Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук скорость кристаллизации

    Плотность аморфного полимера определяют методом градиентных колонн (или любым другим методом, позволяющим получить необходимую точность). Для каучуков, скорость кристаллизации которых невелика, определение не вызывает трудностей. Значение плотности полностью закристаллизованного полимера определяется расчетным путем по данным рентгенографического анализа о структуре кристаллографической решетки и упаковке в ней групп атомов, входящих в молекулярную цепь. [c.56]


    Структура резин. Вулканизация уменьшает способность полимеров кристаллизоваться, причем в тем большей степени, чем выше густота сетки. Влияние густоты сетки на скорость кристаллизации выражено значительно сильнее в случаях ди- либо полисуль-фидных поперечных связей, чем для С—С и моносульфидных связей, В некоторых случаях, однако, влияние как густоты сетки, так и нерегулярности цепи на кристаллизуемость каучуков и резин может быть более сложным. [c.47]

    Каучуки регулярного строения имеют, как правило, низкие температуры стеклования. Вместе с тем их способность к кристаллизации осложняет эксплуатацию резин на основе этих каучуков при низких температурах, так как температура максимальной скорости кристаллизации обычно находится значительно выше температуры стеклования (см. гл. 2). [c.91]

    Литиевый полиизопрен не кристаллизуется в недеформированном состоянии. Он характеризуется очень малой способностью к кристаллизации и при растяжении с заметной скоростью кристаллизация происходит лишь при больших относительных удлинениях способность этого каучука к кристаллизации была установлена по эффекту Джоуля. Более высокая регулярность построения макромолекул титанового полиизопрена обусловливает способность этого каучука к кристаллизации как в условиях деформации, так и при понижении температуры. Однако кристалличность его ориентированных вулканизатов несколько меньше, чем вулканизатов НК при любых (одинаковых) деформациях и температурах [15, 19], а температура плавления ниже (-7- 2 "С по сравнению с 4-f- 11°С у НК). Кристаллическая решетка синтетического полиизопрена является моноклинной и имеет такие же параметры, как и решетка НК. [c.205]

    Полимерные стекла, как и кристаллы, имеют фиксированную структуру, которая при любых температурах (ниже 7 с) будет тождественна структуре жидкостей, находящейся при температуре стеклования (если при нагревании изменение температуры происходит с той же скоростью, что и скорость охлаждения, так как 7 с зависит от последней). На кривой усадки силиконового каучука (рис. 10.12) видны две переходные области, в которых резко меняется или длина образца, или характер зависимости длины образца от температуры. Первая область (начиная с 7 м, которая соответствует температуре максимальной скорости кристаллизации), в которой длина изменяется почти скачком, связана с частичной кристаллизацией эластомера, а вторая (вблизи 7 с) отвечает его структурному стеклованию. Термодинамическая темпера- [c.263]


    В растянутом полимере увеличивается и скорость кристаллизации. Так, при 0°С плотность натурального каучука заметно возрастает в результате кристаллизации лишь в течение нескольких суток, а при удлинении 500% плотность достигает предельного значения в течение нескольких секунд. [c.182]

Рис. 52. Зависимость скорости кристаллизации натурального каучука от температуры Рис. 52. <a href="/info/1328694">Зависимость скорости кристаллизации</a> <a href="/info/540">натурального каучука</a> от температуры
    Пользуясь данными рис, 51, можпо построить кривую зависимо сти скорости кристаллизации натурального каучука от темпера туры (рис. 52), Эта кривая напоминает кривую / на рпс. 50, Следовательно, для полимеров, так же как и для низкомолекулярных веществ, при некоторой температуре наблюдается максимальная скорость кристаллизации. Из рис. 52 видно, что выше температуры 5" С скорость Кристаллизации натурального каучука равна нулю, так как тепловое движение нарушает образующийся порядок. Температуру /Л [c.137]

    Среди кинетических методов, основанных на контроле физико-химических параметров окисляющейся композиции каучук-стабилизатор, следует отметить исследование кинетики изотермической кристаллизации полиизопренового каучука [48, 49] дилатометрическим методом. Определение полупериода, глубины и максимальной скорости кристаллизации чувствительно к любым структурным изменениям, происходящим в каучуке. Так, скорость кристаллизации каучука мало меняется на ранних стадиях его окислительной деструкции и резко снижается при высокой степени превращения. Таким образом, при окислении наблюдается уменьшение кристаллизационной способности полиизопрена степень уменьшения зависит от природы используемого ингибитора отмечено избирательное действие антиоксидантов различной природы на изменение кинетических параметров кристаллизации. [c.429]

    В некоторых случаях раздир осложняется сопутствующими ему изменениями структуры резины Например, при растяжении резин из натурального каучука происходит кристаллизация наполненные резины при сильном растяжении дают ориентированную структуру, что приводит к увеличению неоднородности раздира к так называемому толчкообразному и узловатому раздиру (рис. 142). Эти виды раздира возникают при определенных сочетаниях температуры опыта и скорости деформации, что, по-видимому, связано с условиями образования ориентированной структуры. [c.238]

    Величина показателя степени лежит в пределах 2,5г= г 9. С увеличением ориентации скорость кристаллизации возрастает. Так, из данных Трелоара , изучавшего дилатометрическим методом процесс кристаллизации образцов натурального каучука, следует, что при растяжении, способствующем ориентации молекулярных цепей, облегчается процесс упорядоченного расположения. [c.150]

Рис. 34. Зависимости скоростей кристаллизации (1) и вязкости (2) каучука от температуры Рис. 34. <a href="/info/1328694">Зависимости скоростей кристаллизации</a> (1) и вязкости (2) каучука от температуры
    Температура максимальной скорости кристаллизации (Гкр)тах зависит от природы полимера, его гибкости, числа и характера заместителей в цепи и т. д. Действительно, для натурального каучука, обладающего высокой гибкостью (Гкр)тах, составляет —25°С, для полиэтилена — около 70° С, полипропилена —около 100° С, изо- [c.82]

    Ранее на примере полиуретанов на основе сополимеров тетрагидрофурана и окиси пропилена (ТГФ—ОП) было показано, что с увеличением молекулярной массы исходного полиэфира температура максимальной скорости кристаллизации полиуретана понижается [46]. По аналогии с этим, при изучении кристаллизации каучуков на основе ТГФ—ОЭ были выбраны температуры, наиболее отвечающие оптимальным (для данного интервала молекулярной массы сополимера) условиям протекания процесса кристаллизации —10 и —30 °С. Продолжительность выдерживания образцов при этих температурах составля.та 11 сут.  [c.65]

    С увеличением М олигомера способность каучука к кристаллизации возрастает (увеличивается максимальная скорость и глубина кристаллизации, уменьшается полупериод). Можно отметить также значительно меньшую скорость кристаллизации соответствующих вулканизатов. [c.65]

    Кристаллизация полимеров сопровождается выделением теплоты, что на термограммах выражается экзотермич. пиком в том случае, если в данном темп-рном интервале скорость кристаллизации выше скорости охлаждения или нагрева. Однако отсутствие экзотермич. пиков на термограммах (напр., у натурального каучука, изотактического полистирола) не является еще доказательством того, что кристаллизация в данной темп-рной области не происходит. Характерными точками пика являются темп-ры его начала, максимума и окончания. Темп-ры, соответствующие началу и максимуму пика, обычно можно определить довольно точно. Темп-ру же окончания кристаллизации иногда определить довольно трудно, т. к. возвращение дифференциальной кривой к основной линии м. б. медленным. Кроме темп-рных характеристик кристаллизации, по термографич. кривым могут быть сделаны качественные выводы о характере протекания кристаллизации, о влиянии на кристаллизацию скорости охлаждения, мол. массы, термич. предыстории аморфного полимера и др. [c.363]


    Если температура кристаллизующегося полимерного расплава приближается к температуре плавления кристаллической фазы, может происходить кристаллизация. Скорость кристаллизации возрастает при приложении механического напряжения, что связано со стимулированием ориентации полимерных цепей (см. разделы 7.5-7.8). Это явление хорошо известно для 1,4-полиизопрена (натуральный каучук) при его одноосном растяжении [36,37]. [c.137]

    Как известно, полимеры регулярного строения способны кристаллизоваться как при охлаждении, так и при растяжении [5]. Для получения когезионнопрочных смесей необходимо, чтобы скорость кристаллизации при растяжении (в области обычных температур) не была бы очень низкой. Так, например, смеси на основе стереорегулярного 1,4-полибутадиена — кристаллизующегося каучука — имеют низкую когезионную прочность из-за недостаточной скорости кристаллизации этого каучука при растяжении смеси. [c.75]

    Исследование процесса кристаллизации модифицированного полиизопрена (каучука СКИ-ЗМ) дилатометрическим методом [14, с. 109—127] показало, что введение даже небольшого количества полярных атомов и групп (до 1,5%) снижает скорость кристаллизации. В то же время модификация полиизопрена структурирующим агентом нитрозаном К вследствие возникновения слабых химической и физической сетки в определенных условиях способствует ускорению кристаллизации полиизопрена. Действительно, в дальнейшем при рентгенографическом изучении кристаллизации при растяжении наполненных смесей НК, СКИ-3 и СКИ-3, модифицированного различными функциональными группами, было показано [21], что сажевые смеси на основе каучука СКИ-3 с функциональными группами при растяжении на 300—400% обнаруживают кристаллические рефлексы, аналогичные наблюдаемым для натурального каучука, в то время как смеси на основе каучука СКИ-3 не обнаруживают кристаллических рефлексов при растяжении до 1000%. Температура плавления кристаллитов модифицированного каучука СКИ-ЗМ составляет 50—60 °С (в зависимости от метода модификации), т. е. ниже, чем у кристаллитов натурального каучука (65°С), вследствие большей дефектности. Это исследование ярко иллюстрирует роль кристаллизации в возникновении когезионной прочности. Имеется четкая связь степени кристаллизации и прочности ненаполненных сополимеров этилена и пропилена в зависимости от содержания пропилена [22]. [c.234]

    Силоксановые каучуки кристаллизуются при более низких температурах, чем углеводородные, но скорость и глубина кристаллизации у них выше из-за высокой подвижности полимерных цепей. ПДМС быстро кристаллизуется - при температурах ниже —50 °С (с максимальной скоростью при —80 °С) и плавится при температурах выше —46 °С. Способность к кристаллизации снижается при замещении части метильных групп другими, причехч при одинаковом содержании модифицирующих групп (фенильных, этильных, пропильных и др.) скорость кристаллизации минимальна при их статистическом распределении и максимальна у блоксополимеров. Кристаллизация резко замедляется при введении в цепь уже 8—10% (мол.) статистически распределенных модифицирующих звеньев. Совсем не кристаллизуется метил (3,3,3-трифторпро-пил)силоксановый каучук. Введение в силоксановую цепь ариле-новых или карбораниленовых групп при их регулярном расположении повышает степень кристалличности и 7пл> а нерегулярно построенные сополимеры обычно аморфны. Как стеклование, так и кристаллизация силоксановых блоксополимеров при достаточной длине блоков происходит раздельно в каждом блоке при соответствующих гомополимерам температурах. Кристаллизация более высокоплавкого блока может не иметь места или происходит при температуре ниже обычной, если его длина мала [3, с. 19—20]. [c.484]

    Скорость кристаллизации достигает максимума при —25. При этой температуре процесс кристаллизации заканчивается в течение 10 час., тогда как при +20 он происходит в продолжение года. Растяжение натурального каучука приводит к ориентации полимера, следовательно, способствует повышению скорости и степени кристаллизации. Этим объясняется высокий предел прочности при растяжении резин на основе натурального каучука. Выше 45° натуральный каучук утрачивает кристалличность и переходит в аморфное состояние, одновременно начинают возрастать пластические деформации. При обычной температуре натуральный каучук представляет собой высокоэластичный полимер. Высокую эластичность каучук сохраняет и при низких температурах, вплоть до —70°, что свидетел1>ствует о высокой морозостойкости этого полимера. Температура перехода его в стекловидное состояние составляет минус 70—минус 75  [c.236]

    В последнее время эта точка зрения была опровергнута открытием единичных микрокристаллов высокомолекулярных соединений, и сейчас можно утверждать, что любой полимер, способный к кристаллизации, может быть получен в виде единичных кристаллов . Было найдено, что кристаллизации полимеров предшествует упорядочение аморфных полимеров, т. е. тозник-новение аморфных надмолекулярных структур. Достаточно высокая в ряде случаев скорость кристаллизации полимеров подтверждает наличие предварительной упорядоченности макромолекул полимера в аморфном состоянии. Надмолекулярная структура аморфных каучуков характерна наличием пачек цепей, при слиянии которых образуются полосатые структуры каучуков. Кристаллизация происходит сначала в пределах пачек, а затем идет постепенно дальнейшее упорядочение кристаллизованных пачек. [c.85]

    Валсной характеристикой контактного клея является время между моментом схватывания и достил<ением максимальной когезионной прочности. В идеальном случае необходимо сочетание быстрого роста когезионной прочности и сохранения клейкости в течение продоллчительного времени. Обычно когезионная прочность повышается до максимального значения, а затем начинает падать. Весьма заметно влияет iia продолжительность схватывания и прочность при отдире природа фенольной смолы. Решающими факторами являются содержание оксиметильных и метиленэфирных групп и склонность хлоропреновых каучуков к кристаллизации чем выше соотношение гидроксильных и метиленэфирных групп, тем меньше продолл<ительность схватывания при этом значительно повышается прочность при отдире и термостойкость клеевого соединения. Это справедливо в том случае, когда каучук кристаллизуется с умеренной скоростью. Если скорость кристаллизации каучука высока, то целесообразно использовать инертные или малореакционноспособные фенольные смолы [9]. [c.253]

    Интересное изменение свойств натурального каучука достигается при взаимодействии его с небольшими количествами некоторых тиокислот, дисульфидов или сернистого ангидрида [105—108]. Небольшое число двойных связей претерпевает г мс-транс-превраш ение, в результате чего значительно уменьшается скорость кристаллизации при низких температурах. Гуттаперчу, наоборот, можно превратить в полимер, обладаюш,ий при обычных температурах каучукоподобными свойствами. При изомеризации в растворе в присутствии элементарного селена как катализатора при 180—200° С гевея (100% ifu -конфигурации) и балата (100% транс-конфигурации) превращаются в материал с соотпошением цис- и тгаранс-конфигураций в пределах 50 50-60 40(135]. [c.215]

    Ниж. предел температурного диапазона высокоэластичности Р. обусловлен гл. обр. т-рой стеклования каучуков, а для кристаллизующихся каучуков зависит также от т-ры и скорости кристаллизации. Верх, температурный предел эксплуатации Р. связан с термич. стойкостью каучуков и поперечных хим. связей, образующихся при вулка1газащш. Ненаполненные Р. на основе некристаллизующихся каучуков имеют низкую прочность. Применение активных наполнителей (высокодисперсных саж, 8 02 и др.) позволяет на порядок повысить прочностные характеристики Р. и достичь уровня показателей Р. из кристаллизующихся каучуков. Твердость Р. определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Плотность Р. рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом м.б. приближенно вычислены (при объемном наполнении менее 30%) теплофиз. характеристики Р. коэф. термич. расширения, уд. объемная теплоемкость, коэф. теплопроводности. Циклич. деформирование Р. сопровождается упругим гистерезисом, что обусловливает их хорошие амортизац. св-ва. Р. характеризуются также высокими фрикционными св-вами, износостойкостью, сопротивлением [c.225]

    Клеи на основе хлоропреновых каучуков (наиритов), обладающих высокой и(или) средней скоростью кристаллизации. Вулканизующим агентом служит 2пО, М 0 или др. оксид металла, р-рителем-трихлорэтилен, СС14, кетоны, сложные эфиры, бензол, толуол могут содержать также поливинилацетат, феноло-, мочевино- или меламино-формальд., алкидные, кумароно-инденовые смолы, канифоль, хлоркаучу-ки, сшивающие агенты, наполнители, стабилизаторы против гелеобразования (диэтиламин, этанол), антиоксиданты и др. Выпускают в виде вязких жидкостей с концентраггией сухого в-ва 9-20%. Жизнеспособность одноупаковочных клеев [c.226]

    Кроме того, весьма наглядна кривая зависимости скорости кристаллизации от температуры (рисЛЗ.З). Например, из такой кривой для натурального каучука можно сделать вывод, что при температуре выше 5 "С скорость кристаллизации равна нулю ее принимают за равновесную температуру кристаллизации НК. Скорость кристаллизации максимальна при минус 25 С при этой температуре в течение нескольких часов закристаллизовывается около половины всего количества каучука. При температуре ниже -50 "С НК практически не кристаллизуется [2]. [c.349]

    Необходимо учитывать, что пластификаторы, вводимые в каучук, не инертны к составляющим композиции и влияют на формирование пространственной сетки при вулканизации резиновых смесей на основе многих каучуков (НК, БСК, хлорированного каучука ХСПЭ и СНК-26М и др.). Авторы работы [264] считают, что формирование пространственной сетки в присутствии пластификаторов связано с протеканием двух конкурирующих процессов взаимодействия вулканизирующих агентов как с каучуком, так и с пластификатором. При содержании в резиновой смеси менее 20 масс. ч. пластификатора на 100 масс. ч. каучука превалирует первый процесс, при большем содержании пластификатора — второй. Введение в полисульфоновый олигомер менее 5 масс. ч. пластификатора (ДБФ) приводит даже к повышению плотности сетки вулканизатов [265]. Количество и химическая природа пластификатора влияют на скорость кристаллизации каучуков, причем, чем больше пластификатор снижает температуру стеклования, чем лучше он совмещается с каучуком, тем больше он ускоряет скорость кристаллизации [266]. [c.170]

    Введение пластификаторов в кристаллические полимеры снижает их температуру стеклования и иногда способств) ет росту кристаллических структур, что ух) дшает механические свойства полимеров. Это обстоятельство ограничивает применение пластификаторов для модификации кристаллических полимеров. Следует отметить, однако, что в случае натурального каучука добавление некоторых пластификаторов не только снижает скорость кристаллизации, но практически устраняет ее, что имеет существенное значение для длительною хранения каучука. [c.515]

    Впервые валовая скорость кристаллизации чистого гомополимера в изотермических условиях была измерена Беккедалем [3] при исследованиях натурального каучука. Некоторые типичные изотермы кристаллизации из расплава линейного полиэтилена [4] и натурального каучука [5] приведены на рис. 70 и 71. В обоих случаях за ходом кристаллизации следили по изменениям удельного объема. [c.216]

    Проводились работы по изомеризации натурального каучука и гуттаперчи иод влиянием тиокислот, сернистого ангидрида, бутадиенсульфона и др. с целью снижения скорости кристаллизации полимера за счет нарушения регулярности макромолекулы. При обработке указанных полимеров ЗОг образуются соединения, имеющие идентичные ИК-сиектры. При 140° С изомеризация полиизопрена доходит до равновесного соотношения цис- и тракс-звеньев (43% цис и 57% транс). Аналогичные процессы протекают в мс-поли-бутадиене и в З-метилпентене-2, моделирующем звено натурального каучука. [c.404]

    И. к. аморфны при комнатной темн-ре. Подобно на туральному каучуку, они кристаллизуются при растяжении (выше О °С) или при темп-рах ниже О °С. Скорость кристаллизации убывает в след, ряду натуральный каучук>И. к., получаемые на комплексных катализато-зах>И. к., получаемые на литиевых катализаторах, полупериод кристаллизации (при —25 °С) И. к., получаемых на комплексных и литиевых катализаторах, составляет соответственно 25 и >300 ч. [c.408]


Смотреть страницы где упоминается термин Каучук скорость кристаллизации: [c.279]    [c.76]    [c.178]    [c.152]    [c.137]    [c.137]    [c.79]    [c.83]    [c.407]    [c.411]    [c.301]    [c.801]   
Химия высокомолекулярных соединений (1950) -- [ c.51 ]




ПОИСК







© 2024 chem21.info Реклама на сайте