Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка Парафиновые кислоты

    В качестве перспективного сырья для производства трансформаторных масел адсорбционной очистки может служить маловязкий дистиллят бакинской нефти месторождения Нефтяные Камни . Однако поскольку в этом дистилляте содержится некоторое количество твердых парафиновых углеводородов и несколько больше смолистых соединений, чем в дистиллятах высококачественных бакинских нефтей, вместо очистки серной кислотой лучше применять адсорбенты, которые эффективно удаляют смолистые и полярные соединения. [c.162]


    Такой порядок очистки серной кислотой, практиковавшийся в первые годы эксплуатации Грозненского парафинового завода, был затем изменен очистка ведется носле потения гача. [c.151]

    Предельная очистка серной кислотой (300 %) интересна в том отношении, что дает возможность определять коэффициент преломления нафтено-парафиновых углеводородов, остающихся в масле после удаления ароматических углеводородов. [c.19]

    Кислота хлорсульфоновая 802(0Н С1. Характеристика. Прозрачная жидкость от светло-желтого до коричневого цвета, дымит на воздухе получается при соединении хлористого водорода с серным ангидридом. Применяется в качестве сульфирующего агента при получении хлорангидридов сульфокислот, в производстве синтетических органических продуктов, для очистки парафиновых углеводородов, выделяемых из нефти, в фармацевтической промышленности и т. д. [c.213]

    При кислотной очистке парафиновые и нафтеновые углеводороды, входящие в состав масляного полупродукта, не изменяются, в то время как ароматические углеводороды под действием крепкой серной кислоты хотя и медленно, но все же заметно реагируют с кислотой (частично сульфируются) и частично растворяются в ней. Чем больше ароматических углеводородов содержится в полупродукте, тем больше растворяется их [c.25]

    Очистка серной кислотой. Серная кислота — тяжелая жидкость с относительной плотностью 1,84. Нефтяные продукты очищают концентрированной кислотой в железных аппаратах, а промывку и щелочную очистку (когда кислота становится разбавленной) ведут в аппаратах, облицованных свинцом. При сернокислотной очистке из нефтепродуктов в значительной степени удаляются непредельные углеводороды, асфальтены, смолы, азот и серосодержащие соединения. Серная кислота обычной концентрации (93— 98% моногидрата) практически не действует на парафиновые и нафтеновые углеводороды при комнатной температуре. Но дымя- [c.254]

    Жирные кислоты, пригодные для производства синтетических пищевых жиров, должны подвергаться особой очистке. В настоящее время длительными опытами точно установлено, что присутствующие в этих жирах кислоты с нечетным числом атомов углерода усваиваются человеческим организмом так же, как кислоты с четным числом поэтому нет никаких оснований удалять жирные кислоты с нечетным числом углеродных атомов из смеси синтетических жирных кислот. С технической точки зрения нет смысла осуществлять такое разделение кислот, поскольку оба типа кислот присутствуют почти в одинаковых количествах. Напротив, кислоты изостроения должны быть удалены, насколько это возможно, так как они являются причиной появления в моче кислых соединений, растворимых в эфире. Установлено также, что крысы, которых кормили жирами, синтезированными из жирных кислот, полученных на основе синтетического парафинового гача, испытывали задержку в росте. Известно, что эти кислоты имеют довольно разветвленное строение. Жирные кислоты изостроения можно в достаточной степени отделить экстракцией растворителями, например метанолом, метилэтилкетоном, ацетоном, бензином и низкомолекулярными карбоновыми кислотами, в которых они легче растворимы, чем кислоты с прямой цепью [101]. [c.474]


    При выборе экстрагента для очистки дифенилолпропана необходимо учитывать, что он должен обладать следующими свойствами хорошо растворять примеси и плохо — дифенилолпропан иметь низкую температуру кипения, что позволит осушать дифенилолпропан при низкой температуре (это особенно важно ввиду невысокой термостойкости дифенилолпропана) быть доступным и недорогим. Кислородсодержащие растворители (этанол, ацетон, уксусная кислота и др.) непригодны для этой цели вследствие высокой растворимости в них дифенилолпропана. Наиболее подходящими растворителями являются парафиновые углеводороды (гептан) " , низкокипящие хлорзамещенные алифатические углеводороды (хлористый метилен, дихлорэтилен) 31 ароматические углеводороды (бензол, толуол, ксилол) и их хлорпроизводные а также ароматические углеводороды с добавкой фенола или крезола " . [c.166]

    Парафиновые и нафтеновые углеводороды. Парафиновые и нафтеновые углеводороды в чистом виде не взаимодействуют с концентрированной серной кислотой на холоду и при незначительном времени контакта, которое характерно для обычной сернокислотной очистки. Однако наблюдалось растворение легких парафи- [c.223]

    Бензин содержит порядка 94% олефиновых, 5 /о парафиновых и циклопарафиновых и 1 % ароматических и диеновых углеводородов. При этом парафины, циклопарафины и диены концентрируются во фракции, выкипающей до 60 °С, а ароматические углеводороды — в хвостовых фракциях бензина. В сырье нежелательно присутствие бутадиена, дающего смолообразные продукты конденсации на катализаторе. Растворенный в сырье кислород также интенсифицирует смолообразование. Если в сырье имеется сероводород, то полимер-бензин содержит сернистые соединения (меркаптаны). Любые примеси основного характера в сырье, которые могут в нем содержаться в результате очистки от сероводорода, дезактивируют катализатор, снижая его кислотность. Для поддержания равновесной концентрации фосфорной кислоты сырье должно содержать (3,5—4) 10 % воды. Такая влажность сырья равна растворимости воды в жидких олефинах Сз—С4 при 20—25 °С и может быть легко достигнута при контакте сырья с водой. [c.198]

    Механизм сернокислотной очистки. На парафиновые и нафтеновые углеводороды серная кислота при нормальной температуре не действует. [c.319]

    В работе /84/ приведены результаты лабораторных исследований 13 образцов нефтяных парафиновых отложений из различных коллекторных станций нефтепроводов Югославии с целью выявления возможности получения из них микрокристаллических восков (церезинов). Очистка заключалась в обработке серной кислотой, нейтрализации известью и отбеливании активной глиной. Очистка проводилась в двух вариантах непосредственно сырого парафина и после вакуумной перегонки. Существенное различие в результатах между первым и вторым вариантами очистки оказалось в том, что церезины, пол) ченные после вакуумной перегонки, не имели запаха, в то время как церезины, полученные без перегонки, имели запах, характерный для низких фракций нефти. В работе разработаны методы очистки и подобраны условия получения восков с характеристиками, отвечающими требованиям их промышленного применения для каширования фольги, пропитки бумаги, консервации металлических поверхностей, в качестве крема идя обуви, мастики для паркета и т.д. [c.160]

    Фракционный состав синтетических жирных кислот зависит главным образом от состава сырья и степени его очистки, а также от условий синтеза. Кислоты, полученные из твердых парафинов грозненских и восточных нефтей (сырье № 1 и 2), имеют приблизительно одинаковый фракционный состав и содержат 14—15% кислот С5—Сд и 56—61% высокомолекулярных кислот С о—С29. Кислоты же, полученные из нефтяных фракций парафиновых углеводородов (сырье № 4, 5 и 6), обладают более облегченным фракционным составом и содержат фракции С5—Сд в количестве 24—28% и фракции Сю —С20 около 50%. [c.15]

    Состав гидрогенизата зависит от исходного парафинового сырья и режима процессов окисления парафинов, дистилляции сырых кислот и гидрирования. Указанным способом получается смесь в основном предельных первичных жирных спиртов с числом углеродных атомов от 5 до 20. Потребительская ценность спиртов в значительной мере определяется степенью чистоты отдельных фракций, используемых для определенных целей. Ректификация как метод разделения смеси спиртов и очистки отдельных фракций является одним из существенных элементов цеха гидрирования жирных кислот. [c.35]

    Парафин и церезин. Парафин — смесь твердых предельных углеводородов метанового ряда. Его получают из дистиллятов, выделяемых при разгонке парафиновых и высокопарафиновых нефтей. При охлаждении дистиллятов, предварительно очищенных от воды, грязи и смол, парафин выкристаллизовывают, затем очищают серной кислотой, которая поглощает непредельные соединения. После дополнительной очистки глиной получают белый парафин с хорошими электроизоляционными свойствами. Для электротехнических целей применяют парафин с температурой плавления 51—55° С. Парафин — очень хороший диэлектрик. Удельное объемное сопротивление его 10 —10 ом-см. Он имеет низкие б (0,0003—0,0007) и г (1,9—2,2). Недостаток парафина — небольшая температура плавления и хрупкость. Поэтому его применяют в изделиях, работающих при низких температурах. В частности, им пропитывают бумажные конденсаторы, рабочая температура которых не должна превышать 45° С. [c.309]


    Для очистки абгазного хлористого водорода от плохо растворимых в воде органических примесей (например, четыреххлористого углерода) вместо соляной кислоты можно применять высококипящие абсорбенты, не растворяющие или плохо растворяющие НС1. К ним относятся гексахлорбутадиен, трихлор бензол или высококипящие парафиновые масла [45]. [c.491]

    В наиболее крупных масштабах жидкостная экстракция применяется в нефтеперерабатывающей промышленности. Очистка смазочных масел от компонентов, образующих осадок и нагар, а также создающих нежелательную зависимость вязкости от температуры, производится методом экстракции. При этом используются экстрагенты, которые извлекают либо нежелательные компоненты (смолы, асфальты), либо, наоборот, ценные компоненты (парафиновые соединения). Экстракция используется также для разделения углеводородов легких погонов нефти, для выделения ароматических углеводородов, бутадиена, для очистки нефти от сернистых соединений, для извлечения нафтеновых кислот и др. [c.562]

    Неочищенный продукт в зависимости от пределов кипения (когазин I—140—180°, когазин II—180—250°) содержит различные количества веществ, поглощаемых раствором пятиокиси фосфора в серной кислоте. Эти примеси сильно мешают сульфохлор ироваиию. Поэтому их гидрированием под высоким давлением превращают в парафины или удаляют очисткой, например, концентрированной серной кислотой. При очистке серной кислотой, практикуемой в нефтяной промышленности, составные части, подлежащие удалению, теряются. При восстановлении же под высоким давлением они превращаются в парафиновые углеводороды, участвующие в сульфохлорировании. Речь идет здесь в первую очередь об олефинах, далее — о небольших количествах спиртов, альдегидов и кислот. [c.396]

    Несмотря на то что в производстве как светлых нефтепродуктов, так и смазочных масел нашли широкое применение значительно более совершенные процессы, чем сернокислотная очистка, последняя все же продолжает оставаться надежным методом производства во многих специальных случаях. Так, парафиновые гачи, направляемые на обезмасливание, могут подвергаться предварительной сернокислотной очистке (расход кислоты примерно 70 кг на 1 гача), что существенно облегчает последующую кристаллизацию и очистку парафина. Электроизоляционные масла и масла для холодильных компрессоров подвергают глубокой сернокислотной очистке, в которой расход кислоты может доходить до 700 кг на 1 очищаемого масла и даже превышать эту величину. В тех случаях, когда сернокислотная очистка является своего рода дополнением к очистке селективными растворителями, например для улучшения цвета смазочных масел, вполне достаточен расход 3—6 кг кислоты на 1 масла. [c.235]

    Очистку нефтяных фракций серной кислотой проводят для удаления из них непредельных, серо-, азотсодержащих и смолистых соединений, которые обусловливают малую стабильность топлив при хранении, нестабильность цвета и ухудщают некоторые эксплуатационные свойства. В обычных процессах очистки серная кислота не действует на парафиновые и нафтеновые углеводороды. Однако почти всегда в побочных продуктах процесса (кислых гудронах) эти углеводороды обнаруживаются, так как в присутствии сульфокислот и кислых эфиров серной кислоты эти углеводороды образуют эмульсии, увлекаемые продуктами очистки. Ароматические углеводороды не одинаково легко подвергаются сульфированию. Степень их сульфирования зависит от расположения алкильных групп. Трудность сульфирования ароматических углеводородо1в возрастает с увеличением длины и числа боковых цепей. Полициклические иафтено-ароматические углеводороды подвергаются сульфированию при большом расходе кислоты. [c.60]

    Натуральный (природный американский ) вазелин. Получается из остатков от разгонки парафиновых нефтей с последующей очисткой серной кислотой и отбелкой отбеливающими землями, адсорбирующими смолистые и окрашивающие вещества, Это — мазеподобная, а в тонком слое — прозрачная вязкая бесцветная масса, без вкуса и запаха (редко со слабым запахом керосина), свободная от зерен и комков, легкотянущаяся в нити. Желтый вазелин флуоресцирует обычно зеленым цветом, белый — опалесцирует. Плавится при 42—47 Х, образуя маслообразную прозрачную жидкость, принимающую по охлаждении прежнюю консистенцию. Обладает асептическими и гидрофильными свойствами и способностью, особенно в смеси с ланолином и цетиловым алкоголем, поглощать и удерживать значительное количество воды. Натуральный вазелин очень трудно [c.47]

    Различают два вида вазелина натуральный и искусственный. Натуральный (природный) вазелин получают из остатков от разгонки парафиновых нефтей с последующей очисткой серной кислотой и отбелкой адсорбентами. Природный вазелин обладает асептическими и гидрофильными свойствами и способностью (особенно в смеси с ланолином) поглощать и удерживать значительное количество воды. В чистом виде в промышленности используется натуральный вазелин не как самостоятельный продукт, а как сырье для приготовления искусственных вазелинов. Искусственный вазелин представляет собой ароматизированную смесь из церезина, парафина и парфюмерного масла в различной пропорции в зависимости от точки Ш1авления первых двух компонентов. В состав вазелина могут входить также естественный вазелин белого цвета и отбеленный петролатум, предназначенный для повышения вязкости и предохранения от выстуш1ения влаги на поверхности кожи. В борный вазелин добавляют в качестве дезинфицирующего средства борную кислоту. Вследствие того что вазелин при нагревании полностью смешивается с жирами, маслами и восками, он является хорошей основой для приготовления жировых защитных кремов. [c.215]

    Твердые парафины с температурой плавления 25—52° легко могут быть выделены методом потения из парафинового гача. При этом полученные парафины не требуют очистки серной кислотой или отбеливающими землями, однородны и отличаются пластичностью. 3. И. Возжинская сопоставила по свойствам синтетические парафины с нефтяными и показала, что синтетические парафины не уступают хорошо обессмоленным и расфрак-ционированным нефтяным парафинам. Микроструктура синтетических парафинов тождественна микроструктуре нефтяных парафинов, для которых, как известно, характерны большие лентовидные кристаллы. [c.515]

    Luther и Harder предложили предварительную очистку парафиновых или нафтеновых углеводородов путем обработки их разбавленной азотной кислотой при 80—100° и затем крепкой серной кислотой. Для удаления сернистых соединений (перед окислением углеводородов воздухом в присутствии катализатора стеарата марганца зь) была предложена П1>едварительная гидрогенизация под давлением в присутствии металлов IV — VII групп. [c.1005]

    В обычных процессах очистки серная кислота в присутствии веществ, легко реагирующих с ней, совершенно не действует на парафиновые и нафтеновые углеводороды. Однако почти всегда в удалаяемых продуктах реакции (кислых гудронах) эти углеводороды обнаруживаются. Это объясняется тем, что в присутствии сульфокислот и кислых эфиров серной кислоты приведенные углеводороды образуют эмульсии, увлекаемые продуктами очистки. [c.69]

    Применяют в качестве сульфирующего агента при получении хлорангидридов сульфокислот в производстве синтетических органических продуктов, например при синтезе сахарина, для получения сульфокислот из нитропроизводных нафталинового ряда, при ацетилировании целлюлозы и при получении уксусного ангидрида, а также для получения диметилсулт.фата, для очистки парафиновых углеводородов, выделяемых из нефти, при получении дымообразующих веществ, для производства ( )армацевтиче-ских препаратов. Выпускают два сорта. Содержание хлорсуль-фоново кислоты в продукте I сорта должно быть не менее 94 о и П сорта—92%. Уд. вес ( 1 ) для обоих сортов 1,720—1,765. [c.72]

    Повсеместно применяется обработка смазочных масел вязкостью от 100 до 300 единиц по Сейболту при 38° дымящей серной кислотой для получения медицинских масел. В качестве побочных продуктов получаются сульфокислоты или их нейтральные натриевые, кальциевые или бариевые соли. Нефтяные сульфокислоты, получаемые таким образом, в промышленности называются зелеными водорастворимыми кислотами и махогэни кислотами, растворимыми в нефтепродуктах [1]. Первые получаются главным образом из масел низкой вязкости и имеют более низкие молекулярные веса, чем махогэни кислоты, молекулярные веса которых составляют 400—525. Они, по-видимому, получаются из компонентов смазочного масла, содержащих ароматическое кольцо. Выход сульфокислот колеблется в пределах 5 —10% в зависимости от условий очистки, но потери масла на кислоту могут составлять и от 30 до 45%. Со времени появления смазочных масел, получаемых методом очистки при помощи избирательно действующих растворителей, парафиновые рафинаты дают гораздо более высокие выходы белых масел до 80—90%, а экстракты дают более высокие выходы сульфокислот, чем исходные смазочные масла. Соли нефтяных сульфоновых кислот ( махогэни ) также растворимы в нефтепродуктах и являются эффективными ингибиторами коррозии в маслах и петролатумах. [c.99]

    Разбавленная серная кислота, например 75%-ной концентрации, заполимеризует диолефины и удалит вещества, портящие цвет нефтепродукта, но не сможет обеспечить очистки дистиллята от серы [12, 40—45]. Удаление олефинов из бензина вызывает уменьшение октанового числа, в то время как очистка от сернистых соединений улучшает приемистость бензина к тетраэтилсвинцу. Таким образом, суммарный эффект очистки в отношении октанового числа может оказаться равным нулю [46]. В нефтезаводской практике наблюдались случаи, когда в результате сернокислотной-очистки у крекинг-дистиллята, полученного из парафинового сырья, октановое число снижалось, а у крекинг-дистил-лята, полученного из ароматизированного газойля, октановое число повышалось. [c.229]

    Для производства церезинов на нефтеперерабатывающих заводах исходным сырьем служат петролатумы — твердые углеводороды, которые пол> 1аются при депарафинизации смазочных масел с помощью избирательных растворителей. Для производства церезинов используют также естественные озокериты и так называемую парафиновую пробку — отложения парафина в трубопроводах, у забоев скважин, в нефтехранилищах и т. д. Озокерит выделяют водной вываркой или экстракцией озокеритсодержащих горных пород органическими растворителями. После очистки озокерита серной кислотой и отбеливающими глинами получают белый, желтый и коричневый церезины. Подобным образом обрабатывают также парафиновую пробку . [c.142]

    В производсгае битума. Имеющийся опыт использования масляных, парафиновых и керосиновых кислых гудронов в производстве битумов [16, 17] можно применить для кислых гудронов, получвнйнх ири очистке жидках парафинов. При контактировании нагретого прямогонного гудрона с отработанной серной кислотой вследствие восстановительного действия органических соединений серная кислота расщепляется, а органическая часть смеси [c.223]

    Результаты лабораторных работ по определению качества промысловых парафиновых отложений татарских нефтей позволяют рекомендовать в качестве одного из методов очистки этой массы горячую сернокис-лотно-контактную обработку обезвоженного сырья при температурах 70-80 С. При этом расход серной кислоты крепостью 95-96 % составляет 30-35 % и земли (глины)-20 % от объема пробы. [c.161]

    Анализируя в целом результаты приведенных исследований по термокаталитической очистке модельных паровоздушных смесей и отходящих газов с пилотных установок от примесей органических веществ, можно отметить, что все рассмотренные промышленные полифункцио-нальные катализаторы работоспособны при окислении достаточно отличающихся по своей природе веществ (парафиновые и ароматические углеводороды, кислота, эфир, ангидрид). Оксидные каталшзаторы могут эффективно заменять в процессах термокаталитической очистки отходящих газов платиносодержащие катализаторы. То, что оксидный меднохромовый катализатор ВНИИнефтехим-104 оказался близким по своим кап алитическим свойствам алюмоплатиновому катализатору АП-56 (ко- [c.44]

    Для производства церезина используют также естественные озокериты и парафиновые пробки. Озокерит получается водной вываркой или экстратсцпей озокеритсодержащих пород органическими растворителями. После очистки озокерита серной кислотой и отбеливающими землями получают церезин. Подобным же образом обрабатывается парафиновая пробка (отложения церезина в трубопроводах, у забоя скважин, в нефтехранилищах). [c.177]

    С целью повышения эффективности очистки трубок от накипи и уменьшения коррозии металла трубок было подобрано моющее вещество, в состав которого входит водный конденсат , образующийся при окислении парафиновых углеводородов до синтетических жирных кислот и содержащий 25—30% низкомолекулярных водорастворенных кислородсодержащих соединений — кислот С]—С4, альдегидов, кетонов и пр. В приготовленном веществе должно содержаться соляной кислоты 50—807о, тиосульфата натрия 5—12%, водного конденсата 10—30%. [c.92]

    Кислотная очистка. Обработка сырых фракций смазочного масла серной кислотой — один из старейших и общенрнпятых методов очистки. Обработка серной кислотой имеет целью прежде всего удалить асфальтовые и ароматические соединения из масел для улучшения нх стабильности и уменьшения склонности к об-разованию осадков и отложений. Кислотная обработка остаточных тяжелых фракций, полученных из нефтей с высоким содержанием асфальта, улучшает также цвет и снижает коксуемость. Серная кислота, применяемая при очистке смазочного масла, не влияет или очень мало влияет на парафиновые и нафтеновые углеводороды, но вступает в реакцию с высшими ароматическими углеводородными компонентами и особенно со смолами и асфальтенами, которые превращаются в дегтеобразные или мазеобразные коагулированные осадки. [c.120]

    Полученные результаты явились предпосылкой для изучения закономерностей сорбционной очистки Куганакской и Сагыл-Узякской глинами парафинового сырья, используемого для производства синтетических жирных кислот, хлорпарафинов, линейных алкилбензолов и др. [c.12]

    Коул и Барт [435] разработали метод разделения jw- и п-ксилолов. Смесь ксилолов из коксового газа подвергали фракционированной перегонке для удаления о-изомера. Смесь (100 частей) м- и п-изомеров обрабатывали 120 частями 26%-ной дымящей серной кислоты, после чего частично гидролизовали перегонкой с водяным паром. После первого дистиллата, содержащего парафиновые углеводороды и зтилбензол, следовал очень чистый jw-кси-лол. Остаток охлаждали до 10° кристаллы п-ксилолсульфоновой кислоты отфильтровывали и промывали водным раствором серной кислоты, после чего проводили перегонку с водяным паром. В результате получали чистый п-ксилол. Выделенные м- и п-изо-меры ксилола можно промыть разбавленным раствором карбоната натрия и подвергнуть дальнейшей очистке. [c.292]

    Как видно из приведенных данных, выход углеводородов из СМВ несколько выше при экстракции, чем при хроматографии, и составляет 50%. Эти углеводороды имеют плотность больше единицы и высокий показатель преломления. Из физической характеристики углеводородов из СМВ вытекает их структурно-групповой состав, определенный по Хезельвуду [14]. Это полициклические нафтеноароматические углеводороды с содержанием более 4 колец в молекуле, в том числе 2,35 ароматических. Доля углерода в парафиновых цепях не превышает 27%. Если исходить из предположения, что все кольца соединены между собой только через алифатические цепи и имеют, кроме того, алкильные цепи, то средний молекулярный вес этих углеводородов, рассчитанный по структурно-групповому составу, составлял бы 490. Эта величина значительно отличается от экспериментально найденной —355... Такой сравнительно низкий молекулярный вес может соответствовать только соединениям с общими углеродными атомами в циклических структурах. Следовательно, рассматриваемые структуры являются высококонденси-рованными. Подобные ароматические структуры обнаружены Л. Г. Жердевой и Ф. Г. Сидляронком [51 при исследовании состава экстрактов селективной очистки масел. Полученные данные о природе углеводородов из СМВ масляных кислых гудронов согласуются с данными опыта Н. И. Черножукова и К- А. Щегровой [81 по выяснению изменения углеводородного состава дистиллята трансформаторного масла по мере обработки его возрастающим количеством серной кислоты. Показано, что обработка серной кислотой эффективно извлекает из исходного дистиллята смолы и полициклические нафтено-ароматические и ароматические углеводороды. Подобные результаты получены [151 при очистке легкого машинного дистиллята серной кислотой. [c.39]

    Депарафинизация карбамидом характеризуется рядом положительных показателей. В частности, она допускает возможность применения сырья в широких диапазонах перегонки дистиллятов, деасфальтизован-ных остатков, парафиновых гачей и, как показали работы авторов, из сырых нефтей без предварительной их очистки. В последнем случае карбамидное комплексообразование является первичным процессом разделения нефти [6, 7, 8]. Температура процесса близка к комнатной. Процесс носит универсальный характер, т. е. позволяет вьщелить не только нормальные алканы, но и другие соединения с нормальным строением углеводородной цепи - алканы, спирты, жирные кислоты и т. д. [9]. [c.4]

    Третьим потоком сырья для нефтехимического синтеза являются парафиновые угленодороды, получаемые при депарафинизации дизельных, сненпальных реактивных топлив н легких дистиллятных масел. Необходимость ь процессах депарафинизации, обезмаслива-пия и очистки полученных гачей, применяемых для выработки парафина, тодного для процессов окнсления в спирты и жирные кислоты, ставит весьма остро вопросы быстрого их освоения. [c.77]

    Сернокислотная очистка, один из наиболее старых методов очистки нефтепродуктов, заключается в том, что продукт смешивают с небольшим количеством серной кислоты (90—93% Н2304) при обычной температуре. Серная кислота не реагирует на холоду с парафиновыми и нафтеновыми углеводородами, медленно реагирует с ароматическими углеводородами, образует с олефинами эфиры серной кислоты и продукты полимеризации и дает различные соединения со смолами и асфаль-тами. Диолефины в присутствии серной кислоты полимеризуются И осмоляются. В результате обработки нефтепродуктов серной -476 [c.476]


Смотреть страницы где упоминается термин Очистка Парафиновые кислоты: [c.369]    [c.166]    [c.67]    [c.559]    [c.246]    [c.575]    [c.249]    [c.584]   
Основы технологии синтеза каучуков Изд 2 (1964) -- [ c.343 ]




ПОИСК







© 2025 chem21.info Реклама на сайте