Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутилкаучук деструкции

    Величина максимума набухания зависит от природы каучука, его предшествующей обработки и от природы растворителя. Неполярные каучуки — натуральный каучук, СКБ, СКС, бутилкаучук — набухают и хорошо растворяются в неполярных растворителях, полярные каучуки — хлоропреновый, СКН — в полярных растворителях. Предварительная механическая обработка каучука, а также другие условия, приводящие к его деструкции, повышают растворимость каучука. Особенно сильно механическая пластикация влияет на характер набухания и на скорость растворения натурального каучука. Вулканизация всех каучуков приводит к практической потере растворимости и к значительному понижению степени набухания. Степень набухания вулканизатов в растворителях является показателем их стойкости к действию растворителей. [c.317]


    Бутилкаучук освобождают от тары и режут на куски, удобные для взвешивания и загрузки на оборудование. Процесс механической пластикации на холоду для него неэффективен, что объясняется высокой степенью насыщенности каучука, ограничивающей возможность развития окислительной деструкции. Даже длительная обработка каучука на холодных вальцах в течение 60 мин заметно не повышает пластичности. При нагревании каучука за счет тепла, выделяющегося в процессе механической обработки его на вальцах, повышается пластичность, понижается эластическое восстановление каучука, в связи с чем облегчается смешение и другие технологические процессы. Поэтому обработку бутилкаучука и резиновых смесей из него производят при температурах 75—110°С. [c.251]

    Бутилкаучук под действием ионизирующего излучения, по-видимому, разрушается таким же образом, как и полиизобутилен малой доли двойных связей недостаточно, чтобы привести к преобладанию сшивания. Дэвидсон и Гейб [46] впервые наблюдали это при облучении в атомном реакторе образца не-вулканизованного бутилкаучука, содержащего 50 частей сажи, вулканизующие агенты для серной вулканизации и 26,4 части бората аммония для увеличения ионизирующего действия излучения. Вместо вулканизации наблюдалась быстрая деградация, проявляющаяся в значительном размягчении полимера. При вулканизации материала до облучения получались те же самые результаты. Бопп и Зисман [19, 47, 48] наблюдали быстрое уменьшение прочности на растяжение и твердости вулканизованного серой бутилкаучука, содержащего 75 частей сажи. Оба показателя достигали примерно нулевого значения после облучения 10 нейтрон/см (50 мегафэр). Гейман и Хоббс [49] сделали такие же наблюдения и отмечают, что подобного рода деструкция характерна для действия свободных радикалов на бутилкаучук. Они не смогли получить доказательств наличия окисления в деструктированном бутилкаучуке и пришли к выводу, что для деструкции не требуется присутствия кислорода. Реакция, несомненно, в основных чертах та же самая, как и Б нолиизобутилене. [c.133]

    Промышленность СК и резины. Стабилизатор различного вида синтетических каучуков (изопренового, бутадиенового, бутилкаучука и др.). Пассивирует действие солей металлов переменной валентности при процессах деструкции. Эффективен в смеси со стабилизаторами фенольного типа. Для изо-преновых каучуков регулярного строения рекомендуется в смеси с 2,5-диалкилпроизводными гидрохинона. Дозировка до 1%. [c.22]

    Как уже упоминалось, при сшивании перекисями часто наблюдаются и реакции деструкции [741, 742]. В случае полиизопрена их роль очень незначительна [743—746], в то время как для полиизобутилена и бутилкаучука она настолько ярко выражена, что сшивание перекисью этих видов каучуков не представляется возможным. Напротив, перекиси в данном случае можно даже использовать как средство деструкции, хотя в литературе описано сшивание полиизобутилена и бутилкаучука с помощью перекисей [747—750]. В настоящее время действие перекисей на полиизобутилен можно представить следующим образом  [c.280]


    Чтобы предотвратить слипание частиц бутилкаучука, в дегазатор вводят суспензию стеарата цинка в количестве менее 1 % от полимера. Одновременно в суспензию добавляют антиокислитель — неозон В (1% на каучук) с целью стабилизации каучука и устранения возможности его деструкции прп последующей обработке, а затем при хранении. [c.658]

    Окисление под действием О2 и О3, ускоряющееся при воздействии света и нагревании, вызывает деструкцию и структурирование (сшивание) К. с. Для защиты от окисления в них вводят антиоксиданты в кол-ве 0,15-2,0% по массе. Гарантийный срок хранения К. с. составляет обычно 0,5-2 г. Термостойкость К. с. выше, чем НК. Наиб, термостойки каучуки с неорг. основной цепью (напр, кремнийорганические) и фторкаучуки. Под действием ионизирующих излучений большинство К. с. сшивается бутилкаучук и полиизобутилен, содержащие в цепи четвертичные атомы С, деструктируются. [c.357]

    Для полиизобутилена и бутилкаучука характерно образование мономера — изобутилена. При деструкции карбоцепных полимеров общего строения [c.12]

    Макрорадикалы и ион-радикалы подвергаются ие только сщиванию, по и другим реакциям — изомеризации, миграции двойной связи, деструкции, циклизации. Деструкция наиболее интенсивно протекает в полимерах, содерн аш,их третичный атом углерода. По этой причине бутилкаучук и полиизобутилеи нри действии радиации ие могут быть вулканизованы. Деструкция сильно ускоряется при облучении в присутствии кислорода. [c.268]

    К Ж. к. могут быть отнесены продукты деструкции высокомолекулярных хлоропреновых каучуков и бутилкаучука, к-рые применяют для изготовления антикоррозионных и др. защитных покрытий (см. Гуммирование), а также полиизобутилены с мол. массой 1000—3000. Последние м, б. использованы в качестве пластифицирующих добавок к пластмассам. [c.389]

    С большими скоростями (резина из СКЭП, СКИ-3, бутилкаучука, НК). Следовательно, структурирование в значительной мере компенсируется распадом имеющихся связей, и во многих случаях в связи с тем, что процессы структурирования и деструкции протекают с разными скоростями, нельзя оценивать структурные изменения, происходящие при радиационном старении резин, по одному какому-либо показателю. [c.385]

    Введение в резины па основе кристаллизующихся каучуков (НК, СКИ-3, найрита, бутилкаучука) наполнителей (мел, литопон) вызывает резкое снижение скорости падения прочности при этом несколько снижается как скорость структурирования, так и скорость деструкции (рис. 3). Так, например, ненаполненные резины на основе найрита при дозе 25 Мр быстро теряют прочность (50% от исходного значения), а нри наполнении (50 вес. ч. углеродной сажи) при радиационном старении прочность практически не меняется. [c.387]

    Под влиянием кислорода и тепла в резине развиваются окислительные процессы, являющиеся главной причиной теплового старения резин. Окисление каучуков и резин представляет собой цепной радикальный процесс с вырожденными разветвлениями. Тепловое старение большинства резин на основе синтетических каучуков характеризуется резким структурированием материала, снижением эластичности и увеличением жесткости. В резинах на основе натурального каучука, а также синтетического полиизопрена и бутилкаучука преобладающим является процесс деструкции, выражающийся в уменьшении напряжения при удлинении и сопротивления разрыву, а также в увеличении остаточной деформации. [c.324]

    В случае пространственно-структурированных полимеров изменение их структуры при механических воздействиях можно оценить по изменению величины равновесного набухания в соответствующей жидкости. Действительно, изучение набухания ненаполненных вулканизатов бутилкаучука и натурального каучука показало, что в результате действия многократных деформаций сдвига одноосного сжатия или растяжения способность к набуханию в значительной степени изменяется. Вулканизаты бутилкаучука в результате механического воздействия значительно повышали величину предельного набухания в вазелиновом масле. Вулканизаты натурального каучука после длительных многократных деформаций повышали степень набухания в полярных жидкостях и уменьшали ее в неполярных (например, в вазелиновом масле). При этом переход от возрастания набухания к его уменьшению происходил при тем большей полярности жидкости, чем более длительно деформировался вулканизат. Таким образом, в отличие от вулканизатов бутилкаучука вулканизаты натурального каучука в результате механической деструкции становятся более полярными веществами, что указывает на развитие реакций окисления каучука в процессе деформации. [c.318]

    Анализ проведенных испытаний неметаллических материалов на органической основе показал, что их химическая стойкость в хромовой кислоте зависит от характера органического соединения и от вводимых ингредиентов, особенно снижает стойкость материалов ненасыщенность органической основы и применение в качестве ингредиентов сажи или графита. Так, наличие сажи и графита в полиизобутилене марки ПСГ приводит к полно.му разрушению материала. Сажевые смеси резин на основе бутилкаучука разрушаются значительно быстрее бессажевых, что объясняется окислением свободного углерода с последующей окислительной деструкцией каучука. [c.30]


    Старение нестабилизированных диеновых каучуков под влиянием кислорода воздуха протекает уже при комнатной температуре и приводит к отвердеванию и хрупкости поверхностного слоя. Исключение составляет бутилкаучук, который при старении размягчается. Первоначально окислительная деструкция натурального каучука характеризуется размягчением материала и появлением липкости, в дальнейшем эластичность каучука уменьшается, и он растрескивается.. Сырой натуральный каучук содержит природный антиоксидант, который обеспечивает сохранение свойств материала в нормальных условиях более года. Лишь при высоких температурах, например при вулканизации, антиоксидант разрушается и теряет свою эффективность. [c.23]

    Катализаторы вводят в зо 1у реакции в виде порошка, раствора в органическом растворителе, расплава или нанесенном на минеральные подложки. Они отличаются высокой термической стабильностью (до 770-875 К), пониженной чувствр1тельностью к примесям, низкой кислотностью, что определяет отсутствие корродирующего действия. По этому способу легко перерабатываются любые по составу фракции ПИБ без специальной предварительной очистки (570-675 К) и достигается высокая (80-95%) конверсия при среднем содержании изобутилена в продуктах 75-95% и а, Р-бутиленов не выше 2,2%. Содержание кокса незначительно и в худшем случае составляет не более 0,02-0,03% (масс) от общего количества переработашюго сырья. Некоторые данные, характеризующие активность и селективность солевых комплексных катализаторов в форме кислоты Бренстеда при термокаталитической деструкции полиизобутилена и бутилкаучука, суммированы в табл. 7.15. Метод термокаталитической деструкции нестандартных ПИБ позволяет повысить эффективность производства олигомеров изо- [c.352]

    Тесная связь между образованием тиолов и реверсией навели Заппа и Форда 16] на мысль использовать окисляющие агенты для замедления реверсии. При выборе этих агентов необходимо учитывать, что они могут вызывать деструкцию макромолекул в результате реакции с олефиновыми группировками. Перекиси кальция и марганца, а также некоторые другие перекиси действительно замедляют реверсию вулканизатов бутилкаучука. [c.199]

    Уже относительно небольшие количества поглощенного кислорода могут привести к глубоким изменениям механических показателей вулканизата. Протекавшая вначале по линейному закону реакция скоро переходит в аутокаталитическую [65—66]. 11рисоедп-ненный кислород может участвовать в следующих реакциях [67—68] во-первых, вызывать разрыв молекулярных цепей, причем сетка вулканизата ослабляется (деструкция, размягчение), что наблюдается прежде всего у вулканизатов натурального каучука и бутилкаучука во-вторых, вызывать образование дополнительных связей, например у вулканизатов на основе бутадиен-стирольного, бута-диен-акрилонитрильного и хлорбутадиенового каучуков, причем сетка вулканизата становится более плотной (циклизация, затвердение). [c.38]

    Подобные же результаты были получены для натурального и бутилкаучуков. В случае полимеров с пространственной структурой изменения при воздействии механических сил могут быть оценены, как ни странно, по равновесному набуханию в определенных растворителях. Так, изучение набухания ненаполнен-ных вулканизатов бутилкаучука или натурального каучука, подвергнутых деформациям сдвига, одноосного сжатия или растяжения, выявляет заметное изменение способности к набуханию и разрыву поперечных связей, способствующее проникновению растворителя между молекулярными цепями. Способность к набуханию вулканизатов бутилкаучука в вазелиновом масле сильно повыщается после механических воздействий. В случае вулканизатов натурального каучука после многократных продолжительных деформаций степень набухания растет в полярных жидкостях и уменьшается в неполярных (например, в вазелиновом масле). Следовательно, в отличие от вулканизатов бутилкаучука вулканизаты натурального каучука вследствие механической деструкции становятся более полярными, что указывает на развитие реакций окисления во время процесса деформации. [c.188]

    Берлин и сотр. [30] получили полимеры с заданными физикомеханическими и диэлектрическими свойствами при одновременной пластикации полистирола с каучуками типа полиизобутилена, бутилкаучука, бутвара, полихлоропрена, полибутадиена, полибутадиенстирольного (СКС-30), полибутадиенакрилони-трильного (СКН-18 и СКН-40). Образованные при деструкции на воздухе макрорадикалы при температурах 150—160° присоединяют иод, подтверждая существование неспаренного электрона у атома углерода. [c.291]

    Этот раздел главы посвяш ен в основном вопросам сшивания эластомеров при действии серы. Наиболее изученными в этом отношении эласто-1шрами являются натуральный каучук, бутилкаучук, бутадиенстирольный, бутадиеннитрильпый и полихлоропреновый каучуки. В настоящее время во многих лабораториях исследуются процессы сшивания бутадиенового и синтетического натурального каучуков. Тиокол — полиэтилен-полисульфид — первый представитель синтетических каучуков, производство KOTopoj o получило промышленное развитие [397], представляет интерес главным образом как объект для изучения процессов деструкции, сшивания и увеличения длины макромолекул. Сравнительно новый тип эластомера — полиуретан стал интересным объектом исследования особенностей каучукоподобного состояния после того, как было установлено, что этот эластомер также может быть вулканизован серой. [c.214]

    Мур и Сканлен установили, что на основании данных о реакциях низкомолекулярных модельных соединений трудно получить представление о точном механизме процессов, протекающих с участием макромолекул. Процессы деструкции в полиизопрене могут иметь большее значение, чем в 2,6-диметил октадиене-2,6. Даже в том случае, если число разорванных 1,5-диеновых звеньев не зависит от молекулярного веса исходного полиизонрена, в индукционный период, предшествующий сшиванию, всегда происходит разрыв некоторого числа молекулярных связей. Имеются два доказательства существования индукционного периода. Одно из них основано на том, что кривая зависимости вязкости системы каучук — перекись дикумила (при температуре сшивания) от продолжительности сшивания имеет форму, характерную для замедляющегося процесса (эффект замедляюш егося действия), а изменение физических показателей свидетельствует о том, что сшиванию предшествуют процессы деструкции. Вторым доказательством служит тот факт, что при нагревании бутилкаучука, содержащего небольшое количество изопреповых звеньев, с перекисью дикумила преобладает процесс деструкции. Очевидно, что в таком каучуке макрорадикал В- не может димеризоваться вследствие низкой концентрации, в то время как процессы деструкции протекают по реакции первого порядка и не зависят от концентрации звеньев изопрена. [c.232]

    При пластикации выпускаемых в производственных условиях синтетических каучуков, например полихлоропренового, бутадиенстироль-ного, полибутадиенакрилонитрильного, полиизобутиленового, полиуретанового и бутилкаучука, находящиеся в смеси с ними мономеры не поли-меризуются, а каучуки только подвергаются деструкции. Однако после удаления из каучуков антиоксиданта и низкомолекулярных фракций полимеризация при пластикации происходит легко для таких виниловых мономеров, как метилметакрилат, стирол, хлоропрен, метакриловая кислота и акрилонитрил. Подобно процессам сополимеризации в растворе и латексе, винилацетат не полимеризуется и при пластикации в смеси с каучуком. [c.281]

    Состав эбонитовых смесей. Э. могут быть получены из изонреновых (натурального и синтетич.), бутадиеновых, бутадиен-стирольных, бутадиен-нитрильных к а у-ч у к о в, а также из регенерата резины и пз латексов. Последние Э. дешевле и имеют лучшие механич, свойства, поскольку при изготовлении латексных смесей исключается деструкция полимера. Для улучшения свойств Э. в их состав вводят добавки насыщенных каучуков или др. полимеров. Напр., бутилкаучук, хлор-сульфированный полиэтилен, нолиизобутилеп, иолиэтилен и феноло-формальдегидная смола улучшают сопротивление Э. ударным нагрузкам и уменьшают их твердость. [c.451]

    Обычная смесь на основе бутилкаучука претерпевает необратимую деструкцию под действием излучения котла, Jбнapyживaя после вулканизации пониженную прочность на разрыв по сравнению с контрольным образцом. [c.196]

    Сайко [643] сообщает о применении полиизобутилена (виста-некса В-100) для предотвращения старения бутилкаучука. Рекомендуется добавка к композиции полиизобутилена с бутил-каучуком 0,1—5,0 вес.% 2,2-бис-(2-окси-3-трет.бутил-5-метил- фенил)пропана, являющегося ингибитором процесса окислительной деструкции [647]. [c.202]

    Описана деструкция бутилкаучука и его вулканизатов под влиянием -излучения . Физико-механические и гистерезисные свойства вулканизатов полимера улучшаются вследствие тепловой обработки бутилкаучука в течение нескольких ми-нут 2-б5б7 увеличения сопротивления разрыву, модуля [c.340]

    Если силоксановый каучук, сополимеры этилена с винилацетатом и этилена с пропиленом, а также уретановый и нитрильный каучуки очень хорошо вулканизуются перекисями, то возможность вулканизации натурального каучука, бутадиен-стирольного каучука и полибутадиена представляется проблематичной. Бутилкаучук не сшивается перекисями, а, наоборот, под их влиянием происходит его деструкция (см. VIII.2.2). [c.256]

    М. А. Закирова. Из литературных и экспериментальных данных известно, что в полимерах, в том числе и в резинах, при воздействии ионизирующего излучения одновременно протекают два процесса — структурирование и деструкция. Причем у одних полимеров преобладает деструкция (полиизобутилен, бутилкаучук и др.), у других (СКН, найрит и др.) преобладает структурирование. [c.389]

    Так как при этом растрескивания не происходит, нижележащие слои оказываются защищенными от проникновения озона. Образцы натурального каучука разрушаются при жестком лабораторном испытании (0,2% озона) в течение одной минуты, в то время как относительно озоностойкий бутилкаучук разрушается в течение 30 мин. Тройные сополимеры, в которых 50общей ненасыщен-Еости обусловлено циклопентадиенильными звеньями, практически не изменяются после выдержки под действием озона в течение трех суток. Месробьян и Тобольский нашли, что чистый вулканизат бутилказ ука имеет относительно более низкую скорость поглощения кислорода, чем Буна-С или натуральный каучук, но более высокую, чем полиэтилен. Наличие ненасыщенности и боковых групп делает молекулу нестойкой к окислительной деструкции. Соотношение между окислением и вулканизацией изучалось Бакли Имеется обширная информация о механизме окислительной деструкции бутил-каучука и других эластомеров. Более подробное обсуждение строения бутилкаучука и его химической стойкости выходит за рамки этой главы и может быть найдено в соответствующей литературе [c.265]

    В отличие от натурального каучука, имеющего в своем составе природные защитные вещества, при переработке СК в резину требуется вводить специаль-пые вещества — противостарители (антиоксиданты), предохраняющие от окислительных процессов, к-рые приводят к деструкции или структурированию полимера. Большинство известных СК (за исключением гfи -изoпpeнoвoгo, хлоропренового, бутилкаучука и нек-рых других) без введения усилителей образуют вулканизаты резин с невысокой механич. прочностью (до 50 кг/сж ). Для получепия резин из СК с хорошими физико-механич. показателями необходимо при изготовлении резиновой смеси вводить активные наполнители, усиливающие механич. прочность вулканизатов. При этом неизбежно уменьшается эластичность. В качестве активных наполнителей применяют высокодисперсные в-ва, обладающие высокоразвитой поверхностью углеродные сажи, активную кремне-кислоту (белая сажа, аэросил), активную окись алюминия, каолин, мел и др. Для получения резин с высокой прочностью без применения активных наполнителей необходимы СК с регулярно построенными молекулярными цепями, с правильным чередованием звеньев и с преимущественным преобладанием (ис формы, как это имеет место в натуральном каучуке, [c.249]

    Так, при введении наполнителей, в частности хлорида магния, в бутилкаучук и полиизобутилен активируется термодеструкция полимеров за счет воды, связанной с поверхностью наполнителя [113]. Особенностью деструкции полимеров в этих условиях является сочетание процессов инициирования разложения как по закону случая, так и по закону концевых групп. Гидролитическая активация термической деструкции полиметилметакрилата и его сополимера с метакриловой кислотой наблюдалась при контакте этих полимеров с поверхностью стали [114]. [c.107]

    Окисление каучуков и низкомолекулярных олефинов, по-видимому, осуществляется пб единому механизму, включающему в себя реакции структурирования и деструкции. В каучуках на основе изопрена (натуральный, сицтетический изопреновый, изопрен-сти-рольный, бутилкаучук) преобладают процессы деструкции. Напротив, в каучуках на основе бутадиена (бутадиеновый, бутадиен-сти-рольный) решающую роль играет структурирование [111а, 395]. [c.38]

    Явление озонного растрескивания резин не уникально. Разрушение такого же типа наблюдается при действии концентрированной азотной кислоты на вулканизаты бутилкаучука и наирита, газообразных ИС1 и HF на вулканизаты диметилполисилоксанового каучука (СКТ), растворов НС1, NaOH, HjS на резину из тиокола Особенно чувствительны к коррозионному разрушению вулканизаты карбоксилатного каучука. Они растрескиваются при действии газообразной среды — озона, вызывающего деструкцию молекулярных цепей, под влиянием жидких сред — кислот, разрушающих поперечные связи в вулканизатах, полученных с окислами металлов, и разрушаются без растрескивания при действии кислот на их серные вулканизаты [c.81]


Смотреть страницы где упоминается термин Бутилкаучук деструкции: [c.437]    [c.257]    [c.262]    [c.172]    [c.204]    [c.204]    [c.205]    [c.112]    [c.252]    [c.277]    [c.338]    [c.264]   
Термическое разложение органических полимеров (1967) -- [ c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Бутилкаучук

Бутилкаучук продукты деструкции

Бутилкаучук скорость деструкции



© 2025 chem21.info Реклама на сайте