Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состояние с отрицательной термодинамической

    УСТОЙЧИВЫ ЛИ СОСТОЯНИЯ С ОТРИЦАТЕЛЬНОЙ ТЕРМОДИНАМИЧЕСКОЙ ТЕМПЕРАТУРОЙ  [c.173]

    Равновесия между различными фазами чистого вещества удобно представлять в виде фазовой диаграммы в координатах давление-температура. Отдельные участки фазовой диаграммы соответствуют условиям термодинамической устойчивости какой-либо одной фазы, эти участки разграничиваются кривыми, которые соответствуют областям равновесия между двумя фазами совокупность условий одновременного сосуществования трех фаз определяется точкой, где сходятся три кривые и которая называется тройной точкой. Согласно правилу фаз, для чистого вещества число / независимо изменяющихся параметров состояния, как, например, температура и давление, определяется соотношением / = 3 - р, где р-число имеющихся в наличии фаз. Принцип Ле Шателье предсказывает, что все кривые равновесий между двумя фазами должны иметь положительный тангенс угла наклона, за исключением межфазной кривой лед-вода (и еще нескольких веществ), отрицательный тангенс угла наклона которой обусловлен уменьшением объема льда при плавлении. Пользуясь фазовыми диаграммами, можно предсказать, ведет ли себя вещество при плавлении подобно воде либо сублимирует подобно твердому диоксиду углерода для этого требуется лишь знать, больше или меньше атмосферное давление, чем давление в тройной точке данного вешества. [c.148]


    Потенциал горючести — термодинамическая величина, характеризующая разность между энергией, необходимой и достаточной для поддержания самостоятельного горения данного вещества в рассматриваемой окислительной среде (при заданных параметрах состояния), и энергией, действительно выделяемой наиболее горючей смесью при горении в этой среде. Потенциал горючести используют при количественной оценке горючести вещества. Вещества, горючие в конкретной среде, имеют отрицательный потенциал негорючие вещества имеют положительный потенциал потенциал веществ или смесей, предельных по горючести, равен нулю. [c.10]

Рис. 2. Характер зависимости внутренней энергии от энтропии у систем, для которых возможны состояния с отрицательной термодинамической температурой Рис. 2. Характер <a href="/info/1465086">зависимости внутренней энергии</a> от энтропии у систем, для которых <a href="/info/332027">возможны состояния</a> с отрицательной термодинамической температурой
    Суш ествование состояний с отрицательной термодинамической 136 температурой [c.2]

    Термодинамически процесс растворения возможен, если — величина отрицательная при АО = 0 система переходит в состояние равновесия. Рассмотрим частные случаи. Первый частный случай — при образовании раствора тепло не выделяется и не поглощается, т. е. Л/ = 0, и изменение энтропии осуществляется по законам идеального газа, а именно  [c.214]

    Устойчивы ли состояния с отрицательной термодинамической 173 [c.3]

    В связи с изложенным, для численного раскрытия величины Кр предпочтительнее всего обратиться к выражению (11.85), которое позволяет с требуемой точностью количественно оценить значение константы равновесия при различных величинах давления и температуры в газонефтяной системе. Отличительной особенностью выражения (П.85) по сравнению с (П.89) является то, что рекомендуемая для вычислений формула целиком и полностью опирается на информацию Д(3, Ср, с , полученную при непосредственном экспериментировании в условиях, близких к природным [10]. Это положение усугубляется также и тем, что величины А0(АФ1) и Кр характеризуют направление протекания процессов и термодинамические условия равновесия, или указывают, насколько данный процесс далек от условий равновесия, что определяет выражение (П.89). Поэтому величина АО примерно равна нулю, если процесс находится в состоянии равновесия. Когда АО большая отрицательная величина, то данная система должна еще прореагировать в значительной степени, прежде чем процесс достигнет равновесия. Однако скорость процесса не связана ни с знаком, ни с величиной термодинамического потенциала, и его нельзя предсказать, зная АО. [c.89]


    Термодинамические процессы в гипотетическом идеальном газе с показателем изоэнтропы Ау < 1. Вещества, у которых в состоянии идеального газа показатель изоэнтропы ку 1, в природе неизвестны. Действительно, из формул (3.41) и (3.42) следует, что для такого газа теплоемкости Ср и J отрицательны, а значит, подвод теплоты в изобарном или изохорном процессе сопровождается не повышением, как обычно, а понижением термодинамической температуры. Поэтому идеальный газ, у которого / у <Г 1, является, по существу, гипотетическим веществом, а расчеты процессов в таком газе имеют смысл только в рамках метода условных температур и служат для определения давлений, удельных объемов, перепадов энтальпий, в том числе удельных работ политропного сжатия или расширения и удельных работ, затраченных на преодоление сопротивлений. Отсюда непосредственно следует довольно существенное ограничение области применения метода [c.119]

    Отметим, что все четыре уравнения Максвелла имеют нечто общее — с одной стороны, это производные энтропии или по давлению (такая производная отрицательна), или по объему, а с другой стороны производные, соответственно, или объема, или давления по температуре. Уравнения Максвелла, особенно два последних, находят разнообразные применения в физической химии. Так, например, с их помощью легко записать так называемые термодинамические уравнения состояния. Если разделить (IV.28) на дифференциал объема и считать температуру постоянной, получим [c.93]

    Так как тепловой эффект реакции и энтальпия зависят от давления, температуры и пр., то их обычно относят к стандартному состоянию веществ. Большую роль в термохимии играет стандартная энтальпия А№ образования вещества, под которой понимают энтальпию реакции образования одного моля данного соединения из элементарных веществ при условии, когда они находятся в стандартном состоянии. В качестве стандартного состояния выбирают модификацию элементарного вещества, устойчивого при 25° С и атмосферном давлении [7, стр. 29], энтальпия которого АН принимается равной нулю. В таблицах стандартных термодинамических величин для обозначения того, что они относятся к стандартным условиям, их записывают с абсолютной температурой в виде индекса внизу и с верхним индексом °, указывающим на давление 1 атм, т. е. Яма. Не следует путать стандартную энтальпию образования с энтальпией образования того же вещества из атомов элементов. В табл. 1 приведена АН-въ некоторых веществ. Отрицательное значение ее отвечает экзотермическому процессу (Ср>0), положительное—эндотермическому (Qp<0). [c.16]

    Во всех точках верхней и нижней ветвей 5-образной кривой б значения производных правых частей соответствуюших дифференциальных уравнений отрицательны, а для промежуточного участка положительны. Таким образом, термодинамические критерии устойчивости стационарного состояния совпадают с соответствующими математическими признаками. При этом значению управляющего параметра а, которому соответствует кривая а на рис. 18.3, отвечает только одно устойчивое стационарное состояние, а значению а, описывающему кривую б, — два (I — верхняя и II — нижняя ветви кривой б). Очевидно, что можно найти и бифуркационное значение параметра а. Это значение соответствует ситуации, при которой последовательная трансформация 8-образной кривой у А, а) из вида а в б впервые приводит к Л (х, а )/ёЛ -> оо или ё х, а )/ёх -> оо. [c.376]

    Реакционная способность химической системы при заданных условиях характеризуется скоростью и возможной глубиной химической реакции. Направление и глубина химической реакции определяются законами химической термодинамики. Согласно второму закону термодинамики условия направленности и равновесия химических реакций при постоянных Я и Г записываются в форме О (см. гл. X). В качестве меры химического сродства реакции принимается значение нормального (стандартного) сродства Afi° 298) (см. 75). Нормальное сродство мэжет быть меньше и больше нуля. Термодинамически наиболее вероятны реакции, у которых значения нормального сродства наиболее отрицательны. По значению (298) можно судить о вероятности той или иной реакции при парциальных давлениях (активностях) исходных и конечных продуктов, равных единице. Однако не следует делать вывод, что реакция вообще неосуществима, если А ° Т) > 0. Изменив парциальные давления начальных или конечных продуктов, можно создать условия, когда А О(Т) будет меньше нуля, и реакция пойдет слева направо. В табл. 28 привета б л и ц а 28. Степень превращения исходных веществ (х) и (2Я8) процесса, протекающего до равновесного состояния при отсутствии продуктов реакции в исходной системе [c.522]

    Все процессы, которые можно себе представить, разделяются на положительные, отрицательные и равновесные (квази-статические). Положительными называются процессы, протекающие самопроизвольно. Например, переход теплоты от горячего тела к холодному, диффузия вещества из концентрированного раствора в разбавленный, равно как и любой другой процесс, приближающий систему к состоянию термодинамического равновесия. [c.55]


    ЦИИ в полуячейке, тем больше термодинамическая вероятность протекания такой реакции. Если э. д. с. выражается как окислительный потенциал, можно также сказать, что более положительные потенциалы соответствуют лучшим восстановителям, а более отрицательные потенциалы — лучшим окислителям вещества с потенциалами, большими чем потенциал водорода, лучшие восстановители, нежели водород, а вещества с потенциалами, меньшими потенциала водорода, являются лучшими окислителями, чем ион водорода. Стандартные потенциалы, заимствованные из книги , приведены в табл. 8-1. Наиболее положительные потенциалы и, следовательно, отвечающие нм лучшие восстановители в стандартном состоянии расположены в начале таблицы. [c.311]

    Итак, на основании второго начала термодинамики можно сделать вывод, что в системе, в которой поддерживаются постоянными температура и давление или объем, процессы идут в сторону уменьшения соответствующего термодинамического потенциала, и минимальное значение этого потенциала соответствует состоянию равновесия системы. Изменение энтропии в системе может быть как положительным, так и отрицательным. Естественно, что здесь нет никакого противоречия с вытекающим из второго начала термодинамики принципом возрастания энтропии, относящимся к изолированной системе, В соответствии с этим принципом, если в системе проходит процесс с уменьшением энтропии, то в окружающей среде, которую вместе с системой можно рассматривать как объединенную изолированную систему, должно произойти компенсирующее возрастание энтропии. [c.195]

    Тепловые эффекты определяются экспериментально (в калориметре) или с помощью термохимических расчетов. Абсолютные значения энтальпий и внутренней энергии мы определить не можем. Но для термодинамических расчетов и экспериментального определения тепловых эффектов важно знать лишь изменение состояния системы, т. е. изменение значения энтальпии и внутренней энергии. При экзотермических реакциях теплота выделяется, следовательно, энтальпия или внутренняя энергия системы уменьшается, и значения ДЯ и AU для них отрицательны. Напротив, при эндотермических реакциях теплота поглощается, т. е. Н VL и системы возрастают, а потому ДЯ и AU имеют положительные значения. Раньше тепловые эффекты обозначали через Q и считали их положительными, если выделяется теплота, и отрицательными, если она поглощается. В настоящее время тепловой эффект принято обозначать через ДЯ, причем стали считать положительными тепловые эффекты реакций, происходящих с поглощением теплоты, а отрицательными — происходящих с выделением теплоты. [c.235]

    Количественно оценивать растворяющую способность растворителя по отношению к данному полимеру следует по величине термодинамического сродства. Строгой мерой термодинамического сродства является разность между изобарно-изотермическим потенциалом раствора и компонентов АО или разность между химическим потенциалом компонента в растворе и чистого компонента (Дцг). Обе эти величины при самопроизвольном растворении отрицательны (А0<0 Ащ<0). Чем больше абсолютное значение этих величин, т. е. чем дальше находится система от состояния равновесия, тем больше термодинамическое сродство между компонентами, т. е. тем лучше растворитель. [c.150]

    До сих пор рассматривалась скорость коррозии, лимитируемая катодными реакциями. Однако иногда коррозия может контролироваться и анодными реакциями. Обычно это наблюдается на металлах, способных пассивироваться, таких, как хром, алюминий, титан, цирконий, никель, тантал и др. Пассивностью металла называется состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Согласно термодинамическим расчетам, пассивный металл может подвергаться коррозии, но практически не корродирует из-за того, что анодное растворение его протекает крайне медленно. Например, стандартные потенциалы алюминия (Еар+/а1 = = —1,66В), циркония (Е г +/2г= —1,54 В), титана (Ет =+/т1 = = —1,63В), хрома (Есг"+/сг = — 0,74 В) значительно отрицательнее потенциалов кислородного и водородного электродов, поэтому можно было бы ожидать, что они будут корродировать как с выделением водорода, так и с поглощением кислорода. Однако они отличаются высокой коррозионной стойкостью благодаря склонности к пассивации. Пассивность в основном вы- [c.233]

    При образовании твердых растворов обычно происходит деформационное искажение кристаллической решетки, обусловленное различием в размерах атомов растворителя и растворенного вещества. Это должно приводить к возрастанию внутренней энергии системы U (или энтальпии Н — I/ + pV), т.е. процесс образования твердых растворов должен быть эндотермическим (ДЯдеформ > 0). С другой стороны, перекрывание электронных орбиталей компонентов при образовании твердых растворов приводит к возникновению химических связей между ними, что связано с уменьшением энтальпии (А Ясв < 0). В результате суммарное изменение энтальпии при образовании твердых растворов АН = - А Нсв + А Ядеформ может быть как положительным, так и отрицательным. Термодинамически образование твердого раствора будет возможно, если изменение свободной энергии AG = АН - TAS будет отрицательным. Если ДЯ < О, т.е. энергия химического взаимодействия преобладает над энергией деформации решетки, то всегда AG < О (так как А S при образовании всегда положительно вследствие возрастания неупорядоченности в системе). При ДЯ > О, (преобладание деформационного эффекта над химическим) возможность образования твердых растворов будет определяться соотношением между ДЯ и TAS. Изменение свободной энергии здесь будет отрицательным только тогда, когда TAS > АН. Вблизи чистых компонентов А и Б наблюдается очень резкое возрастание энтропии смешения ( А О, рис. 104). Таким образом, при малой концентрации растворенного вещества образование твердого раствора всегда термодинамически выгодно, поскольку в этих условиях TAS А Я независимо от абсолютной величины А Я. Отсюда следует, что абсолютно нерастворимых в твердом состоянии веществ в природе не существует, и возникновение ограниченных твердых растворов является общим случаем взаимодействия твердых тел. [c.201]

    Но возникает вопрос, а возможно ли термодинамическое подобие вадеств во всей области их существования Опять-таки, опираясь прежде всего на уроки прошлого, приходится на поставленный вопрос ответить отрицательно. Термодинамическое подобие, за редким исключением, не наблюдается для двух каких-либо сравниваемых веществ во всей области состояний. Вещества оказываются подобными или в своих газообразных состояниях, или в виде сжатых жидкостей, или в кристаллическом состоянии. Этот факт имеет фундаментальное значение и для выявления условий подобия, и для дифференциации веществ на группы. [c.277]

    Из выражения (3.20) видно, что при равновесном переходе системы из одного состояния в другое температура Т пе может изменить знака оыа всегда или положительна, или отрицательна. Доказать положительность или отрицательность термодинамической температуры нельзя. Ее знак определяется дополнительным условием, связанным с определением того, какая температура больше, а какая—меньше считается, что в случае равновесного сообшения телу теплоты при постоянных внешних царамефах его темпера1ура увеличиваегся. т. е. Са = ёи дТ)а>0 (см. 2). Такое дополнительное условие приводит к положительной термодинамической температуре (7 >0) (см. 28). [c.62]

    Более 40 лет назад в результате изучения парамагнитной релаксации в кристаллах было установлено, что во многих случаях совокупность спиновых моментов можно выделить в отдельную, не обладающую пространс венными степенями свободы термодинамическую систему, характеризующуюся температурой, отличной от температуры образца. Особенностью этой спиновой системы является ограниченность спектра, чю приводит к возможности иахожде ШЯ ее как в равновесных состояниях с положительной, так и в равновесных состояниях с отрицательной термодинамической температурой (см. гл. 7). [c.173]

    Неполяризуемый электрод отвечает такому электроду, для которого обмен потенциалопределяющими ионами между металлом и раствором совершается беспрепятственно, что наблюдается при больших токах обмена. Потенциал подобного электрода практически не изменяется под действием внешнего тока, пока последний мал по сравнению с током обмена. Идеально поляризуемым является электрод, у которого обмен ионами полн.эстью или почти полностью заторможен ц ток обмена близок к нулю. Для такого электрода уже ничтожно малый внешний ток будет изменять потенциал. Ртутный электрод в условиях снятия электрокапиллярных кривых ведет себя подобно идеально поляризуемому электроду, хотя ток обмена между металлической ртутью и раствором ее соли в состоянии равновесия очень велик. Это объясняете двумя причинами во-первых, тем, что область потенциалов, в которой снимают<я электрокапиллярные кривые, смещена в отрицательную сторону от равновесноп потенциала ртутного электрода, и по-это.му анодный процесс перехода ионов этути из металла в раствор термодинамически невероятен во-вторых, тем, что электрокапиллярные кривые снимаются в растворах, практически лишенных ионов ртут . В этих условиях катодный процесс перехода ионов ртути пз раствора на металл также невозможен, [c.236]

    Изомеризация парафиновых углеводородов на хлориде алюминия освещена в работах [1—4]. 1 Хлорид алюминия, обеспечивая термодинамически благоприятные условия протекания реакции, позволяет осуществлять ее при 50—150 °С. Эта температура способствует образованию продуктов, обогащенных разветвленными изомерами. Однако наряду с бесспорными достоинствами зтот катализатор обладал рядом отрицательных особенностей, усложняющих технологию процесса и зксплуатацию промышленных установок. Тем не менее во время второй мировой войны в связи с потребностью в алкилате для приготовления высокооктанового авиационного бензина процессы изомеризации на хлориде алюминия получили развитие, в основном для изомеризации н-бутана в изобутан. Первая промышленная установка была введена фирмой Shell в 1941 г. К концу второй мировой войны в США были разработаны пять процессов изомеризации, которые отличались либо методом введения хлорида алюминия в зону реакции, либо носителем для катализатора, либо его физическим состоянием. [c.5]

    Экспериментальные исследоваиня показывают, что полимеры растворяются в низко.. голекуляриьгх растворителях, как правило, с небольшим тепловым эффектом, но в то же время образуют растворы, для которых характерно сильное отрицательное отклонение от идеальности. На рис. VI. 12 показана зависимость давления пара растворителя от его мольной доли в растворе полимера. Так как определение отклонений от идеальности растворов полимеров удобнее проводить по изменению активности растворителя Яь тов качестве основного термодинамического уравнения, описывающего состояние раствора полимера, чаще всего пр1шимают выражение для осмотического давления (IV.45)  [c.320]

    Из уравнения (2.21) видно, что термодинамически эффективность ферментативного катализа определяется разницей свободных энергий межмолекулярного (при образовании комплекса Михаэлиса) и внутримолекулярного (в переходном состоянии реакции) образования связи Е-Я. Следовательно, в количественном отношении кинетическая роль комплексообразования Е Н в ускорении ферментативной реакции представляется несколько иной, чем в кинетическом режиме второго порядка (уравнение 2.19). Однако и здесь движущей силой катализа остается свободная энергия взаимодействия Е-Н именно в переходном состоянии реакции (а не в промежуточном комплексе). Действительно, чем более термодинамически выгодным будет внутримолекулярное взаимодействие Е-К в активированном состоянии (чем более отрицательные значения примет величина АОз внутр). тем более благоприятным должно быть отношение VI/ии для ферментативной реакции [см. (2.21)]. Это связано с тем (см. рис. 12), что барьер свободной энергии активации ферментативной реакции (ДО/. внутр) в этом случае уменьшается (по сравнению с ДОи) и, следовательно, скорость процесса [уравнение (2.20)] возрастает. Наоборот, при заданном значении ДО .ппутр термодинамически более благоприятное взаимодействиеЕ -Н в исходном состоянии реакции (фермент-субстратный комплекс ХЕ-КУ) будет тормозить ее протекание. Так, более отрицательные значения Д(3 приводят к неблагоприятным значениям VI /иц в отношении ферментативного процесса [уравнение (2.21)]. Это связано с тем, что активационный барьер Д01% утр (см. рис. 12), определяющий скорость превращения фермент-субстратного комплекса [уравнение (2.20)], при этом возрастает. [c.41]

    Из уравнения (И 1.1) следует, что если все реагирующие вещества в исходной смеси имеют парциальные давления, равные единице, то второй член правой части этого уравнения обращается в нуль и, следовательно, AG = AG°. Величина AG° при температуре 25°С (298 К) называется стандартным изменениел энергии Гиббса и обозначается AG gs- Особенно вах<ное значение при термодинамических расчетах имеьэт величины AGf, 298 реакций образования соединений из элементов. Они публикуются в справочниках и таблицах стандартных величин (см. гл. V). Зная величины AGf где для всех соединений, участвующих в сложной реакции, можно вычислить AG 2°98 этой реакции и константу равновесия. Расчет подобен описанному в гл. I для определения энтальпий реакций. Величины AG°, 98 для элементов (в стандартном состоянии) принимаются равными нулю. Почти для всех соединений значения AGf зэв отрицательны. В противном случае 01и не образовались бы. Редкие случаи, когда АОгэз положительны, означают, что в стандартных условиях данное вещество неустойчиво. Например, для молекулярного водорода Н2 в стандартном состоянии AG 298 = 0. Для водорода же в атомном состоянии AGf 298 +2l8 кДж/моль. Таким образом, атомный водород неустойчив по отношению к молекулярному и при 298 К он будет самопроизвольно превращаться в Н2. При других условиях, например при очень высоких температурах (в плазме), устойчивым может стать атомный водород. [c.47]


Смотреть страницы где упоминается термин Состояние с отрицательной термодинамической: [c.349]    [c.201]    [c.31]    [c.8]    [c.43]    [c.137]    [c.66]    [c.93]    [c.283]    [c.602]    [c.69]    [c.4]    [c.162]    [c.187]    [c.221]    [c.602]    [c.226]    [c.295]    [c.430]   
Термодинамика (1991) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

отрицательная



© 2025 chem21.info Реклама на сайте