Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресценция вторичная

    Принципиальная схема типового флуориметра показана на рис. 1.34. Излучение источника 1, выделенное первичным светофильтром 2, попадает на кювету с пробой 3. Возникающее излучение флуоресценции Уф через вторичный светофильтр 4 попадает на фотоэлемент или фотоумножитель 5, где оно преобразуется в электрический сигнал, пропорциональный интенсивности флуоресценции, который усиливается электронным усилителем 6 и измеряется миллиамперметром. При использовании линейного участка градуировочного графика воспроизводимость флуориметрических определений составляет приблизительно 5%. Метод применяют для чувствительного определения очень малых количеств элементов при анализе органических веществ, при определении малых количеств витаминов, гормонов, антибиотиков, канцерогенных соединений, нефтепродуктов и др. [c.97]


    Механизм возбуждения. Чтобы атом испустил квант рентгеновского излучения hv, ему необходимо сообщить энергию. Это можно осуществить облучением пробы потоком электронов эмиссионная спектроскопия) или рентгеновским излучением достаточной энергии рентгенофлуоресцентная спектроскопия). Практически ввиду более легкого осуществления используют только второй способ возбуждения. Его преимущество заключается еще в том, что возникающий спектр флуоресценции имеет только характеристические спектральные линии, в то время как на эмиссионный спектр накладывается спектр непрерывного излучения. В рентгенофлуоресцентной спектроскопии пробу облучают полихроматическим излучением рентгеновской трубки и наблюдают возникающее вторичное излучение. Для перемещения электрона с занимаемого им основного уровня необходимо, чтобы энергия поглощаемого рентгеновского кванта hv была по меньшей мере равна работе ионизации. Если поглощаемая энергия больше, то избыточная энергия высвобождается в виде кинетической энергии фотоэлектрона. По истечении 10 с ионизированный атом ступенчато переходит в основное состояние. Рассматривая уменьшение энергии электрона при его переходе с верхнего уровня на нижний, можно заметить, что рентгеновский квант излучается не при каждом электронном переходе. Эффективной в этом отношении оказывается только часть переходов (/ij). Остальное число переходов п — () вызывает эмиссию электронов из внешних электронных оболочек атома, поскольку они воспринимают всю энергию, освобождающуюся при осуществлении внутренних электронных переходов, и вследствие этого отрываются от атома оже-эффект). Под выходом флуоресценции W понимают отношение /if/n. Величина W для различных оболочек не одинакова и возрастает с увеличением атомного номера элемента. Зависимость выхода флуоресценции для /С-оболочки от атомного номера элемента можно представить следующей полу эмпирической формулой  [c.201]

    Фильтр для выделения возбуждающего света (первичный фильтр) и фильтр флуоресценции (вторичный фильтр) подбирают по принципу дополнительности, т. е. каждый фильтр погло- [c.184]

    Более усовершенствованная система включает использование вторичной мишени (рис. 8.3-16,а). В таком приборе рентгеновская трубка облучает металлический диск (вторичная мишень). Затем флуоресцентное излучение мишени используют для возбуждения пробы. Преимуществом этой схемы является устранение непрерывного излучения рентгеновской трубки. Отсутствие этого континуума в возбуждающем излучении приводит к существенному снижению фона в спектре и таким образом к лучшему пределу обнаружения. Возбуждение в системе с вторичной мишенью является квазимонохроматическим. Меняя мишень, можно оптимально возбуждать различные диапазоны элементов. Низкая эффективность флуоресценции вторичной мишени означает, что требуется использовать рентгеновские трубки с более высокой мощностью. Рентгеновский спектр геологического стандарта, измеренный с помощью такой системы с энергетической дисперсией, приведен на рис. 8.3-17. В качестве вторичной мишени использовал молибден, спектр регистрировали с накоплением в течение 3000 с. Отметим значительные наложения пиков. Пики в области выше 16 кэВ связаны с упругим и неупругим рассеянием К-излучения Мо в пробе. [c.80]


    В этом разделе было показано, каким образом анализ данных о скоростях реакций приводит к пониманию первичных и вторичных фотохимических процессов, помогает проникнуть в механизмы реакций и даже в природу отдельных элементарных стадий реакций. Кинетические исследования оказываются существенным дополнением к изучению спектров поглощения, флуоресценции и многих других оптических и фотохимических явлений, и их использование будет описано в следующих главах. [c.25]

    По спектрам поглощения и флуоресценции выбрать подходящие первичный и вторичный светофильтры для измерения флуоресценции на флуориметре.  [c.94]

    В ряде случаев спектры поглощения и люминесценции одного и того же вещества несколько перекрываются. Вследствие этого излучение на пути от глубоких слоев к поверхности раствора ослабляется в коротковолновой части спектра люминесценции. Это явление называется вторичным поглощением или реабсорбцией света люминесценции. Для уменьшения влияния реабсорбции также необходимо работать с разбавленными растворами или по возможности учитывать ее. Молекулярный кислород тушит флуоресценцию в жидких растворах. Поэтому для уменьшения влияния кислорода из растворов необходимо его удалять или вакуумированием, или продуванием азота через исследуемый раствор. [c.67]

    Перенос электронной энергии. Передача электроиной энергии возбуждения целиком другому типу молекул может вести к тушению флуоресценции первоначально возбужденной молекулы либо путем замены этой первичной флуоресценции вторичной (более сильной или более слабой), сенсибилизированной флуоресценцией тушителя, либо (если тушитель не флуоресцирует) путем полной конверсии энергии возбуждения в тепло. [c.166]

    Промышленности Советского Союза переданы для производства два новых типа флуориметров ФО-1 и ФМ-1. В первом из них источником возбуждающего света является лампа накаливания, а приемником излучения—фотоумножитель ФЭУ-38. Для того, чтобы возможно полнее отделить возбуждающий свет от света флуоресценции вторичное излучение измеряют под углом 90 к направлению возбуждающего света. С этой же целью прибор снабжен большим числом светофильтров и, кроме того, предусмотрена возможность применения жидкостных светофильтров. Прибор ФО-1 дает особенно хорошие результаты при измерении флуоресценции оранжевого и красного цвета. В этой спектральной области его чувствительность на один-два порядка больше, чем прибора ФАС-2. [c.199]

    Способ разбавления окисью меди является естественным развитием соответствующего метода оптической эмиссионной спектроскопии. В качестве эталонов используют образцы, проанализированные химически. Эталоны и пробы разбавляют окисью меди, чтобы получить искусственную основу, и брикетируют для анализа. Градуировочные графики строят в координатах относительная интенсивность флуоресценции (вторичной рентгеновской радиации)—концентрация элемента. [c.337]

    Следует также учитывать, что некоторые вещества, не обладающие собственной (первичной) люминесценцией, могут при осаждении сорбировать заранее введенные в раствор люминесцирующие красители (флуорохромы) и таким образом приобретать флуоресценцию (вторичная или наведенная флуоресценция). [c.35]

    На рис. 4 схематически показаны процессы, которые конкурируют в переносе энергии возбуждения вещества X через энергию возбуждения Ely вещества Y к состоянию Su вещества Z с энергией возбуждения Eiz, приводя в конечном счете к флуоресценции вторичного растворенного вещества с фотонами средней энергии Eoz- Конкурирующие процессы переноса энергии от Y к Z подобны аналогичным процессам, рассмотренным при [c.167]

    Фильтры и монохроматоры. Светофильтры, используемые для выделения необходимой спектральной области источника света, так называемые первичные фильтры, не должны пропускать свет в области, где измеряется люминесценция, и, наоборот, пропускать как можно больше света в области поглощения объекта. Длинноволновая граница пропускания светофильтров должна быть несколько смещена в коротковолновую сторону по сравнению с самым длинноволновым максимумом поглощения. Фильтры, использующиеся для выделения флуоресценции, так называемые вторичные фильтры, должны отсекать весь рассеянный возбуждающий свет и пропускать весь свет флуоресценции. В качестве первичных и вторичных фильтров используются стеклянные фильтры из цветного стекла. В качестве вторичных фильтров могут использоваться клееные стеклянные фильтры и интерференционные-фильтры. Первые состоят из двух стеклянных пластинок и заключенного между ними слоя желатины, окрашенной органическими красителями. Под действием интенсивного облучения эти фильтры со временем портятся. Интерференционный фильтр представляет собой стеклянную пластинку, на которую нанесены две (или более) полупрозрачные металлические пленки, разделенные слоем прозрачного вещества. Для защиты металлического слоя на него наклеивается еще одна стеклянная пластинка. Расстояние между металлическими пленками определяет длину волны света, проходящего сквозь фильтр. Свет, половина длины волны которого равна расстоянию между пленками, пройдет через фильтр, а свет с любой другой длиной волны отразится. Интерференционные фильтры также разрушаются от интенсивного облучения. [c.65]


Рис. 3.53. Схема взаимодействия электронного пучка с энергией 20 кэВ со сплавом Си—10% Со, демонстрирующая область взаимодействия электронов (сплощная линия), глубину выхода отраженных электронов, глубину выхода вторичных электронов, глубину генерации рентгеновского излучения для Сц/са (пунктирная линия) и Сиг. (щтрихпунктирная линия), глубину образования флуоресценции Сок под действием Сик . Рис. 3.53. Схема <a href="/info/1529511">взаимодействия электронного пучка</a> с энергией 20 кэВ со сплавом Си—10% Со, демонстрирующая <a href="/info/135189">область взаимодействия</a> электронов (сплощная линия), <a href="/info/135214">глубину выхода отраженных электронов</a>, <a href="/info/135039">глубину выхода вторичных электронов</a>, <a href="/info/135055">глубину генерации рентгеновского излучения</a> для Сц/са (пунктирная линия) и Сиг. (щтрихпунктирная линия), глубину <a href="/info/366945">образования флуоресценции</a> Сок под действием Сик .
    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]

    Снимают спектр поглощения полученного комплекса циркония с морином на спектрофотометре СФ-16 в диапазоне от 380 до 520 нм через 10 нм относительно холостого опыта. По спектру поглощения и Яо = 472 нм для комплекса циркония с морином строят спектр флуоресценции и выбирают первичный и вторичный светофильтры. [c.95]

    Вторичный светофильтр предназначен для устранения влияния возбуждающего света. Установленный после анализируемого объекта, он пропускает свет люминесценции и полностью поглощает возбуждающие его лучи. Выбор первичного и вторичного светофильтров производят в соответствии с оптическими характеристиками анализируемого соединения спектром возбуждения и спектром флуоресценции. [c.214]

    Выполнение работы. Построение градуировочного графика. В 6 мерных колб вместимостью 100 мл вводят пипеткой О (раствор фона), 2, 4, 6, 8, 10 мл рабочего раствора нитрата уранила и мерным цилиндром по 5 мл раствора фосфорной кислоты. Объемы растворов доводят дистиллированной водой до метки и перемешивают. Кювету флуориметра ополаскивают соответствующим эталонным раствором, затем наливают его в кювету и измеряют интенсивность флуоресценции 3— 5 раз. В качестве первичного используют светофильтр ФК-1, в качестве вторичного—В-2 (1 = 400—580 нм). По средним значениям интенсивностей строят градуировочный график в координатах интенсивность флуоресценции /ф — концентрация урана с [c.98]

    Первая стадия приводит к переходу молекулы (за время 10- с) в электронно-возбужденное состояние А+Кх А. Вторую стадию можно объединить с первой, назвав их вместе первичным фотохимическим процессом. Во второй стадии возбужденные молекулы за время своего существования (10- с) претерпевают различные превращения а) диссоциацию с образованием свободных атомов и радикалов (или ионов при гетеролитическом разрыве), которые вступают в дальнейшее взаимодействие — вторичные реакции (третья стадия) б) дезактивацию при столкновениях с другими молекулами в) переход в основное электронное состояние с испусканием кванта светового излучения (флуоресценция или фосфоресценция) или внутримолекулярное превращение (конверсия) энергии электронного возбуждения в колебания. Изучение спектров поглощения помогает решить вопрос о характере первичного фотохимического превращения. [c.379]

    Ца пропускания светофильтров должна быть несколько смещена в коротковолновую сторону по сравнению с самым длинноволновым максимумом поглощения. Светофильтры, использующиеся для выделения флуоресценции, так называемые вторичные фильтры, должны отсекать весь рассеянный возбуждающий свет и пропускать весь свет флуоресценции. В качестве первичных и вторичных светофильтров используются стеклянные светофильтры из цветного стекла. В качестве вторичных светофильтров могут использоваться клееные стеклянные и интерференционные светофильтры. [c.152]

    В приборе используются светофильтры из стекла УФС-1, УФС-2, УФС-3, которые не пропускают видимую часть спектра. Прибор снабжен фотоэлектронным умножителем ФЭУ-20. Пучок света флуоресценции определенной интенсивности, возникаюш,ий в кювете с раствором, проходит через вторичный интерференционный светофильтр и попадает на катод фотоэлектронного умножителя. Эти вторичные узко полосные светофильтры выделяют часть спектра, характерную для исследуемого вещества. Напряжение, возникающее в фотоумножителе, усиливается резонансным усилителем и после детектирования [c.483]

    Поскольку фотоэффект имеет место при поглощении рентгеновского излучения, после поглощения рентгеновского кванта атом остается в возбужденном ионизированном состоянии. Далее атом переходит из возбужденного в стационарное состояние по такому же механизму релаксации, который обсуждался при рассмотрении ионизации под действием электронной бомбардировки. Таким образом, в результате поглощения рентгеновского излучения может возникать характеристическое рентгеновское излучение. Это явление называется флуоресценцией, возникающей под действием рентгеновского излучения, или вторичным излучением, в отличие от первичного, обусловленного непосредственной электронной ионизацией. Так как вторичное излучение может возникать как за счет характеристического, так и непрерывного рентгеновского излучений, то следует различать оба этих явления. [c.89]

Рис. 3.49. Глубина выхода вторичной флуоресценции Ре/с, под действием №/ГцВ сплаве №— 10% Ре. Рис. 3.49. <a href="/info/135039">Глубина выхода вторичной</a> флуоресценции Ре/с, под действием №/ГцВ сплаве №— 10% Ре.
    Используя неразрушающую технику рентгеновского излучения, с помощью РМА и РЭМ можно провести количественный анализ состава области массивного образца размером 1 мкм При исследовании образцов в виде тонких пленок и срезов органических материалов размер анализируемого объема уменьшается приблизительно в 10 раз от значения для массивных образцов. Для анализа металлов и сплавов обычно используется метод трех поправок. В качестве эталонов можно использовать чистые элементы или сплавы, причем поверхности образцов и эталонов должны тщательно готовиться к анализу и анализироваться в идентичных экспериментальных условиях. Для анализа геологических образцов обычно используется эмпирический метод, или метод а-коэффициентов. Для этого класса объектов вторичная рентгеновская флуоресценция незначительна, и при анализе используются эталоны из окислов элементов с близким к образцу атомным номером. Биологические образцы часто повреждаются бомбардирующим электронным пучком. Важно обеспечить, чтобы эталоны находились в такой же форме в матрице, что и образец. Цель настоящей главы состоит в том, чтобы дать детальное описание различных методов количественного анализа для неорганических, металлических и биологических образцов различного вида массивных образцов, малых частиц, тонких пленок, срезов и поверхностей излома. [c.5]

    Если энергия Е характеристического рентгеновского пика элемента / в образце больше, чем кр элемента С, то следует учитывать вторичную флуоресценцию при введении поправок при определении концентрации элемента i. Поправка пренебрежимо мала, если Е— кр) больше 5 кэВ. Поправка на флуоресценцию необходима потому, что энергии рентгеновского излучения от элемента j достаточно для возбуждения вторично- [c.23]

    Фактор флуоресценции Fi является обычно наименее важной поправкой в методе трех поправок, поскольку вторичная флуоресценция может и не происходить или концентрация j в уравнении (7.27) может быть мала. [c.25]

    Достоинство метода отношения Р/В в применении к биологическим материалам заключается в том, что различные поправки, используемые в методе трех поправок, играют значительно менее важную роль. Поскольку предполагается, что процентная доза характеристического рентгеновского излучения, поглощенного в образце, такая же, как и для излучения фона, фактор поглощения (Л) отпадает. В биологическом материале эффект атомного номера (Z) мал, и в любом случае им пренебрегают, так как он по предположению оказывает одинаковое влияние на пик н непрерывное излучение. Поскольку у биологического материала низкий атомный номер, эффект вторичной флуоресценции (F) мал и его можно рассматривать как поправку второго порядка. Как в [165], так и в [166] показано, что результаты измерения Р/В нечувствительны к эффективности детектора, флуктуациям тока пучка и неточностям коррекции живого времени. Кроме того, результаты измерения Р/В менее чувствительны к изменениям геометрии поверхности, часто [c.75]

    Опыт 4. Каплю исследуемого раствора, подкисленного соляной. кислотой, выпаривают досуха в пробирке. Остаток смешивают с небольшйм количеством днхлорфлуоресцеииа и двойным количест-вом безводного хлорида цинка. Смесь нагревают на воздушной ба-не при 250... 260°С до расплавления всего хлорида цинка. После. охлаждения плав растворяют в 10%-ном спиртовом растворе H l и исследуют в дневном и ультрафиолетовом свете. Первичные ами-. ны обнаруживаются по желто-зеленой флуоресценции, вторичные — [c.79]

    Приборы для измерения молекулярной флуоресценции можно разделить на флуориметры (флуорометры) и спектрофлуориметры. У флуориметров селекция монохроматических лучистых потоков осуществляется с помощью простейших анализаторов излучения — светофильтров. Использование светофильтров обеспечивает высокий уровень возбуждающего излучения и эффективную регистрацию флуоресценции. При флуориметрических измерениях существенное значение имеет выбор светофильтров. Первичный светофильтр должен пропускать поглощаемое образцом излучение и не пропускать излучение флуоресценции. Вторичный светофильтр должен пропускать излучение флуоресценции, но возбуждающее излучение должно им полностью поглощаться. Подбирая такую пару светофильтров, следует добиваться их хорошей скрещен-ности сложенные вместе, они вообще не должны пропускать электромагнетное излучение. Источниками возбуждения у флуориметров являются ртутные лампы низкого давления. [c.512]

    Флуоресценция тесно соприкасается с ультрафиолетовым погло-щениел . Изучался флуоресцирующий спектр обычно большей длины волны, чем падающая радиация. В случае простых молекул, которые поглощают в ультрафиолетовой области, получаются простые флуоресцирующие спектры, когда используется монохроматический свет действующей длины волны. Однако молекулы, которые поглощают в ультрафиолетовой и видимой областях, дают сложные спектры даже для монохроматического ультрафиолетового излучения, так как большие длины волн флуоресцирующего спектра в видимой области могут быть вторично поглощены и излучены как свет еще больших длин волн. В дополнение к этому следы примесей могут потушить флуоресценцию [201]. [c.190]

    Выполнение работы. Построение градуировочного графика. В 4 мерные колбы мерным цилиндром наливают по 20 мл 1%-ного раствора КОН и из бюретки по 20 мл рабочего раствора ТМАФ, из микробюретки вводят О (раствор фона), 0,2 0,3 0,4 мл стандартного раствора ЫагЗ. Объем растворов доводят до метки 1%-ным раствором КОН и перемешивают. Измеряют интенсивность флуоресценции 3—5 раз. В качестве первичного используют светофильтр В-1, в качестве вторичного—В-2. По средним значениям интенсивностей строят градуировочный график в координатах интенсивность флуоресценции / —концентрация сульфид-иона s. [c.100]

    Возбужд. молекулы вступают в первичные хим. р-ции из ниж. возбужд. состояний (правило Каши). Эти р-ции могут осуществляться с сохранением электронного возбуждения (адиабатически) илп путем перехода в иное, обычио основное, электронное состояние (неадиабатически). Продукты первичных Ф. р.— радикалы, ионы — быстро вступают во вторичные р-ции, приводящие уже к конечным в-вам. С хим. р-циями возбужд. молекул конкурируют фотофиз. процессы нх дезактивации — испускание света (флуоресценция или фосфоресценция, см. Люминесценция), внутр. и интеркомбинац. конверсия. Поэтому квантовый выход (отношение числа молекул, вступивших в р-цию, к числу поглощенных фотонов) первичных Ф. р. не может быть больше единицы (обычно значительно меньше), вследствие же последующих р-ций общий выход может значительно превышать единицу. [c.633]

    НИЯ кобальта для линии Ка никеля, которая не вызывает флуоресценции кобальта (табл. 3.9). Эффективность флуоресценции под действием рентгеновского излучения принимает самое большое значение при энергиях рентгеновского излучения чуть выше края поглош,ения. Например, характеристическая флуоресценция железа ( кр = 7,111 кэВ) более эффективно возбуждается излучением N1 (7,472 кэБ), чем Сих (8,041 кэВ). Эффективность вторичной флуоресценции, возникающей за счет характеристического излучения, может быть оценена по массовому коэффициенту поглощения. Б примере для железа массовый коэффициент поглощения железа для равен 380 см /г, а для Силгд равен 311 см /г, что указывает на большую флуоресценцию от [c.90]

    Длина пробега флуоресценции. Область генерации рентгеновского излучения, возникающая под действием электронов пучка лежит внутри области взаимодействия электронов с мишенью. Вторичная флуоресценция исходит из гораздо большего объема вследствие того, что расстояние, на которое может распространиться рентгеновское излучение в твердом теле, больше, че.м длина пробега электрона. Рассмотрим случай, когда распределено железо в никелевой матрице. Излучение NiK (7,472 кэВ) может вызвать флуоресценцию /(-излучения железа ( кр = 7,111 кэВ). Расстояние, проходимое Ка излучением никеля в матрице Ni—10% Fe, может быть рассчитано на основе уравнений (3.46) и (3.47). Источником в образце является область взаимодействия электронов (рис. 3.49). Ni Q. распространяется с однородной интенсивностью по всем направлениям от источника. Вторичная флуоресценция Fe,(, возникающая под действием Nixa> образуется в пределах всей сферической области, указанной на рис. 3.49. Относительные объемы областей генерации 50%, 75i /o, 90% и 99% вторичной флуоресценции Fe под действием сравниваются на рис. 3.49 с областью взаимодействия электронов. Отметим громадное различие в размерах областей генерации рентгеновского излучения, возникающего под действием электронов и за счет рентгеновских лучей. [c.92]

    Значение учета фактора поглощения можно проиллюстрировать на примере анализа бинарных систем Ni—Fe и А1—Mg. В обеих системах атомные номера двух входящих элементов, настолько близки, что нет необходимости вводить поправку на атомный номер Z,-. Рассмотрим поглощение линии Nijf в Fe и А1к( в Mg. В обоих случаях вторичной флуоресценции не происходит, и можно не учитывать поправку Fi. Для обеих систем расчеты Ai = fix)/fi%) были проведены с использованием поправки Филибера — Данкамба — Хейнриха по уравнениям (7.9), (7.12)-(7.16). [c.14]


Смотреть страницы где упоминается термин Флуоресценция вторичная: [c.99]    [c.100]    [c.94]    [c.232]    [c.100]    [c.157]    [c.12]    [c.13]    [c.457]    [c.240]   
Растровая электронная микроскопия и рентгеновский микроанализ том 2 (1984) -- [ c.2 , c.25 , c.89 , c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Прием V. Наблюдение вторичной, т. е. извне привнесенной, флуоресценции

Рентгенофлуоресцентная спектрометрия вторичная флуоресценция

Флуоресценция



© 2025 chem21.info Реклама на сайте