возможно более длительному воздействию тонкого слоя электролита, но при этом толщину пленки не следует уменьшать бесконечно, так как в очень тонких слоях наряду с облегчением протекания катодной реакции может замедлиться анодная реакция. [c.18]

    Метод периодического погружения в электролит применяется не только для испытания изделий, используемых в судостроении или гидротехнических сооружениях, но и для изделий, работающих в атмосферных условиях. Поскольку при этом виде испытаний коррозионный процесс большую часть времени протекает в тонком слое электролита, скорость коррозии металлов, у которых контролирующим является катодный процесс, значительно возрастает. [c.27]

    Зависимость коррозионных потерь от времени экспозиции для образцов, испытывавшихся на среднем уровне прилива, имеет интересные особенности, являющиеся серьезным аргументом в пользу изложенной выше теории биологического контроля скорости коррозии в морской воде. Эта кривая представлена на рис. 122. Видно, что в течение первого года экспозиции скорость коррозии стали была очень велика (примерно 250 мкм/год), почти вдвое выше, чем при экспозиции в условия> постоянного погружения. Образцы в зоне прилива также подвергались обрастанию (в основном усоногими раками), но оно происходило значительно медленнее, чем при постоянном погружении в том же месте, и только через год на металле образовался слой, обладающий высокими защитными свойствами. После этого (в интервале от 1 до 2 года испытаний) скорость коррозии упала до очень малого значения (менее 10 мкм/год). Медленное обрастание и больший доступ кислорода к поверхности металла в зоне прилива (по сравнению с погруженными образцами) задержали возникновение полностью анаэробных условий на металлической поверхности, что, очевидно, и проявилось в увеличении периода защиты металла вследствие обрастания. Если бы рост бактерий на этой стадии можно было затормозить, то скорость коррозии осталась бы на очень низком уровне, сделав возможной длительную эксплуатацию углеродистой конструкционной стали без защитных покрытий. Это было бы аналогично случаю атмосферной коррозии стареющих (низколегированных) сталей, при многолетней эксплуатации которых практически не требуется никакого ухода. [c.444]

    Методы и режимы испытаний должны обеспечивать протекание коррозионного процесса с большой скоростью. Существует несколько способов повышения скорости коррозии. Применительно к атмосферной коррозии или случаям периодического воздействия электролита на металл наиболее простым является увеличение времени контакта металлической поверхности с электролитом. Известно, что в атмосферных условиях время воздействия электролита на металл ограниченно и поэтому увеличение этого времени уже само по себе может повысить суммарный эффект и тем самым сократить время испытания. Поэтому простой путь ускорения испытаний, имитирующих атмосферные условия, заключается в том, чтобы электролит возможно дольше контактировал с поверхностью металла. [c.9]

    По мере уменьшения толщины пленки электролита на металле скорость кислородной деполяризации будет увеличиваться. Однако при испытаниях оптимальная толщина пленки должна быть не менее 30—50 мкм [2].- Применение этого метода для имитации атмосферных условий оправдано еще и тем, что основное разрущение при атмосферной коррозии происходит в видимых пленках электролитов, возникающих на поверхности металлов либо вследствие прямого попадания атмосферных осадков в виде дождя, снега, брызг морской или речной воды, либо, что бывает чаще, вследствие колебаний температуры, приводящих к охлаждению атмосферного воздуха и выпадению росы. Толщина пленок в последнем случае достигает 100—200 мкм. [c.39]

    Оценку защитных свойств ПИНС проводят при их непосредственном испытании в коррозионных камерах различной конструкции. Были испытаны многочисленные прямые методы оценки защитных свойств с целью прогнозирования сроков защиты и установления скорости коррозии металлов. В работах П. В. Стрекалова, Ю. Н. Михайловского, Г. Б. Кларка и других исследователей изучена кинетика развития коррозионных процессов под пленками влаги, в присутствии диоксида серы и хлора в специальных автоматизированных установках и камерах, а также на атмосферных испытательных станциях стран — членов СЭВ [127]. Сделана попытка моделирования в камерах искусственного климата атмосферной коррозии металлов за счет ее ускорения с повышением температуры. [c.101]

    Для того чтобы использовать первое преимущество, обычно гак или иначе интенсифицируют коррозионный процесс. В этом случае особое внимание должно быть уделено тому, чтобы при подборе средств ускорения реального процесса не изменить принципиально его механизм. Например растворы соляной жис-лоты значительно увеличивают скорость коррозии легких сплавов по сравнению с атмосферными условиями, однако результаты испытаний в этих растворах не могут характеризовать поведения металла в практике, так как механизм коррозии в атмосферных условиях и в растворах кислот различный. Следовательно, для того чтобы интенсифицировать процесс коррозии в лабораторных условиях, необходимо знать его механизм и усиливать действие только тех факторов, которые не изменяют его принципиально. К числу важнейших внешних факторов, влияющих на коррозию металлов в электролитах, относят [1] 1) природу электролита, 2) концентрацию электролита, 3) проводимость электролита, 4) движение раствора, 5) концентрацию окислителей и кислорода, 6) концентрацию водородных ионов (pH), 7) температуру, 8) влажность и 9) размер частиц, контак-тируемых (С металлом. Рассмотрим несколько подробнее их влияние на коррозионные процессы, используя параллельно (для примера) данные [73] о влиянии температуры, концентрации кислорода, скорости движения жидкости и количества продуваемого воздуха на коррозию монель-металла в 5%-ном растворе серной кислоты (рис. И). [c.60]

    При проведении атмосферных испытаний на коррозию металлов влияет большое число разнообразных факторов [1]  [c.202]

    Критерием коррозионной стойкости металла при атмосферных испытаниях наиболее часто служит изменение внешнего вида образцов, изменение их веса и механических характеристик. При оценке коррозионной стойкости металла или покрытия по изменению внешнего вида сравнение ведут по отношению к исходному состоянию поверхности, поэтому состояние последней перед испытанием должно быть тщательно зафиксировано. Для этого образцы осматривают невооруженным глазом, а некоторые участки — через бинокулярную лупу. При этом особое внимание обращают [320] на дефекты а) на основном металле (раковины, глубокие царапины, вмятины, окалина, ее состояние и пр.) б) на гальваническом или лакокрасочном покрытии (шероховатость, питтинг, трещины, вздутия, непокрытые. места, пятна от пальцев, царапины). Результаты наблюдений записывают или фотографируют. Для облегчения наблюдений и точного фиксирования их результатов на осматриваемый образец накладывают проволочную сетку или прозрачную бумагу с нанесенной тушью сеткой. Результаты осмотра записывают в специальную карту предварительного осмотра, имеющую такую же сетку [319]. Первоначально за образцами наблюдают ежедневно для установления первых очагов коррозии. В дальнейшем осмотр повторяют через 1, 2, 3, 6, 9, 12, 24 и 36 мес. с момента начала испытаний. При наблюдении на образец можно накладывать масштабную сетку и наблюдаемые изменения фиксировать на карте осмотра [1]. При наблюдении обращают внимание на следующие изменения 1) потускнение металла или покрытия и изменение цвета 2) образование продуктов коррозии металла или покрытия, цвет продуктов коррозии, их распределение на поверхности, прочность сцепления с металлом 3) характер и размеры очагов коррозии основного, защищаемого металла. Для однообразия в описании производимых наблюдений рекомендуется употреблять одинаковые термины потускнение, пленка и ржавчина. Термин потускнение применяют, когда слой продуктов очень тонкий, когда происходит только легкое изменение цвета поверхности образца, термин пленка употребляется для характеристики более толстых слоев продуктов коррозии и термин ржавчина — для толстых, легко заметных слоев продуктов коррозии. Характер слоев продуктов коррозии предлагается описывать терминами очень гладкие, гладкие, средние, грубые, очень грубые, плотные и рыхлые. При описании характера продуктов [c.206]

    Для изучения роли бактерий в процессе атмосферной коррозии металлов их выращивали методом Коха. С этой целью в чашки Петри наливали агар, который 15 мин выдерживали в условиях свободного доступа воздуха, затем их закрывали и помещали в термостат, где выдерживали при температуре 37 °С в течение 48 ч. После этого культуру микробов применяли для испытаний. Для этого в колбах Эрлемейра емкостью 670 мл на капроновых нитях подвешивали образцы различных металлов, обработанные по общепринятой методике. Культуру бактерий разводили в 2 мл дистиллированной воды, для каждого опыта помещали в колбы (в контрольные колбы наливали также по 2 мл дистиллированной воды, но не обогащенной бактериями). Опыты проводили в лабораторных условиях в течение 40 сут при температуре 18 2 °С, которая не вполне благоприятна для жизнедеятельности бактерий. Несмотря на это, на торцах стальных пластин, помещенных в бактериальной среде, примерно через 24 ч были обнаружены очаги коррозии. В контрольной же колбе признаки коррозии были обнаружены на 9 ч позже. По истечении 20 сут в целях изучения форм бактерий, поселившихся на образцах, последние сразу же после извлечения из колбы обмывали стерильной водой (по 5 мл на образец). После этого под микроскопом МБИ-6 были обнаружены в основном кокки и палочки. Затем продукты коррозии удаляли с помощью соответствующих реактивов для каждого вида металла и образцы выдерживали в эксикаторе в течение 24 ч, после чего их взвешивали. Результаты исследований приведены в табл. II. 4. [c.41]

    Нет, по-видимому, никаких сомнений, что разработка на-учнообоснованных методов ускоренных испытаний возможна только на основе дальнейшего развития физико-химических и климатологических представлений в области атмосферной коррозии металлов. [c.200]

    Влияние географического фактора, т. е. географического местоположеиия эксплуатируемых металлических конструкций, на атмосферную коррозию металлов изучают на коррозионных станциях, расположенных в районах с различными климатическими условиями во влажных субтропиках, в центральном районе европейской части СССР (промышленная и сельская местность), в Заполярье. Эти испытания показали большое влияние на атмосферную коррозию металлов различных (газообразных и твердых) примесей воздуха, температуры и влажности воздуха. При этом было установлено, что основной фактор коррозионной агрессивности незагрязненной атмосферы — влажность, характеризуемая не общим количеством выпадающих в данной местности осадков, не общим количеством дождливых дней и не значением средней влажности воздуха, а общим временем нахождения влажной пленки на поверхности (длительностью увлажнения поверхности металла) т, которое можно представить, по данным А. И. Голубева и М. X. Кадырова, следующим уравнением  [c.251]

    В ряде иоследовательских методов кроме количества осадка (термическая стабильность) определяют и другие высокотемпературные свойства топлива, характеризующие склонность его к образованию отложений и к коррозии металлов топливной аппаратуры, например в комбинированном методе КОС [36], предназначенном для определения термической стабильности топлив. Испытания можно проводить при атмосферном и при повышенном давлении. [c.98]

    ГОСТ 17332 - 71. ЕСКЗС. Металлы, сплавы, покрытия металлические и неметаллические неорганические. Метода испытаний на атмосферную коррозию на климатических испытательных станциях.  [c.140]

    В атмосферном павильоне с жалюзими испытывали сплавы системы Л1-М2-Си А1-Мд Zп-Al-Mg, а также цинк (99,8%), электролитическую медь (99,9%), алюминий (99,5%) и электролитические и химические покрытия. Результаты испытаний металлов представлены в табл. V. 6. Для сравнения приведены данные о коррозии этих же металлов на воздухе в Батуми. В течение первых 3 месяцев с начала эксперимента метеорологические условия были следующими средняя месячная температура воздуха колебалась от -1-21,1 до +24,2 °С, относительная влажность — от 78 до 80%, количество осадков — от 81,1 до 335,5 мм, продолжительность смачивания — от 115 до 192 ч. Как видно из данных, скорость коррозии стали в открытой субтропической атмосфере намного выше, чем в павильоне ( в 20 раз). То же характерно и для цинка и меди. С алюминием происходит следующее вначале испытаний скорость коррозии алюминия в открытой атмосфере несколько меньше, чем в павильоне жалюзийном со временем она увеличивается и далее вновь падает. В конечном счете скорость коррозий алюминия в павильоне больше, чем в открытой атмосфере. Таким образом, в сильно агрессивных атмосферах коррозия металлов и сплавов на воздухе выше, чем в павильоне жалюзийном. Отсюда следует, что в тропических и субтропических районах изделия и оборудование следует хранить под навесом, брезентами или в складах. [c.77]

    Из алюминиевомагниевых сплавов за 2 года испытаний наиболее коррозионностойкими оказались сплавы системы А ——2п и А1—Mg так как изменение массы этих сплавов по сравнению с остальными алюминиевомагниевыми сплавами с самого начала опыта было наименьшей. У сплавов системы А —Mg—Си потеря в весе была примерно в полтора раза больше как в открытой атмосфере, так и в павильоне жалюзийном. Магниевый сплав МА2-1 корродировал в 6 раз сильнее в открытой атмосфере, чем в павильоне. Сплавы систем А —M.g—Си А —М —1п А1—М —51 корродировали в павильоне с жалюзи примерно в 2 раза больше, чем на воздухе. Такое своеобразное поведение алюминиевых сплавов в павильоне и в открытой субтропической атмосфере зависит от свойств образующихся продуктов коррозии. В павильонах жалюзийных создается своеобразный микроклимат, в результате чего амплитуда колебаний метеорологических элементов ниже, чем в атмосфере. Вследствие этого конденсация влаги и ее абсорция продуктами коррозии уменьшаются, что уменьшает скорость коррозии металлов и сплавов. Однако для некоторых алюминиевых сплавов более существенным фактором оказывается длительность пребывания пленки электролита на поверхности металлов, которая в павильоне больше, чем в открытой атмосфере, где солнечная радиация, ветры высушивают поверхность металла быстрее. Как видно, множество факторов, влияющих на атмосферную коррозию, не позволяет по одному какому-нибудь параметру предсказывать коррозионное поведение металлов и изделий в субтропиках. [c.77]

    Одна из первых математических моделей атмосферной коррозии была разработана Томашовым Н. Д., Бе-рукштис Г. К. и Кларк Г. Б. [67]. Эта модель построена на допущении, что наблюдаемые коррозионные эффекты следует относить ко времени, когда на поверхности металла существуют капельно-жидкие пленки влаги. Несмотря на простоту, модель не получила статистической проверки, что и ограничило ее практическое использование. Из литературы известно много частных выражений, связывающих атмосферную коррозию с метеорологическими параметрами. Однако коэффициенты таких эмпирических уравнений не являются постоянными, их величины зависят от характера климата в местах проведения испытаний. Так, ежемесячная коррозия стали в Токио описывается выражением М = (—1,63 -Ь 0,028Я-Ю,066 + 0,0835) т. [c.82]

    Ускоренные атмосферные испытания. Лабораторные методы исследования атмосферной коррозии были разработаны раньше многих других лабораторных методов коррозионных испытаний и продолжают непрерывно совершенствоваться. Это можно объяснить, с одной стороны, тем, что в практике атмосферной коррозии подвергается около 80% металлических конструкций и доля коррозионных потерь при атмосферной коррозии превышает половину общих потерь [52], а с другой, тем, что механизм атмосферной коррозии является сложным и изучен далеко не полностью. Несмотря на кажущуюся простоту, воспроизведение в лаборатории условий атмосферной коррозии встречает определенные трудности, которые в значительной мере связаны с тем, что атмосферной стойкости вообще не существует, ибо одни и те же металлы в разных местах корродируют по-разному, так, например, коррозионная стойкость железа может изменяться в зависимости от атмосферы примерно в сто раз [3]. Большое значение имеет влажность воздуха, количество осадков, характер и количество загрязнений, температура и другие факторы. В зависимости от соотношения этих факторов естественную атмосферу делят на сельскую, городскую, индустриальную, сельскую морскую, городскую морскую, морскую, тропическую и тропическую морскую. Подробная характеристика этих типов атмосфер приводится в работе [5]. В соответствии с механизмом процесса атмосферная коррозия классифицируется [52, 53] на мокрую (относительная влажность воздуха около 100%), влажную (относительная влажность ниже 10%) и сухую (полное отсутствие влаги на поверхности металла). В двух первых случаях коррозия шротекает в соответствии с законами электрохимической, а в третьем—в соответствии с законами химической кинетики. Часто их трудно разграничить. В этой связи одним из первых условий воспроизведения в лаборатории атмосферной коррозии является создание на поверхности металла тонкой пленки влаги, имеющей постоянную или переменную толщину. Последнее, по-видимому, более точно отвечает практике. Такие условия в лаборатории достигаются с помощью влажных камер, приборов переменного погружения или солевых камер. Наиболее простая влажная камера — обычный эксикатор, на дно которого налита вода (рис. 13). [c.64]

    После классических исследований атмосферной коррозии, проведенных Кистяковским, Акимовым, Верноном, Хадсоном, Эвансом и Миерсом [1,6— 10], интерес исследователей к этому виду коррозии почему-то ослаб, и большинство опубликованных работ по этому вопросу касалось в основном описания результатов натурных испытаний. Нередко закономерности, установленные для коррозионных процессов, протекающих в условиях полного погружения металла в электролит, необоснованно переносились на атмосферную коррозию. Между тем атмосферная коррозия протекает в специфических условиях, подчиняется особым законам, которые нельзя не учитывать при рассмотрении механизма процесса и разработке мер противокоррозионной защиты. [c.4]

    Сильные коррозионные разрущения алюминиевых сплавов в щелях и зазорах наблюдали Эванс [4] и С. Павлов [5], а также Клушин [6] при испытании в атмосферной камере дюралюминия и магния, находившихся в контакте с карболитом. К этому же типу разрушений следует отнести наблюдающиеся иногда случаи коррозии металлов в контакте со строительными материалами. Интересный случай из этой области описан Шрайром [7]. Вследствие недостаточной герметичности пространства между стальной опорой и кирпичной стеной и систематического попадания в зазор влаги конструкция прокорродировала настолько, что [c.203]

    При гидравлических испытаниях установлено, что первоначальный наклон настила крыши к центру при ее всплытии ликвидируется. На настиле имеются вьшучины высотой до 150 мм и площадью до 15 м. Зазор между крышей и стенкой резервуара изменяется в пределах 133—310 мм. При нахождении плавающей крыши в крайне нижнем положении (на опорных стойках) такжб не образуется уклон настила к водоприемнику, в результате чего атмосферные осадки скапливаются в неровностях поверхности крыщи и вызывают коррозию металла. Усиленно корродируют и внутренние поверхности коробов-понтонов, а доступ к ним для ремонта невозможен из-за отсутствия люков-лазов. [c.90]

    При использовании приборов переменного погружения для иммитации в лаборатории. атмосферных испытаний, по-видимому, можно отдать предпочтение колесам переменного погружения, которые позволяют более точно воспроизводить условия практики. При параллельном испытании в разных солевых растворах предпочтительнее пользоваться аппаратом переменного погружения. Некоторое усовершенствование описанных методов лабораторного исследования атмосферной коррозии, особенно применительно к испытаниям в морской атмосфере, вносит применение влажных камер, в которых создается солевой туман путем распыления соответствующих растворов. Камеры изготовляют из коррозионностокких материалов стекла, органического стекла, фарфора, цемента, дерева, гуммированного металла и др. Дверцы или крышки зак )ываются с помощью прокладок или резинового затвора. Объем камеры может коле- [c.66]


Библиография для Атмосферная коррозия металлов испытания : [c.102]   
Смотреть страницы где упоминается термин Атмосферная коррозия металлов испытания : [c.380]    [c.189]    [c.158]    [c.380]    [c.448]    [c.87]    [c.87]    [c.118]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосферная коррозия

Атмосферная коррозия металло

Атмосферная коррозия металлов коррозия металлов

Атмосферная коррозия металлов металлов

Испытание металлов

Коррозия металлов

Коррозия металлов атмосферная

Коррозия металлов коррозии

Некоторые вопросы ускоренных испытаний металлов на атмосферную коррозию

Характерное и весьма важное свойство титана — его практически полная коррозионная устойчивость в морской воде и морской атмофере В этом отношении титан превосходит даже такие коррозионно-устойчивые материалы, как аустенитная нержавеющая сталь, монель-металл, купроникель, приближаясь к устойчивости благородных металлов В табл. 90 приведены данные по скорости коррозии некоторых коррозионно-устойчивых металлических сплавов и среди них листового титана в условиях морской атмосферы, по данным пятилетних испытаний, из которых следует полная устойчивость титана в этих условиях Скорость атмосферной коррозии (на расстоянии 24от моря), по данным пятилетних испытаний



© 2025 chem21.info Реклама на сайте