Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость относительная, определение

    Определение относительной вязкости (отношения вязкостей). Относительная вязкость — это отношение вязкости раствора полимера к вязкости растворителя. Так как вязкость линейных макромолекул является величиной прямо пропорциональной времени истечения и удельному весу испытуе- [c.146]

    Индекс вязкости является относительной величиной, показываю щей степень изменения вязкости масла в зависимости от температурь т. е. характеризует пологость температурной кривой вязкости масла. Он определяется при помощи двух серий эталонных масел. Эталонные масла первой серии имеют очень пологую температурную кривую вязкости, и их индекс вязкости условно принят за 100,единиц. Эталонные масла второй серии имеют очень крутую температурную кривую вязкости, и их индекс вязкости принят за нуль. Масла одной и той же серии отличаются друг от друга только величиной вязкости. Определение индекса вязкости основано на сравнении испытуемого масла с двумя эталонными маслами двух серий, имеющими при 98,8° С вязкость, одинаковую с вязкостью испытуемого масла.  [c.155]


    Отклонение реальной тарелки от нормы для теоретической ступени контакта имеет следствием сужение разрыва между составами фаз па смежных тарелках, приводящее к увеличению числа реальных тарелок против теоретически необходимого для данного разделения. Причины подобного рода отклонений оказываются самыми разнообразными и зависят от множества условий, определяемых как рабочими параметрами режима колонны — давлением, температурой, количествами паровых и жидких потоков, так и свойствами разделяемой системы — плотностью и вязкостью паров и флегмы, относительной летучестью ее компонентов, поверхностным натяжением насыщенной жидкости. Следует также указать и на влияние чисто конструктивных факторов, таких, как тип тарелки, размеры сливного устройства, расстояние между тарелками. Учет совокупного действия всех указанных факторов весьма сложен, и этим объясняется широкое привлечение эмпирических корреляций для определения эффективности реальных тарелок. [c.209]

    Кинематическая вязкость характеризует текучесть масел при нормальной и высокой температурах. Методы определения этой вязкости относительно просты и точны. Стандартным прибором в настоящее время считается стеклянный капиллярный вискозиметр, в котором измеряется время истечения масла при фиксированной температуре. Стандартными температурами являются 40 и 100 С. [c.43]

    Динамическая и кинематическая вязкости — это вполне определенные физические характеристики, которые, как и все другие величины, выражены в абсолютных единицах и могут быть подставлены в те или другие расчетные формулы. В случаях, когда вязкость применяется не как расчетная величина, а как практическая характеристика нефтепродукта, ее принято выражать не в абсолютных, а в относительных, или условных, единицах. [c.250]

    Эмпирические наблюдения приводят к обобщению, утверждающему, что вязкость растворов полимера возрастает с ростом молекулярного веса растворенного вещества. Не создано точной теории, устанавливающей соответствие величины этого эффекта с величиной молекулярного веса. Далее, величина эффекта зависит как от размера полимерных молекул, так и от их формы. Поскольку вискозиметрические измерения очень легко выполнимы, вискозиметрию часто используют для получения приблизительных относительных величин молекулярных весов. Если эффекты вязкости для определенного типа полимера прокалиброваны путем сравнения с величинами, полученными другим методом, вискозиметрический метод можно использовать в качестве практического метода определения молекулярного веса. [c.595]


    Принцип работы прибора дает возможность измерить абсолютное значение вязкости, однако более удобно производить относительные измерения. С этой целью прибор калибруется по какой-нибудь подходящей жидкости с известной вязкостью. Основной эталонной жидкостью является вода, однако в ряде случаев для градуирования прибора применяются и другие жидкости. Обычно фактически измеряется время, необходимое для истечения определенного количества образца из резервуара через капилляр. При этом желательно, чтобы время истечения было достаточно велико. Для любого прибора существует значение вязкости, ниже которого измерение приводит к существенным ошибкам. Обычно верхнего предела для полезной области применения капиллярного вискозиметра не существует за исключением предела, определяемого удобством измерения. Обычно используются вискозиметры с временем истечения от 100 до 1000 сек. [c.174]

    Рабочую высоту насадочных ректификационных колонн определяют методами, применяемыми для массообменных аппаратов с непрерывным контактом фаз [уравнения (III.32) и (III.33)1. Число тарелок в тарельчатых колоннах находят либо с помощью средней эффективности тарелки [уравнение (III.43) ], либо с помощью кинетической кривой, строящейся на основе эффективности тарелок по Мэрфри. Для определения средней эффективности колпачковых тарелок широко используют эмпирическую зависимость, график которой построен на рис. III. 14. Здесь на оси абсцисс отложено произведение средней вязкости жидкой фазы в колонне (в мПа-с) на относительную летучесть  [c.63]

    Откалиброванную пробирку вискозиметра заполняют испытуемой жидкостью, помещают в термостат и через стеклянную трубочку вводят шарик. Время прохождения шарика через определенный слой испытуемой жидкости фиксируют. Относительные определения времени падения шарика пересчитывают на показание вязкости в пуазах и сантипуазах, пользуясь формулой [c.79]

    В связи с этим представляет интерес найти обобщенную вязкостную характеристику растворов полимеров (инвариантную относительно температуры и концентрации) для того, чтобы одним измерением вязкости раствора определенной концентрации и при определенной температуре можно было получить сведения о вязкости растворов в широком интервале концентраций, температур и градиентов скоростей деформаций. [c.90]

    Эта модификация вискозиметра Куэтта позволяет с высокой точностью работать при очень низких градиентах сдвига (рис. 13-8). Он принципиально отличается от вискози.метра Куэтта тем, что в приборе Куэтта градиент сдвига зафиксирован и измеряется напряжение сдвига, в то время как в данном вискозиметре напряжение сдвига задано, а измеряется градиент сдвига. Раствор помещают между неподвижным внешним цилиндром и плавающим в жидкости внутренним цилиндром, способным вращаться. Внутренний цилиндр содержит стальную пластинку. Снаружи внешнего цилиндра находятся вращающиеся магниты, которые заставляют эту пластинку, а поэтому и внутренний цилиндр вращаться. Скорость этого вращения зависит от количества стали во внутреннем цилиндре и вязкости жидкости и не зависит от скорости вращения магнита и плотности образца. Скорость сдвига можно варьировать изменением количества стали во внутреннем цилиндре (добавлением большего количества пластинок). Поскольку момент вращения пропорционален количеству металла во вращающемся магнитном поле, ротор будет вращаться намного быстрее и градиент сдвига возрастет. Градиент сдвига равен тангенциальной скорости, поделенной на радиальное расстояние между цилиндрами. Этот прибор просто измеряет вязкость относительно стандарта, такого, как вода, путем определения относительного количества времени, которое требуется, чтобы внутренний цилиндр проделал данное число вращений. [c.371]

    Это обусловливает обратную пропорциональность между изменениями коэффициента диффузии О и ньютоновской вязкости в системе (ср. рис. 1.10 и 4.16). Очевидно при других температурах будет наблюдаться та же тенденция. Определенный таким образом коэффициент диффузии характеризует лишь подвижность молекул растворителя относительно материала сополимера. Однако последний не является неподвижным, а в процессе диффузии, как было отмечено ранее, изменяет свою структуру вследствие гибкости макроцепей. Большая гибкость макроцепей сополимера приводит к нарушению ближнего порядка в областях, примыкающих непосредственно к гибкому участку, и проявляется в положении эффективной локальной вязкости в окрестностях участка цепи. Это локальное снижение вязкости обусловливает проникновение растворителя в сополимер еще и за счет подвижности макроцепей (см. связи г, 4 — 1, 7 (г = 1, 2,. . . , Л ) на рис. 4.5). [c.327]


    Учитывая относительно высокую вязкость и плохие деэмульгирующие свойства остаточных топлив, вероятность значительного количества морской ц пресной воды в них в судовых условиях еще более высокая, чем в дистиллятных топливах. Ввиду того что вода, особенно морская, вызывает сильную коррозию топливных систем и аппаратуры, что, как правило, приводит к нарушению работы котельных установок и сокращению межремонтных сроков, определение защитны свойств остаточных топлив имеет большое практическое значение. Это определение проводят по методу, описанному в работе [71]. [c.191]

    С применением основного уравнения фильтрования разработан [157] графоаналитический способ перехода от опытов, проведенных на оборудовании относительно небольшого размера, к процессам производственного масштаба при изменении разности давлений, концентрации суспензии и вязкости ее жидкой фазы. При использовании этого метода отпадает необходимость в определении постоянных фильтрования метод позволяет оценивать точность выполненных измерений. [c.153]

    Количественно вязкость выражается силой (на единицу поверхности соприкосновения,двух слоев), которая достаточна для поддержания определенной скорости перемещения одного слоя относительно другого (см. Курс физики). Вязкость выражают в пуазах (Г пуаз= СМ сек) или кратных им единицах — сантипуазах, микропуазах. [c.175]

    Усовершенствования межмолекулярных силовых моделей ограничиваются, с одной стороны, появлением большого числа свободно варьируемых параметров, а с другой стороны, увеличением объема численных расчетов. Последнее обстоятельство становится менее существенным благодаря широкому распространению больших ЭЦВМ, что, бесспорно, ведет к активному наступлению на проблему в целом, начиная с инертных газов [132, 133, 171, 178, 185]. В этой связи необходимо отметить, что различные свойства при различных температурах дают неодинаковую информацию о потенциальной энергии взаимодействия. Например, прп очень низких температурах по вязкости получается информация о хвосте потенциальной кривой, а из второго вириального коэффициента — о дне потенциальной ямы. Таким образом, достаточно точные значения коэффициента с члена могут быть получены экстраполяцией на 0° К кажущегося значения с определенного по вязкости [202]. Если же найти с из потенциальной модели, описывающей данные по В Т) и т] (Г) вблизи температуры Бойля, то полученное значение будет зависеть от выбранной модели и заметно отличаться от действительной величины [173]. К настоящему времени не существует единой точки зрения на относительную чувствительность различных свойств при различных температурах. [c.266]

    При изучении гидратации адсорбционных слоев на поверхности латексных частиц методом определения относительной вязкости установили, что /го составляет 2,0-5,0 нм. Аналогичная методика с использованием нефелометрии позволила Р. Э. Нейману с сотрудниками определить порог коагуляции для ряда латексов и в точке минимума вязкости также оценить эффективную толщину гидратных оболочек (3,0—6,5 нм). Выявлено, что введение электролита приводит к существенному утонь-шению гидратных прослоек, что, по-видимому, способствует нарушению стабильности латексов. [c.11]

    Прибор, работающий без отбора жидкой фазы.При определении кривых ОИ гудронов и мазутов в глубоком вакууме и при относительно высоких температурах в этих продуктах посредством всех описанных выше приборов весьма трудно получить сходящиеся результаты по глубине отгона, а следовательно, и по выходу масел. Расхождения в определениях в данном случае, очевидно, являются следствием большого отгона и высокой вязкости остатка, в связи с чем нарушается равномерность потока жидкой фазы. Эти недостатки легко устраняются при пользовании прибором, работающим без отбора жидкой фазы. [c.198]

    Пособие состоит из введения и двух разделов. Введение Расчетные методы определения физико-химических свойств и состава нефтей и нефтепродуктов посвящено аналитическим и графическим методам определения и пересчета различных характеристик нефтей и нефтепродуктов относительной плотности, молекулярной массы, давления насыщенных паров, вязкости, тепловых свойств и компонентного состава. [c.5]

    ВАКУУМЙРОВАННАЯ СТАЛЬ (от лат. va uum — пустота) — сталь, улучшенная вакуумированием. Используется с 50-х гг. 20 в. Вакууми-рованными могут быть, нанр., конструкционная сталь, жаропрочная сталь, нержавеющая ст-аль, трансформаторная сталь, рельсовая сталь. В. с. отличается от обычной стали более высокими (в среднем на 10—15%) ударной вязкостью, относительным сужением и удлинением, содержит меньше газов (азота, водорода, кислорода) и неметаллических включений. Хорошо сваривается. При кристаллизации В. с. уменьшается газовая пористость и рыхлость. В процессе разливки устраняется возможность вторичного окисления стали, образования плен и заворотов, в процессе ковки и прокатки уменьшается количество поверхностных и внутренних трещин и рванин. Незначительное содержание водорода в В. с. уменьшает вероятность образования флокенов. В. с. подвергают такой же горячех мех. обработке давлением, как и нева-куумированные стали. Термическая обработка В. с. (за исключением отжига после ковки) не отличается от принятой для стали определенной марки. В. с. получают вакуумированием в печи, в ковше, при разливке. [c.167]

    Существуют прямые и косвенные методы определения G(v, у). Прямые методы основаны на получении хроматограммы, свободной от влияния ММР напр., хроматограммы узкодисперсного полимера), и определении параметров хроматографич. размывания. Косвенные методы основаны на сопоставлении значений средней мол. массы и характерпстич. вязкости [т]], определенных из нескорректированной хроматограммы Р и), с их истинными значениями, определенными др. методами (напр., осмометрией, светорассеянием), косвенные методы, однако, в принципе не позволяют учесть зависимость G v, у) от 7/ и поэтому пригодны только для анализа узкодисперсных полимеров. Коррекция хроматограммы относительно мало изменяет значения Му, и М , однако значительно уменьшает показатель полидисперсности М,а,1Мп (рис. 4). [c.421]

    Естественно, в неводных средах растворимые неорганические соли ведут себя как обынные полярные вещества, и их влияние на растворяющую способность и соответственно на вязкость концентрированных растворов полимеров подобно поведению обычных добавок других полярных растворителей. При добавлении в относительно небольших количествах они должны повышать растворяющую способность и снижать вязкость до определенного предела. В этом отношении весьма показательны результаты, полученные при исследовании растворов полиакрилонитрила в диметилформамиде с добавками неорганических солей [c.98]

    В этом последнем случае предпочтительны бензины, богатые нафтенами или ароматикой, например прямогонные фракции из нефтей с побережья Мексиканского залива или Калифорнии экстракты сольвентной очистки, полученные при обработке реформатов селективными растворителями (например диэтиленгли-колем) узкие фракции катализатов риформинга парафинистые бензины, к которым добавлены другие соединения (например толуол) или еще более сильные синтетические растворители — бу-танол и бутилацетат. В определенных случаях растворяющая способность может быть увеличена добавлением нескольких процентов такого соединения, как монолеат глицерина [25]. Рецептура таких комбинированных растворителей является весьма сложной, и для определения их качества установлено несколько особых проб. Сюда относятся проба минимального относительного объема растворителя для определения растворяющей способности по отношению к нитроцеллюлозе [26, 27], каури-бутановая проба [28, 29], определение анилиновой точки, определение растворимости в диметилсульфате и вязкости различных стандартных растворов смол [30—32]. [c.562]

    Индекс вязкости является относительным числом, характеризующим пологость температурной кривой вязкости смазочных масел. Для определения этого показателя качества пользуются таблицей, разработанной Всесоюзным научно-исследовательским институтом по переработке нефти и газа и получению искусственного жидкого топлива. Названная таблица одобрена Государственным комитетом стандартов, мер и измерительных приборов при Совете Министров СССР в качестве руководящего технического материала. Чем выше индекс вязкости масла (ИВ), тем более иолога температурная кривая вязкости и тем лучше масло. [c.176]

    Определение динамшеской вязкости проводят по ГОСТ 1929-51. Динамической вязкостью называют сопротивление взаимному перемещению двух слоев жидкости площадью 1 см , находящихся на расстоянии 1 см друг от друга и перемещающихся друг относительно друга со скоростью [c.190]

    Из измерений относительной вязкости и аналитического определения объемной доли дисперсной фазы латексов находили коэффициенты гидратации, значения которых приведены в табл. 11.5. Как видно из этих данных, перемешивание приводит к заметному снижению коэффициента гидратации, т, е. к утончению граничных гидратных прослоек, однако при хранении латексов гидратные оболочки восстанавливаются. Эти результаты подтверждают изложенные выше представления об обратимых предкоагуляционных изменениях в латексах при перемешивании, влияющих на структурный фактор устойчивости. [c.199]

    Как видно из формулы, уд. вес керосина не играет знаяительной роли, тогда как вязкость существенным образом влияет на конечны результат. Поэтому поднятие осветительных масел вообще и керосина, в частности, в ысокой степени зависит от вязкос ги продукта. Вязкость керосина, вообще говоря, очень незначительна и понижение температуры изменяет ее относительно мало определение этой константы в вискозиметре Энглера дает величины, лишь немногим превышающие единицу, но не потому, что вязкость керосина близка к таковой для воды, а потому, что Энглеровский прибор может давать действительные показания только в случае более вязких жидкостей. У него слишком мало трение в сточной трубочке и поэтому скорости протекания жидкостей маловязких измеряются приблизительно равными промежутками времени. Но достаточно замедлить эту скорость, и между водой и керосином станет заметна значительная разница в скоростях истечения для воды при 20° коэфициент внутреннего трения около 0,0101, для бакинского керосина = 0,821 (при 20° Ц) около 0,0187. Для такого рода исследований служат или капиллярные трубки, или видоизмененный прибор Энглера, предложенный Уббелоде, с более узким и длинным сливным отверстием. В виду единства изложения описание этого прибора помещено в отделе вязкости смазочных масел. [c.193]

    От указанных недостатков в значительной мере свободен частотный метод определения вязкости псевдоожиженных систем, разработанный и реализованный в МИТХТ [2, 3]. Он состоит в наложении на псевдоожиженную снстему неустановившегося (но квазистационарного) возмущающего воздействия (предпочтительнее — медленных гармонических колебаний). Здесь возможно возвратно-поступательное движение двух плоских пластин или вращательное (реверсивное) движение соосных цилиндров с исевдоожижен-ным слоем между пластинами или цилиндрами. Как частный случай, наиболее удобный на практике, может быть использован одиночный цилиндр. Теоретический анализ позволил получить амплитудно-фазовые характеристики, по измеренным локальным значениям которых можно рассчитать кажущуюся вязкость псевдоожиженной системы или истинную вязкость капельной жидкости. Поскольку использование амплитудно-частотных характеристик связано с необходимостью предварительной калибровки прибора, вязкость псевдоожиженного слоя практически определяли по фазово-частотыым характеристикам, получаемым при размещении в слое миниатюрных тензодатчиков (их калибровка не требуется) на фиксированных расстояниях от оси цилиндра. По осциллограммам с тензодатчиков легко найти запаздывание одних слоев системы относительно других и рассчитать кинематическую вязкость псевдоожиженного слоя. — Доп. ред. [c.230]

    Оценим кинетические константы. Для каждого падающего кристалла можно построить зависимость v=v i) и определить величину dvldt с точностью до малых первого порядка dvldt Lv—Подставив dvldt в уравнения (3.185), (3.186), можно разрешить их относительно диаметра сферы, масса которой совпадает с массой падающего кристалла. Подставив найденные значе- ния а в уравнения (3.185), (3.186), легко получить значения для скоростей роста кристаллов в соответствующих временных точках. Однако в нашу задачу входит не только определение скоростей роста по длине трубы, но и определение влияния на скорость роста кристалла пересыщения, температуры раствора, скорости обтекания кристалла раствором, вязкости и плотности среды, окружающей его. Если кристаллизация идет во внешней области (диффузионной), то массовую и линейную скорости роста кристалла можно представить в виде [c.295]

    Современные теории сплошной среды. Разработка реологических уравнений неиьютоновских жидкостей, которые совмещали бы в себе идеи вязкости и упругости, как раз и является предметом современных теорий сплошной среды. Есть надежда на то, что все многообразие наблюдаемых в экспериментах явлений удастся описать с помощью лишь относительно небольшого числа функций (таких как т](х) в модели обобщенной ньютоновской жидкости) илн констант (таких как т н п в степенном законе). На сегодмяшннй день основные усилия в этой области концентрируются на изучении реологических простых жидкостей, представляющих собой такие материалы, в которых напряжения в каждом элементе зависят лишь от истории его деформации, но, например, не от движения соседних элементов. Такое определение до сих пор представляется достаточно широким, так что к данному классу относятся все неньютоновские жидкости. С точки зрения конкретных приложений это утверждение о напряжениях в простых жидкостях не особенно ценно. Полезные частные формы реологического уравнения можно установить, используя определенные упрощающие предположения или об особенностях рассматриваемого течения, илн о свойствах самого материала. Многие из таких уравнений приведены в [11. [c.170]

    Известно относительно мало приложений расчетов нагрева за счет вязкой диссипации в кольцевом течении Куэтта. Одно интересное приложение эти расчеты находят в ротационном вискозиметре, где нагрев аа счет внутреннего трения иногда ограничивает самые большие скорости сдци1 а, которые могут быть использованы в приборе. Полностью развитые поля температур и скорости привлекают мрюго внимания из-за существования неоднозначного решения, найденного в [2П- Касательные напряжения не должны превышать определенного значения, даже если при этом неограниченно увеличиваются скорости сдвига. При высоких скоростях сдвига уменьшение температурной зависимости вязкости компенсируется увеличением напряжения вследствие роста скорости сдвига. Зависимость скорости сдвига Уо1Н (относительная скорость между поверхностями, разделяемыми зазором) от касательного напряжения показана на рис. 8 для жидкости, описываемый степенной зависимостью [20]. Для данного касательного напряжения имеются два режима для проведения эксперимента один при высоких и второй при низких скоростях сдвига. [c.335]

    Подобный способ выражения вязкости является результатом неправильного представления о том, что определение динамической и кинематической вязкостей отличается сложностью, и применения на практике упрощенных технических приборов, дающих показания в условных единицах вязкости. Неудобство всех условных, или относительных, единиц вязкости заключается в том, что вязкость, выраженная в этих единицах, не представляет собой физической характеристики нефтепродукта, так как она завйсит от способа определения, конструкции прибора и других условий. [c.250]

    Необходимо отметить, что описанные выше номограммы так ке, как и номограммы Доксея и др., вследствие относительно невысокой точности измерения могут быть рекомендованы только для ориентировочных определений. При более точной работе индекс вязкости следует подсчитывать по. формуле (XI. 38). [c.268]

    Формулы (XI. 85) и (XI. 86) дают относительные динамическую и кинематическую вязкости, т. е. величины безразмерные. Однако на практике в тех случаях, когда точность измерений не превышает 1%, принято считать, что т) и V выражены в саптинуазах и сантистоксах. Следует помнить, что при применении в качестве эталонной жидкости воды формулы (XI. 85) и (XI. 86) справедливы лишь в том случае, если воду используют при температуре 20°. Величину То на практике часто называют водным числом вискозиметра, так как она показывает, за сколько времени из данного прибора вытекает определенный объем воды при 20°. Таким образом, в зависимости от способа Калибровки капиллярные вискозиметры могут служить для измерения как абсолютной, так и относительной вязкости. [c.289]

    Итак, довольно относительное определепие температуры застывания заменяется в этих методах более конкретным и реальным определением подвиишости нефтепродукта, вырал енной в условных единицах. Поэтому методы О-образных трубок до известной степени связывают методику изучения состояния нефтепродуктов, основанную па определении температуры застывания, с определением вязкости при низких температурах. [c.340]

    Нротивоизносные, или как их называют смазывающие свойства, как показатель эксплуатационной характеристики топлив появился относительно недавно и пока не входит в спецификации или технические условия на топлива. Однако оценка противоизносных свойств топлив определенного типа, особенно для реактивных и дизельных двигателей, где топливо подается в камеры сгорания насосами и где оно служит также смазывающим средством для сопряженных трущихся деталей, очень важна. Поэтому такой оценке в нашей стране и за рубежом уделяется большое внимание. Большое значение нротивоизносные свойства имеют для реактивных топлив, поскольку они обладают невысокой вязкостью. [c.116]


Смотреть страницы где упоминается термин Вязкость относительная, определение: [c.421]    [c.780]    [c.336]    [c.61]    [c.68]    [c.43]    [c.61]    [c.151]    [c.21]   
Справочник химика Издание 2 Том 1 1963 (1963) -- [ c.982 ]

Справочник химика Том 1 Издание 2 1962 (1962) -- [ c.982 ]

Справочник химика Том 1 Издание 2 1966 (1966) -- [ c.982 ]

Справочник химика Изд.2 Том 1 (1962) -- [ c.982 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость определение

Вязкость относительная



© 2025 chem21.info Реклама на сайте