Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технология высоких давлений

    Образующиеся в процессе крекинга газы содержат олефины, которые полимеризацией или алкилированием могут быть превращены в полимер-бензин или алкилат, которые могут быть присоединены к крекинг-бензину. Этот процесс, не относящийся к нефтехимическим, здесь не рассматривается. В других случаях, например при значительном спросе на мазут, целесообразно в качестве сырья для крекинга использовать прямогонные фракции, выкипающие в пределах 200—400°, а остаток от прямой перегонки нефти использовать как отопительный мазут. Такое топливо, однако обладает чрезмерно высокой вязкостью. Его можно подвергать легкому крекингу, при котором образуется лишь немного бензина, но заметно понижается вязкость остатка. Это явление, называемое разрушением вязкости , весьма часто используется в технологии. Бензиновая фракция нефти, так называемый прямогонный бензин, разделяется далее на две фракции легкий и тяжелый бензины. Тяжелая бензиновая фракция для улучшения моторных свойств подвергается термическому или каталитическому риформингу, заключающемуся в кратковременном нагреве при высоком давлении в присутствии катализатора или без него, улучшающему антидетонационные свойства бензина. Принципиальная схема современного метода переработки нефти представлена на рис. 7 [7]. [c.18]


    Необходимость сооружения абсорбционного блока определяется при разработке технологии с учетом характеристики перерабатываемой нефти. На рис. 56 приведен общий вид стабилизатора и фракционирующего абсорбера, применяемых в блоках стабилизации и абсорбции современных комбинированных установок АВТ. Эти цилиндрические аппараты колонного типа оборудованы фракционирующими тарелками (до 40 шт.), штуцерами-патрубками для-ввода и вывода продуктов, люками-лазами для ремонтных и монтажных работ. Высота и конструктивные данные указанных аппаратов во всех случаях сохраняются одинаковыми, а диаметр их меняется в зависимости от углеводородного состава перерабатываемой нефти. Конструкция нижней части аппаратов зависит от вида теплоносителя (пар высокого давления, циркулирующая че- [c.151]

    Совершенствовалась и технология гидрогенизационной переработки смол. Здесь, как и в случае гидрогенизации углей, наблюдается отход от традиционной трехступенчатой технологии деструктивной гидрогенизации и стремление всемерно упростить технологические схемы путем сокращения числа ступеней и снижения давления . Выяснены зависимости между давлением и скоростью основных реакций процесса Практически можно легко ориентироваться в выборе давления, с тем чтобы найти разумный компромисс между удорожанием процесса из-за применения более сложной аппаратуры высокого давления и обеспечением нужных скоростей реакций и предотвращением отравления катализаторов. Возможность защиты катализаторов при переработке сланцевых смол позволила сократить или полностью устранить самую неэффективную стадию традиционной технологии — жидкофазное гидрирование с плавающим катализатором, заменив ее гидрированием на активных стационарных катализаторах .  [c.46]

    В аппаратах и машинах химической технологии высоких давлений это уплотнение применяется сравнительно редко, главным образом в трудно доступных частях аппарата, где требуется создать уплотнение между двумя или несколькими полостями С различным давлением в них, [c.232]

    Дизельные топлива в отличие от автомобильных и авиационных бензинов в зависимости от технологии получения могут существенно различаться содержанием и составом гетероорганических соединений, определяющих защитные свойства продукта. Прямогонные дизельные топлива, особенно топлива, полученные из малосернистых нефтей, как правило, обладают более высокими защитными свойствами, чем гидроочищенные дизельные топлива. Необходимость обеспечения высоких защитных свойств дизельных топлив, а следовательно, и надежной оценки этих свойств, связаны с особенностями длительного хранения техники с дизельными двигателями. В этом случае топливо, заполняющее прецизионную топливную аппаратуру (насос высокого давления, насос-форсунки, форсунки и др.), должно надежно предохранять смачиваемые детали от электрохимической коррозии, для развития которой имеются особенно благоприятные условия в малых зазорах между деталями (щелевая коррозия). [c.107]


    Основную массу полиэтилена получают по технологии высокого давления полимеризацией без растворителя в среде сжатого мономера в присутствии кислорода или перекисных инициаторов. Полиэтилен высокого давления (ПЭВД) имеет молекулярную массу от 20 до 200 тыс. и плотность от 915 до 945 кг/м (0,915—0,945 г/см ). Регулирование молекулярной массы полиэтилена для получения марок с различными физикомеханическими свойствами осуществляется с помощью агентов передачи цепи— водорода, пропана, пропилена, спиртов, кетонов и т. п. По технологии высокого давления получают такл<е сополимеры этилена с винилацетатом. [c.48]

    Аппараты высокого давления отличаются большим разнообразием конструкций в зависимости от технологического назначения. Различают реакционные и нереакционные колонны, теплообменную аппаратуру и емкостную аппаратуру различного назначения. Для каждой группы аппаратов одинаковы основные вопросы организации работ и технологии монтажных операций и технические условия на испытание и приемку в эксплуатацию. [c.206]

    Особенность крепления труб в аппаратах, работающих при высоких давлениях (325—700 кгс/см ) и температурах (до 350° С) заключается в том, что при наличии в отверстиях канавок при сбросе давления в трубах возникает кольцевой разрыв в местах сопряжения их с канавками. Сопротивление усилию вырыва у соединений, нагретых до 350° С, на 15% меньше, чем при 20° С (хотя превышает возможные нагрузки на трубу в 4—5 раз). Технология крепления в этом случае следующая. Вначале в трубной решетке обрабатывают отверстие, диаметр которого на 0,15— 0,3 мм превышает наружный диаметр трубок. Затем трубки развальцовывают до плотного прилегания к стенке отверстия, после чего концы трубок, выступающие из трубной решетки на 4—5 мм, обваривают по периметру. . [c.172]

    Однако наиболее существенным фактором, определившим бурное развитие химии и технологии жидких каучуков, было создание возможности перевода предприятий резиновой промышленности на совершенно новую, полностью автоматизированную, непрерывную технологию изготовления изделий. Принципиальное отличие этой технологии от известной состоит в том, что процессы смешения и структурирования жидких каучуков по сравнению с высокомолекулярными каучуками осуществляются без применения высокого давления и энергоемкого оборудования. При этом может быть достигнуто не только резкое. сокращение числа ингредиентов резиновых смесей, необходимых рабочих площадей и тяжелого оборудования, но и весьма значительное уменьшение численности рабочего персонала при практически полном устранении тяжелого ручного труда [1]. [c.412]

    Факельная установка входила в состав производства полиэтилена высокого давления, получаемого при давлении 170—290 МПа (1700—2900 кгс/см ) и температуре 300 °С. По условиям технологии предусматривались периодические сбросы газов в факельные линии высокого и низкого давления. В факельные линии высокого давления сброс этилена осуществлялся при срабатывании аварийных программ и плановой остановке системы. [c.204]

    Этот полимер представляет большой интерес также с точки зрения химической технологии, так как его производство в больших масштабах связано с применением очень высоких давлений и повышенных температур. Поскольку эта реакция экзотермическая, необходим отвод значительных количеств тепла реакции, чтобы избежать тяжелых последствий. Кроме того, учитывая характер реакции, исходное сырье должно быть высокой степени чистоты. [c.165]

    Для получения высокомолекулярных продуктов потребовалась разработка новой технологии, основанной на применении высокого давления. [c.166]

    Б настоящее время большинство процессов производства метанола проводится в основном по одинаковой схеме, которая сформировалась на базе технологии производства метанола при высоком давлении. Реакция образования метанола из водорода и оксидов углерода является экзотермической, поэтому чрезвычайно важное значение имеет осуществление теплоотвода для устранения перегрева катализатора. Во многих известных процессах синтеза метанола это достигается разными способами — или за счет специальной конструкции реакторов, или особым способом теплоотвода. Ниже рассмотрены наиболее широко используемые процессы производства метанола. [c.225]

    Стекловолокно —одно из самых дешевых, стабильных и инертных материалов, устойчивое в кислотах, щелочах, при высокой температуре, против бактерий и грибков, малопластично и плохо сопротивляется истиранию. Эти показатели несколько улучшаются при пропитке стекловолокна смолами, -однако при этом усложняется технология производства и повышается стоимость каркасов. Наиболее технологичны в изготовлении пористые пластмассовые трубки и гладкие стержни с продольными пазами на рабочей поверхности, получаемые методом экструзии, но их прочность недостаточна для высоких давлений. [c.127]

    Элементы и принципиальная схема крупномасштабной технологии СОг-В наиболее общем виде технологический комплекс по использованию СО2 для повышения нефтеотдачи включает источник реагента установку по обогащению реагента установку подготовки реагента к перекачке хранилище углекислого газа у головных сооружений системы магистрального транспортирования систему магистрального транспортирования в составе головной перекачивающей (насосной или компрессорной) станции, промежуточных перекачивающих (насосных или компрессорных) станций, линейной части трубопровода, узлов приема—запуска разделителей и др. хранилище углекислого газа у потребителя блок агрегатов высокого давления для закачки двуокиси углерода в пласт распределительные пункты двуокиси углерода нагнетательные скважины для подачи СО2 в нефтяной пласт систему сепарации и подготовки углекислого газа, поступающего из пласта вместе с продукцией скважины трубопровод для подачи подготовленного на промысле углекислого газа в систему закачки другие системы (защиты от коррозии и гидратов, контроля и управления, техники безопасности и охраны природы). [c.165]


    Удаление серы из дистиллятного сырья представляло собой неизмеримо более легкую задачу, чем получение искусственного жидкого топлива из угля или смол. Естественно, что она могла быть решена применением простых и дешевых установок среднего давления в одну ступень и использовапием более дешевых и легко регенерируемых, хотя и менее активных катализаторов. Сначала гидроочистке подвергались более легкие дистилляты, затем все более тяжелые, включая газойли и смазочные масла. Было заманчиво при гидроочистке тяжелого сырья осуществить и его деструкцию. Так, с конца пятидесятых годов в опытных масштабах, а с начала шестидесятых — в промышленных масштабах стали развиваться процессы гидрокрекинга, имевшие целью повысить выход наиболее цев(ных нефтепродуктов — бензина и дизельного топлива, а также улучшить качество сырья для каталитического крекинга. Процессы гидрокрекинга не были возвратом к многоступенчатой технологии деструктивной гидрогенизации смол и углей, хотя и носили в себе основные черты последней. Видимо, поэтому к ним и применили новый термин — гидрокрекинг. В процессах деструктивной гидрогенизации разделение их на ступени и применение высоких давлений было вынужденной мерой, так как катализаторы были дороги, не регенерировались и были слишком чувствительны к ядам. В современных процессах гидрокрекинга применяются новые, более активные катализаторы, многие из которых могут регенерироваться. Процессы осуществляются максимум в две ступени и при меньшем давлении водорода. Многие из вновь разработанных катализаторов обладают [c.11]

    Разделение в одноступенчатых установках осуществляют в тех случаях, когда требуется выделить из газового потока основную массу целевого компонента. Газовая смесь, подаваемая на разделение, должна иметь относительно высокое давление содержание извлекаемого компонента в ретанте, как правило, строго не ограничивается. В отношении технологии (и экономии) промышленного применения одноступенчатое разделение наиболее привлекательно, причем экономика процесса сильно зависит от производительности и селективности мембран. [c.195]

    При использовании в качестве катализаторов смесей оксидов цинка и хрома синтез метанола ведут под давлением от 250 до 350 атм при температурах 320—400 °С. Такой процесс синтеза метанола следует считать процессом при высоком давлении. До конца 60-х гг. эта технология являлась основной при получении синтетического метанола практически на всех заводах. [c.210]

    Был разработан процесс синтеза метанола при низком давлении (50—100 атм) в интервале температур 230—280°С. Благодаря существенным экономическим достоинствам этот способ полностью вытеснил технологию синтеза метанола при высоком давлении. [c.210]

    Недостатком процесса при высоком давлении являются дорогостоящее оборудование, высокие энергетические затраты на компримирование синтез-газа, довольно высокие эксплуатационные расходы и упомянутый выше значительный выход нежелательных побочных продуктов, таких, как диметиловый эфир, углеводороды и высшие спирты. Хотя в настоящее время еще функционирует несколько заводов, производящих метанол при высоком давлении, их продолжают вытеснять современные заводы с технологией низкого давления. [c.227]

    Технология переработки сырой нефти разработана на основе существующих систем очистки нефти и различных методов гидрокрекинга. Он представляет собой конверсию- в адиабатических условиях, при которой предварительно подогретые сырье и рециркулирующий обогащенный водородом газ подаются в герметический реактор высокого давления, заполненный соответствующим катализатором. При этом способе можно переработать материалы с широким диапазоном температур кипения, такпе, как сырая нефть, однако общепринято сначала разгонять сырье по фракциям, а затем каждую фракцию перерабатывать отдельно, подвергая гидрокрекингу только дистилляты, т. е. газифицируя легкие материалы с помощью паровой конверсии, а тяжелые материалы другими способами, которые будут описаны позднее.  [c.139]

    Для покрытия дефицита тепла при проведении процессов сухой перегонки и газификации угля предпринимаются попытки использовать горячий водород высокого давления для инициации процесса метанизации коксового остатка, который экзотермичен, и одновременного удаления летучих из угля. Такая технология применяется в ХАЙГАЗ-процессе и Гид-ран-процессе преимущество ее заключается в том, что в этом случае образуется сырой газ, уже содержащий некоторое количество метана, и поэтому требуется менее интенсивный процесс метанизации для получения ЗПГ. Однако необходимый для этой цели водород может быть получен за счет газификации части коксового остатка парокислородным дутьем, или за счет дополнительной обработки водяного газа с целью увеличения содержания в нем водорода. [c.170]

    Технология производства многих важных для народного хозяйства продуктов требует, чтобы газ, участвующий в процессах, подавался под высоким давлением. Например, при производстве некоторых видов полиэтиленов необходимо сжатие газов до 250 МПа, а при производстве азотных удобрений реакции проводят при давлении 25—32 МПа. Добыча нефти со дна морей, закачка газов в пласт для увеличения выхода нефти требует газов, сжатых до 70 МПа. Транспортировка природных газов производится при давлении газа до 10 МПа. Даже для привода пневматических машин и инструментов, используемых для механизации работ, воздух сжимается до 0,9—1,5 МПа. [c.76]

    Шонеманн на примере производства полиэтилена высокого давления показал применение в современной технологии высоких давлений математического расчета кинетики процесса и размеров реактора. Приведены соответствуюшие формулы расчета теплового баланса реакционной смеси, охлаждающей воды и скорости реакции полимеризации, баланса превращения и температуры в трубчатом реакторе. Приведенную методику использовали для моделирования технологического процесса завода производительностью 24 ООО т в год полиэтилена высокого давления. [c.249]

    Дальнейшие успехи в области технологии высоких давлений позволили сначала добиться давлений 12 000 атм в аппарате с лвтоматически закрывающимися затворами и подвижными поршнями, а затем перейти к давлениям от 50 ООО до 60 ООО атм при - использовании поршней из карбида вольфрама и, наконец, получить давление в 100 000 атм при помощи аппарата, в котором поршень с цилиндром помещались внутри другого поршня с цилиндром, что создавало защитную оболочку сжатой жидкости. Выдающимся исследователем в этой области был Бридгман, который описал историю ее развития в своей книге по физике высоких давлений (Bridgman, 1949). Одним из крупнейших достижений в технологии высоких давлений было получение алмаза из графита при давлениях от 45 000 до 90 000 атм и температурах от 1500 до 3000°К. [c.146]

    Однако технический прогресс ставит перед машиностроителями все новые и новые задачи. Ведутся научно-исследовательские и проектные работы по дальнейшему совершенствованию конструкций и технологии изготовления корпусов аппаратов высокого давления, а также работы по созданию сосудов диаметром 5000 мм и технологии пх изготовления или доизготовления на месте монтажа. Эти работы имеют большое значение для дальнейшего увеличения мощ юстей химических, нефтехимических и других производств. [c.53]

    Рост потребностей в моторных и жидких топливс1Х вызвал тенденцию углубления извлечения газового бензина, пропана и бутанов и все большее вовлечение в переработку сравнительно тощих газов газовых и газоконденсатных месторождений. Началось совершенствование технологий переработки газа. Масляная абсорбция превратилась в низкотемпературную абсорбцию (Габс = —30- —50 °С) и в абсорбцию под высоким давлением (Равс = 14—16 МПа), адсорбция — в короткоцикловую адсорбцию. Началось освоение нового процесса — низкотемпературной конденсации. Извлечение пропана и бутанов [c.5]

    Другой вариант конструкции, бункер-реактор (рис. 4.10), предусматривает выгрузку работавшего и загрузку свежего катализатора, не останавливая процесса гидродеметаллизации и обессеривания. Обеспечивается зто системой емкостей низкого и высокого давления и специальных кранов, позволяющих регулировать расход катализатора. Эффективность системы с предварительным реактором особенно заметна при переработке сырья с высоким содержанием металлов (более 1СЮ г/т). После предварительного реактора газосырьевая смесь идет в основной реактор. Газопродуктовая смесь проходит систему сепараторов, ВСГ очищается от сероводорода и возвращается в процесс, газы реакции идут в топливную сеть, а жидкие продукты направляются на фракционирование (табл. 4.14). Технология процесса отработана на установке производительностью около 470 м /сут мазута. Б 1976 г. построена промышленная установка в Ямагучи (Япония) производительностью 7160 м /сут, пущена в 1979 г. Для обработки реактора типа бункер создана установка производительностью 400 т/сут. [c.165]

    Однако ряд существенных недосгагков, характерных дня этой системы, не дают основания недоумевать, почему этот вид технологии не получил до сего времени широкого рзспростра11ения в практике. Организация равномерно кипящего слоя кзт.ълилатора при высоких давлениях (10-20 МПа) требует создания тяжелого и с.южного оборудования. Чрезвь чайно сложна в конструктивном оформлении и в эксплуатации шлюзовая система ввода и вывода катализатора во время работы. [c.167]

    Основные типы корпусов сосудов высокого давления показаны на ]1ис. 112, Кованые корпуса изготовлялись ранее с двумя съемными крышками на концах (тип I), что определялось технологией их изготовления, В настоящее время более распрострацен тип II с нижним приварным днищем. Если необходим доступ к нижней части насадки в аппарате, то делают лаз малого диаметра в нижней части колонны. Аппараты без сменных внутренних частей или с насадкой малого диаметра делают с одним лазом (тип III) [c.125]

    Исследовательская часть работы по испытанию катализаторов и отработке технологии гидроочистки выполнялась на пилотных установках высокого давления ВНИИНП полученные в ходе исследований результаты проверялись на промышленных установках НПЗ в условиях, максимально приближенных к рекомендованным. [c.17]

    Развитие химических производств характеризуется значительным усложнением самих технологических схем, созданием энерготехнологических циклов, совмещепных технологий, аппаратов сложных конструкций, работающих в условиях высоких давлений, температур и агрессивных сред. Проектировщику необходимо решать проблемы охраны окружающей природной среды, применения новых материалов, рассчитывать параметры надежности оборудования. [c.24]

    Использование рециклических процессов в химической технологии начинается с конца XIX века, когда впервые в 1890 г. русский инженер В. Г. Шухов разработал и сконструировал установку, предназначенную для перегонки и разложения нефти при высоком давлении, в которой с целью улучшения передачи тепла и устранения оседания кокса в трубах, была предложена искусственная циркуляция. Несмотря на то, что изобретение Шухова было запатентовано, оно было забыто и реализовано лишь в 1920-х гг. в связи с тем, что рециркуляция явилась эффективным средством усовершенствования работы интенсивно внедряющихся в промышленность установок для термического крекинга. [c.283]

    За рубежом разработаны технологии гидрогенизацион-ной переработки средних нефтяных дистиллятов, позволяющие получать дизельное топливо с содержанием серы менее 0.05% масс, и ароматических углеводородов менее 20% масс, при давлении 7-12 МПа [104]. Очевидно, что при более высоком давлении (25-30 МПа) эта задача решается еще эффективнее, в том числе при использовании в качестве сырья дистиллятов вторичных процессов переработки нефти [104]. [c.43]

    В справочнике приведены лишь некоторые сведения о наиболее важных химико-технологических процессах, происходящих в химических аппаратах, знание которых совершенно необходимо для сознательного и качественного конструирования. Имеется глава о технологии изготовления стальных сварных аппаратов, что также необходимо знать при конструировании. Не рассматриваются аппараты, имеющие в своем составе механизмы и их приводы, относящиеся к самостоятельному разделу химического машиностроения — машинам химических производств, а также кованые, ковочно-сварные аппараты, представля-кздие собой специфический класс химических аппаратов высокого давления. [c.3]

    Газификатор с псевдоожиженным слоем системы БИ-ГАЗ разработан для шроизводства газа с исключительно высоким содержанием реагирующих компонентов (21% окиси углерода, 63% водорода и лишь 16% метана) посредством парокислородной конверсии битуминозного угля при высоком давлении. Значительное тепловыделение, наблюдающееся во время реакции образования газа в присутствии соответствующего катализатора, является неконтролируемым процессом, в связи с чем не может быть и речи об одноступенчатой технологии процесса метанизации. [c.188]

    Третий период развития химической промышленности начался до первой мировой войны с коммерческого успеха производства аммиака в процессе Хабера - Боша. Необходимо подчеркнуть, что в этой технологии впервые в мировой практике химия по существу потребовала серьезного инженерного обеспечения процесс велся при высокой температуре (свыше. 100 °С) и высоком давлении (10 - 25 МПа). Любопытно сравнение технологического оборудования этого процесса, использованного на Баденских анилино-содовых предприятиях (BASF) в Людвигсхафене (Германия), с установками, описанными в "Руководстве л по химической технологии" [Davis,1901]. Большинство приводимых в книге образцов изготовлено плотниками или кузнецами они выглядели бы совершенно О естественно на дворе фермы, хотя и были новейшими достижениями химической технологии XIX в. [c.17]

    Кожухи, каналы, крышки и колпаки. Кожухи, каналы, крышки каналов и колпаки обычно изготовляются из листов, а при использовании в теплообмет1иках, работающих при высоких давлениях, могут быть получены путем ковки. Литье имеет ограниченное применение чугун используется для каналов небольших ло размерам конденсаторов, а литая бронза или латунь—для изготовления крышек плавающих головок. Пластины пластинчатых теплообменников делаются из листового металла, который можно формовать различным способом для изготовления опор и интенсификаторов теплообмена. Возможность формования, таким образом, является впжным сгюйспюм материала, используемого в определенных типах пластинчатых теплообменников. Свариваемость металлов также обязательна для изготовления большинства типов теплообменников, что особенно важно при сварке труб и трубных досок. Несмотря на успехи, достигнутые в технологии сварки, в процессе эксплуатации сварочные соединения еще подвержены разрушениям. [c.314]

    Коксоудаляющие гидроустановки. Эти установки предназначены для управления режимом работы гидравлического резака и осуществления гидравлического извлечения кокса по заданной технологии. Гидроустановка (рис. 58) состоит из комплекса дистанционно управляемых механизмов и агрегатов, обеспечивающих плавное вращение и вертикальное перемещение гидравлического резака внутри камеры и подачу к соплам воды под высоким давлением. Оборудование для гидравлического извлечения (водяные насосы высокого давления, гибкие буровые рукава, лебедки, вертлюги, роторы, гидроприводы, бурильные штанги и гидравлические резаки) является нетрадиционным для нефтеперерабатьшающиз предприятий. [c.184]

    Необходимость сооружения абсорбционного блока определяется при разработке технологии с учетом характеристики перерабатываемой нефти. На рис. 5.5 приведен общий вид стабилизатора и фракционирующего абсорбера, применяемых в блоках стабилизации и абсорбции современных комбинированных установок АВТ. Эти цилиндрические аппараты колонного типа оборудованы фракционирующими тарелками (до 40 шт.), штуцерами, патрубками для ввода и вывода продуктов, люками-лазами для ремонтных и монтажных работ. Высота и конструктивные данные указанных аппаратов во всех случаях сохраняются одинаковыми, а диаметр их меняется в изависимости от углеводородного состава перерабатываемой нефти. Конструкции нижней части аппаратов зависят от вида теплоносителя (пар высокого давления, циркулирующая часть нижнего продукта и т.п.). Наиболее характерными являются блоки стабилизации и абсорбции комбинированной АВТ типа А-12/9 производительностью 3 млн.т/год обессоленной ромашкинской нефти. [c.65]

    На большинстве промышленных установок процесс конверсии углеводородов с водяным паром осуществляется при давлении, близком к атмосферному. Однако, исходя из экономических соображений, часто желательно получать водород под повышенным давлением. Если в процессе дальнейшего применения газообразный водород должен быть сжат до высоких давлений (например, при ожижении водорода), то повышенное начальнос-давление газа позволяет при этом значительно снизить расход электроэнергии, число ступеней компрессии, габариты теплообменных аппаратов и т. д. [44]. Поэтому- в США и Англии ведутся исследования по разработке технологии процессов, проводимых под повышенным (10 и 23 ат) давлением [46—48]. [c.26]

    Поиски резервов улучшения технологии процесса деасфальтизации гудрона привели нас к новому техническому решению, при котором в более полной мере реализуются преимущества процесса регенерации растворителя из деасфальтизатного раствора в сверхкритических условиях. Суть предлагаемого технического решения заключается в использовании энергии, заключенной в регенерированном при высоком давлении растворителе, для сжижения в струйном компрессоре газообразной части растворителя низкого давления, выводимом из отпарных колонн. [c.55]

    Гидрокрекинг на циркулирующем катализаторе [16, 177]. Гидрокрекинг при высоком давлении дорог, поэтому были сделаны попытки осуществить процесс при меньших давлениях. В частности, интересен процесс [16], разработанный в ИНХС АН СССР в 1955 г. под названием деструктивная гидрогенизация . Принципиальная схема установки гидрокрекинга этой системы показана на рис. 86. Гидрокрекинг под невысоким давлением в движущемся или кипящем слое циркулирующего катализатора возможен благодаря поддержанию его активдости путем непрерывной окислительной регенерации. В связи с непрерывной циркуляцией в системе в этом процессе должны применяться шариковые или микросферические катализаторы (технология их получения также разработана в ИНХС АН СССР), обладающие высокой устойчивостью к износу и растрескиванию. [c.279]

    Цилиндры и крышки всех компрессоров для давлений до 7 МПа обычно изготовляются путем отливки из серого или легированного чугуна до 12 МПа — из магниевого (высокопрочного) чугуна с шаровидным графитом до 25 МПа — из стали для давлений до 40 МПа цилиндры выполняют коваными из углеродистой стали, для более высоких давлений — коваными из легированной стали. Чугунные цилиндры могут выполняться в виде отдельной отливки (одиночный цилиндр), либо в форме блока с несколькими цилиндрами. Отливка в виде блока удешевляет технологию обработки рабочих поверхностей, увеличивает жесткость всей машины. Однако блочные цилиндры сложнее отливать. Для размещения клапанов у них меньше места, чем у отдельных цилиндров. По конструктивному устройству цилиндры обычно бывают одно-, двух- и трехстенными. Наибольшее применение находят одностенные и двухстенные, так как отливки получаются сравнительно простыми. [c.183]


Смотреть страницы где упоминается термин Технология высоких давлений: [c.344]    [c.54]    [c.148]    [c.329]    [c.172]    [c.229]   
Жизнь микробов в экстремальных условиях (1981) -- [ c.146 , c.147 ]




ПОИСК







© 2025 chem21.info Реклама на сайте