Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки фиксация

    Во многих лабораториях мира ученые настойчиво разрабатывают одну из самых сложных, но вместе с тем практически наиболее важных проблем— проблему механизма ферментативного катализа. Когда она будет полностью решена, современная нам химическая промышленность уступит место совершенно новому химическому производству, основанному на принципе ферментативного катализа,—производству, где с огромными скоростями, 100%-ными выходами, избирательно, без побочных продуктов, в мягких условиях (низкая температура и давление и т.п.) будет осуществляться превращение одних веществ в другие. Более того, полная расшифровка ферментативных механизмов таких процессов, как фотосинтез, биосинтез белков, фиксация молекулярного азота и т. п., и воспроизведение их на этой основе в лаборатории и промышленности могут в корне изменить способы добывания пище- [c.146]


    Фиксация конформаций макромолекул (вторичной структуры) белка происходит в результате различных внутри- и межцепных взаимодействий. Ниже приведена схема внутри- и межцепных взаимодействий в макромолекуле белка [связи / - водородные и диполь-дипольные, 2 - гидрофобные , 3 - ковалентная дисульфидная, 4 - ковалентная сложноэфирная, 5 -ионная ( солевая )]  [c.346]

    Таким образом, эффекты фиксации третичной структуры макромолекул белка обусловливаются теми же факторами, которые определяют вторичную структуру полипептидной цепи. [c.349]

    Он выполняется следующим образом. На середину полоски плотной, гомогенной фильтровальной (хроматографической) бумаги, пропитанной буферным раствором с определенным значением pH, наносят каплю исследуемого коллоидного раствора. Затем на полоску бумаги накладывают разность потенциалов. Под влиянием образующегося электрического поля отдельные компоненты, содержащиеся в капле, обладающие разными электрофоретическими подвижностями, передвигаются по полоске с различными скоростями. Через некоторое время компоненты распределяются на бумаге в виде стольких зон, различно удаленных от исходной точки, сколько компонентов содержалось в растворе. Полоску высушивают и прогревают для денатурации и фиксации находящихся на ней белков и после этого окрашивают подходящими красителями. В результате проявляется распределение компонентов по длине полоски. Роль бумаги в этом методе сводится к устранению диффузионного и конвекционного перемешивания белков при электрофорезе. [c.210]

    Широко распространенные комплексные соединения железа с порфиринами не являются единственными биологически активными соединениями этого металла. Важные биологические функции (перенос электронов, восстановление при фиксации СО2, восстановление при фиксации N2, окисление сукцината при окислительном фосфорилировании и др.) выполняют белки, содержащие железо, связанное с серой сера представлена или сульфгидрильной формой (цистеин), или так называемой лабильной серой (вероятно, 5 - или Н8 ), число атомов которой чаще всего равно числу атомов железа в молекуле белка. [c.366]

    В ТО же время бактерии бобовых растений, микроорганизмы почвы и водоросли в присутствии воды легко переводят атмосферный азот в аммиак при обычной температуре и нормальном давлении. Известно также, что атомы азота входят в состав нуклеиновых кислот и белков, играющих первостепенную роль в жизненных процессах. Долгое время оставалось загадкой, как в природных условиях в водной среде происходит биологическая фиксация азота, каков механизм связывания атмосферного азота с водородом й другими элементами при нормальном давлении и комнатной температуре. Основываясь на сходстве химических связей в молекулах азота и ацетилена, можно было предполагать, что синтез аммиака при обычных условиях может быть осуществлен при последовательном разрыве межатомных связей в молекуле N2 в присутствии соответствующего катализатора по схеме [c.122]


    Широкое распространение в настоящее время получил так называемый зональный электрофорез — электрофорез на твердом носителе (на бумажных полосах, агаре, крахмале, акриламиде), пропитанном буферным раствором с нужным значением pH. Положение белков на бумаге или геле определяют путем фиксации и последующего окрашивания их тем или иным красителем (обычно бромфеноловым синим, ами-довым черным или кумасси синим). Количество белка в каждой фракции можно ориентировочно определять по интенсивности окраски связанного красителя. Такое определение не дает строго количественного соотношения белковых фракций, так как количество красителя, связываемого различными белками, неодинаково. [c.89]

    Электрофорез белков в пластине полиакриламидного геля имеет ряд преимуществ по сравнению с электрофорезом в трубочках. Использование тонких пластин облегчает эффективное отведение тепла при электрофорезе. Процесс фиксации, прокраски и отмывания занимает значительно меньше времени. Использование одной пластины позволяет [c.97]

    Гемоглобин и миоглобин —комплексы железопорфиринов с белками, выполняющие функцию фиксации и транспорта молекулярного кислорода в организмах животных. Цитохромы, имеющие аналогичную принципиальную структуру, выполняющие роль переносчика электрона в схемах фотосинтеза, дыхания, окислительного фосфорилирования и др. окислительно-восстановительных реакциях, найдены у всех животных, растений и микроорганизмов. Хлорофиллы — главные участники процессов фотосинтеза — содержатся в высших растениях, водорослях и фотосинтезирующих бактериях. [c.265]

    Биохимические процессы наиболее перспективны для химической технологии. Они происходят в живой природе в атмосферных условиях (без повышения температуры, давления) под действием высокоактивных природных катализаторов — ферментов и гормонов, а также микроорганизмов, содержащих эти катализаторы. Возможности биохимических процессов в промышленности не ограничены, хотя природные биохимические процессы пока недостаточно изучены и еще мало воспроизведены в модельных условиях. Недавно возникла новая отрасль науки — техническая микробиология, которая изучает биохимические методы производства самых разнообразных химических продуктов. На практике реализован микробиологический синтез антибиотиков, витаминов, гормонов. В перспективе технической микробиологии находятся проблемы фиксации атмосферного азота, синтеза белков и жиров, окисления серы в диоксид и триоксид серы и, наоборот, [c.254]

    Нуклеотиды в виде своих более или менее сложных производных составляют основу большой и важной группы коферментов. Как хорошо известно, ферментные системы состоят из белковой части, которая обеспечивает фиксацию субстрата и специфичность фермента и носит обычно название апофермента и кофермента, который с белком-носителем и обеспечивает протекание самой катализируемой ферментом реакции. [c.229]

    Возможность образования связей с различными лигандами, входящими в состав белков, обусловливает и способность катионов металлов повышать прочность высших структур белков фиксация определенной конформации, которая благоприятна для катализа, оказывается таким образом косвенным средством влияния на катализ. Ион металла может также входить в состав самого активного центра (металлопорфириновые комплексы в каталазе, пероксидазе и др.) ионы металлов часто активируют субстрат не вполне выясненным образом или облегчают возникновение связей между кофактором и белковой частью фермента. Несомненно, в некоторых случаях ион металла действует как мостик , облегчающий окислительно-восстановительный процесс, т. е. перенос электронов (на это указал еще Сцент-Дьерди). Деформация молекул кофактора под влиянием иона металла, например деформация молекулы АТФ под действием иона магния (Сцент-Дьерди), необходима для целого ряда реакций. [c.181]

    После электрофореза в присутствии ДДС-Ыа гель окрашивают, как обычно, например, в 0,25%-ном растворе СВВ К-250 (см. ниже) в 9%-ной уксусной кислоте, содержащей 45% метанола, в течение нескольких часов при комнатной температуре, а затем отмывают в 7,5%-ной уксусной кислоте с 5% метанола и добавкой ионообменника АО 501x8 для связывания красителя. Фиксация белков идет одновременно с их окрашиванием. Однако следует иметь в виду, что ДДС-Ыа является эффективным детергентом и препятствует осаждению, а следовательно, и фиксации белков. Д я малых белков фиксация при окрашивании может оказаться ненадежной. Их лучше фиксировать предварительно, вымачивая гель в 10%-ной трихлоруксусной кисло-,те (ТХУ). ДДС-Ыа, находясь в комплексе с белком, еще и препятствует в некоторой мере самому процессу окрашивания. 10%-ная ТХУ частично отмывает белок от ДДС-Ыа. Еще лучше это можно делать, вымачивая гель в 50%-ном растворе ТХУ (в течение ночи). Изопропанол ускоряет вымывание ДДС-Ыа, поэтому его целесообразно включить в фиксирующий белки раствор. [c.64]


    Третичная структура белков предопределяет особенности взаимного расположения полипептидных цепей в фибриллах и (или) глобулярных структурах. Для каждого вида белка характерна определенная третичная структура. Третичная структура белков стабилизируется различными видами межмолекулярных контактов водородных, диполь-дипольных, солевых, дисульфидных, амидных, сложноэфирных связей. Существенное значение в формировании и фиксации третичных структур ифают гидрофобные взаимодействия в водно-белковых системах. [c.347]

    Определенные схемы и комбинации приемов анализа сложных структур (адекватные уровню развития вычислительной техники). Об этом, в частности, свидетельствует становление приемов структурного анализа в такой специфической области, как химия белков. Здесь широко используется паттерсоновский метод фиксации позиции тяжелых атомов, специально вводимых в белок, сравнение паттерсоновских распределений для ряда изострук-турных производных белка, выявление знаков (начальных фаз) структурных амплитуд путем статистической обработки данных о разности единичных амплитуд в изо-структурных парах (метод изоморфного замещения). На определенной стадии анализа привлекаются и априорные сведения о геометрическом строении отдельных группировок, входящих в состав белка [c.113]

    Особая а-субъединица участвует в транскрипции ряда генов, ответственных за метаболизм азота. К ним относятся ген, кодирующий глутаминсинтетазу, и гены, контролирующие фиксацию атмосферного азота. Про.моторы этих генов не содержат обычных для других промоторов последовательностей —10 и —35 . Вместо них имеются участки гомологии, центры которых расположены в поло- кениях —11 и —21 . Поэтому неудивительно, что эти промоторы ле используются РНК-полимеразой, содержащей главную сигма-субъединицу, а . Транскрипцию этих промоторов обеспечивает одна из минорных а субъединиц, о ", кодируемая геном rpoN. Однако для функционирования промотора гена глутаминсинтетазы белка а недостаточно. Необходим еще ДНК-связывающийся белок, называемый NRi. Перед промотором имеется пять участков его связывания наибольшее сродство NR, проявляет к двум отдаленным участка.м. Эти последовательности необходимы для активации промотора при низких концентрациях NRi и не обязательны при высоких. Если эти последовательности отодвинуть на тысячу пар нуклеотидов от промотора, они продолжают обеспечивать активность промотора. Предполагается, что белок NR взаимодействует с РНК-поли.меразой, расположенной на промоторе. Посадка NRi на ДНК облегчает это взаимодействие, сопровождаемое, по-видимому, образованием петли ДНК- [c.153]

    Для высокомолекулярных ионов или амфолитов, например белков, имеет смысл говорить об эффективной емкости обменника, которая зависит от соотношения размеров молекул амфолита и среднего расстояния между ионогенными группами, а также от степени доступности всего объема пористой матрицы обменника для этих молекул. Заметим, что большое значение полной (низкомолекулярной) емкости ионообменннка может оказаться невыгодным для хроматографии белков или нуклеиновых кпслот, поскольку в этом случае возможна многоточечная фиксация макромолекул. В такой ситуации может оказаться целесообразным снижение полной емкости обменника за счет выбора значения pH, отвечающего неполной его ионизации эффективная емкость для макромолекул при этом может остаться максимальной. [c.255]

    При использовании белков в качестве лигандов о выборе точки закрепления в большинстве случаев не может идти речи — таких точек, как правило, на поверхности белка много. К счастью, биологическая, и в частности ферментативная, активность белка нередко сохраняется ири фиксации его в разных точках, если при этом активный центр белковой макромолекулы остается экснонированным. Разумеется, для некоторой доли молекул фермента точка связывания может оказаться в активном центре или вблизи него, что помешает взаимодействию с ним субстрата. Этим, в частности, обусловлено снижение суммарной активности при закреплении ферментов на матрицах. [c.386]

    Ситуация заметно ухудшается в том случае, когда связывание белкового лиганда с матрицей происходит не в одной, а в нескольких точках. Об этом уже упоминалось при анализе условий фиксации лигандов на Br N-активированной сефарозе довольно много было сказано и в предыдуп(ей главе. Тем не менее имеет смысл остановиться на этом вопросе еще раз — в аспекте аффинной хроматографии. Многоточечное связывание белка с матрицей может приводить как к недоступности активного участка белковой молекулы, так и к ее денатурации за счет растяжения, т. е. к потере биологической активности. [c.386]

    Как уже упоминалось, ПК в качестве лигандов могут обладать как групповой специфичностью (для белков хроматина, факторов управления трансляцией, нуклеаз и др.), так и индивидуальной (для индивидуальных мРНК, белков-регуляторов транскрипции и др.). Во втором случае на аффинном сорбенте должны быть закреплены вполне определенные участки генома. Это стало возмолшым после создания способов отбора и наработки в достаточных количествах строго идентичных фрагментов ДНК методами генной инженерии. В последнее время возникла еще одна область использования иммобилизованных НК — в качестве праймеров матричного синтеза. Эти приложения предъявляют разные требования к характеру фиксации НК на матрице. В первом случае расположение точек закрепления на молекуле НК может быть произвольным, во втором определенные и достаточно протяженные участки полинуклеотидной цепи должны быть свободны для комплементарного взаимодействия, а в третьем закрепление НК на матрице желательно осуществить лишь по одному определенному концу молекулы. Что же касается возможности реакций с активированными матрицами, то вдоль всей молекулы НК во множестве располагаются химически эквивалентные группы аминогруппы нуклеиновых оснований, гидроксилы сахаров и др. В особом положении находится только концевой остаток фосфорной кислоты или сахара. [c.387]

    В случае более коротких нитей НК их после предварительной сорбции дополнительно фиксируют на матрице УФ-облучением. Такая фиксация фактически означает образование ковалентных химических связей в ситуации, когда активация близко расположенных, но химически инертных групп происходит за счет поглощения световой энергии. Существенное отличие от ранее рассмотренных вариантов посадки НК иа химически активированные матрицы состоит в том, что НК облучается не в растворе, а иосле сорбции па целлЮ лозу. Это означает, что пришивание нроисходит в очень немногих точках, где соответствующие друг другу химические группы НК и матрицы во время сорбции случайно оказались достаточно сбли>ь"епы. Фиксированные таким образом молекулы НК значительно более эффективно ыогут обеспечить узнавание и комплементарное взаимо действие с другими молекулами НК или специфическими белками. [c.392]

    Фиксация и окраска электрофореграмм. По окончании электрофореза выключают ток и тотчас вынимают электрофореграммы из прибора. Их располагают на специальной подставке и подсушивают на воздухе под тягой, затем — в сушильном шкафу при 105 °С в течение 20 мин для фиксации белков на бумаге, после чего помещают в эмалированную кювету, заливают красителем п оставляют на 2—3 ч и более. Краситель сливают и электрофореграммы отмывают от его избытка, заливая 3—4 раза 2%-ным раствором уксусной кислоты, каждый раз на 5—10 мин. Участки бумаги, не содержащие белка, должны быть полностью освобождены от красителя. Для закрепления окрашенных продуктов электрофореграммы на 2 мин заливают 2%-ным раствором уксуснокислого натрия и сушат на воздухе под гягой. [c.91]

    Азотофиксация столь же важный процесс в природе, что и фиксация углекислого газа, так как осуществляется переход неорганического инертного атмосферного азота в органические азотистые соединения — аминокислоты и белки, в первую очередь, а на [c.78]

    На практике иммобилизация часто осуществляется одновременно иеск. способами. Так, при фиксации ферментов ковалентными связями между их молекулами н матрицей обычно возникают также нековалентные взаимодействия. Известны способы предварит, хим, модификации молекул фермента низкомол, в-вамн или р-римыми полимерами, имеющими заряженные группировки, что изменяет у таких модифицир. белков электростатич. заряд молекулы и позволяет достаточно прочно сорбировать их на ионообменных смолах. При всех типах иммобилизации матрица, взаимодействуя с ферментом, может инактивировать последний или создавать пространств, затруднения для доступа субстрата к активному центру. При ковалентном связывании фермента для предотвращения отрицат, влияния матрицы между ией и молекулой фермента вводят разобщающую цепь атомов-спейсер (наз. также вставкой или ножкой ). Кроме того, часто стремятся использовать для иммобилизации гидрофильные матрицы, создающие вблизи фермента более естеств, микроокружение. [c.215]

    Установлено участие при удалении ряда интронов митохондриальных пре-мРНК у низших грибов особых белков-матюраз, к-рые кодируются частично интронами, частично экзонами. Роль матюраз, как и нек-рых др. белков, сводится, по-видимому, к фиксации конформации интрона, необходимой для осуществления им каталитич. ф-ции. [c.410]

    Многие белки образуют устойчивые комплексы с Ф. нек-рые Ф. (напр., фосфатидилинозит) ковалентно связываются полярной головкой с рядом белков (напр., с щелочной фос тазой), выполняя роль якоря при фиксации молекулы млка в мембране. Биосинтез Ф. детально изучен основную роль в нем играют цитидицдифосфатдиацилглицерины. [c.139]

    Как результат жизнедеятельности, часть азота, входившего 1В состав белка, разлагается до элементарного азота. В результате действия денитрифицирующих бактерий почвы часть связанного азота почвы превращается в элементарный- азот возможны и другие потери связанного азота. В то же время идут процессы фиксации атмосферного азота нитрифицирующими бактериями, находящимися в корнях бобовых растений. Атмо-< фсрный азот может превращаться в связанный азот при грозовых разрядах и, попадая в почву, усваивается растениями. Все эти процессы составляют кругооборот азота в природе. Однако в результате кругооборота происходит лишь частичное яосполненис почвы связанным азотом, т. с. постепенно почвы истощаются. Поэтому необходимо вносить в них азотные удобрения, Болес того, для повышении урожайности количество вносимых в почву азотных удобрений (т. е. связанного азота) должно быть увеличено. Поскольку имеющиеся в природе запасы та- [c.59]

    Количественное определение сахаров с применением хроматографии на бумаге включает в себя следующие основные операции а) фиксацию растительного материала б) экстракцию сахяров и очистку вытяжки от белков и других примесей в) распределительную хроматографию сахаров на бумаге г) элюцию сахаров с бумаги д) определение их содержания в элюатах. [c.227]

    Среди них присутствие в клетках клубеньков легоглобина — гем-содержащего белка, который встраивается в мембрану бактероида (увеличенная в размере бактериальная клетка, характеризующаяся наибольшей способностью к фиксации азота) и регулирует поступление кислорода. Легоглобин кодируется в геноме растительной клетки-хозяина, но его синтез начинается только после проникновения бактерий в эту клетку. У цианобактерий механизм защиты нитрогеназы от кислорода иной. Азотфиксация идет в гетероцистах, а фотосинтез — в обычных клетках. Поэтому кислород, вьщеляющийся в процессе фотосинтеза, не ингибирует фиксацию азота. Таким образом, введение только //-генов в какую-то растительную клетку не решает проблемы. Если нитрогеназа будет синтезироваться в этой клетке, в частности в клетках злаков, то она разрушится под действием кислорода, присутствующего в клетке. Кроме того, сама клетка, в которую переносят гены азотфиксации, может бьггь не приспособлена к синтезу и расходованию большого количества энергии, которое требуется для фиксации азота. [c.153]

    Еще более очевидно присутствие белков с негемовым железом у клостридий, которые вообще не содержат гема. Именно из этих бактерий был выделен первый негемовый железосодержащий белок, названный ферредоксином. Этот белок, обладающий поразительно низким восстановительным потенциалом Е° = —0,41 В), участвует в реакции, катализируемой пируват ферредоксин—оксидоредуктазой (гл. 8, разд. К,3), в фиксации азота у некоторых видов и в образовании Нг. Он представляет собой небольшой белок зеленовато-коричневого цвета, содержащий всего 54 аминокислотных остатка, но образующий комплекс с восемью атомами железа. Если снизить pH до 1, освобождается восемь молекул H2S. Таким образом, белок содержит восемь атомов ла- бильной серы , каким-то образом связанных железо-сульфидными связями. Ферредоксины оказались только первыми представителями большого семейства открытых позднее железо-серных белков [37—39]. Большинство из них содержит железо и лабильную серу в отноше-яии 1 1, но число атомов железа на молеку. белка оказывается различным. Кроме того, одна группа белков вообще не содержит лабиль -ной серы железо в них удерживается боковыми цепями четырех астат  [c.379]

    Рассмотрим роль экстракоординации в обратимой фиксации и переносе кислорода гемоглобином. Потребление атмосферного кислорода организмами теплокровных животных - важнейший биохимический процесс, осуществляется с помощью порфиринсодержащих белков - гемоглобрша и миоглобина [52, 96, 97]. [c.286]

    Подробнее остановимся на свойствах цитохрома Р-450 (цитохром типа Ь). Он выделяется в лаборатории из клеток печени, коры надпочечников, бактерий и др. Ферментная система цитохрома Р-450, гидроксилирующая связи С-Н субстратов, содержит три компоненты. Первая - это ассоциат из НАДФ (см. XVI), из цитохрома Р-450 вторая - цитохром Р-450 и третья - это фосфолипиды. Исследователи наиболее глубоко проникли в структуру, функции и механизм действия этой ферментной системы. Однако вопросы механизма активации молекулы О2 этим ферментом не решены. Известно, что при функционировании Р-450 происходит экстракоординация фазу двух лигандов -атома S цистеинового остатка белка и О2. Следует учесть то, что атом серы в тиоспиртах и тиоэфирах является слабым экстралигандом даже для атома железа, имеющего достаточное сродство к S и образующего сульфиды с низким значением произведения растворимости. В отличие от имидазола, атом S, подобно гемоглобину, не обеспечивает прочного связывания О2. Поэтому механизм окислительного воздействия О2 должен быть связан с изменением окислительного состояния железа в цитохроме. На рис. 5.4 приведен каталитический цикл цитохрома Р-450. Координационные взаимодействия на атоме железа (экстракоординация) выступают здесь также четко, как в фотосинтезе и фиксации-переносе О2. [c.290]

    Л. Прямой метод. I — фиксация гистологического препарата 2 - инкубация с мечеными антителами, специфичными к белку П — промывка для удаления неспецифпческих абсорбций 3 — наблюдение. [c.105]

    Примечание. Этап фиксации гистологических препаратов очень важен. Белки должны фиксироваться так, чтобы исключить их диффузию в другие клеточные или субклеточные компартмеиты. К тому же фиксация не должна нарушать антигенную структуру белка и препятствовать доступу антител к антигенам за счет образования более или менее проницаемой молекулярной сети. Кроме того, представляется, что в некоторых семенах доступ антител к антигенам может сильно ограничиваться в некоторых ткаиях или субклеточных компартментах [44, 271- [c.106]

    Какие способы позволяют наблюдать и изучать in situ клеточные белки Мы увидим далее, что сохранение белков и их макромолекулярной архитектоники вследствие участия белков во всех клеточных структурах составляет первостепенную проблему для цитологов. Последовательно рассмотрим цитологические и цитохимические приемы, используемые при световой микроскопии, а затем при электронной микроскопии классическую фиксацию, ультракриотомию, криовытравливание (низкотемпературное травление). Мы увидим также, что может дать для изучения белков применение новейших цитологических методов, таких, как иммуноцитохимия и радиоавтография. Далее мы попытаемся подвести итоги современных знаний о структуре и ультраструктуре запасных белков, об их генезисе и эволюции в клетках, будь то кристаллические протеины или белковые тельца. [c.126]

    Как и при любом исследовании посредством электронной микроскопии, локализация и описание ультраструктуры белков в процессе фиксирования биологического материала требуют максимальной предосторожности, чтобы избежать изменения структуры (артефакт) вследствие манипуляции необходимо применительно к каждому типу клетки уточнить pH фиксирующей смеси, ее осмолярность, продолжительность фиксации. Когда определены эти параметры, можно изучать структуры на сверхтонких срезах, полученных из материала, который помещен в водорастворимые смолы (ОМА, Оигсирап и др.) или гидрофобные смолы (Ероп, Ага1с111е и др.). Поскольку белки имеют невысокую плотность для электронов, необходимо перед наблюдением увеличить контрастность срезов с помощью тяжелых металлов (свинец, уран и др.), которые отлагаются на клеточных структурах и таким путем усиливают изображение, наблюдаемое на экране микроскопа. [c.127]

    Наиболее характерные для хлоропластов ферменты катализируют фотосинтетическую фиксацию двуокиси углерода — это так называемый цикл Кальвина. Ферментом карбоксилиро-вания является рибулозобисфосфаткарбоксилаза/оксигеназа. Этот фермент обладает многими весьма примечательными свойствами [26], в частности очень слабой энзиматической активностью по сравнению с активностями других ферментов цикла Кальвина. Кинетическое равновесие устанавливается очень высоким содержанием рибулозобисфосфаткарбоксилазы/оксигеназы, которая может составлять 80 % общего количества белков стромы. [c.242]


Смотреть страницы где упоминается термин Белки фиксация: [c.159]    [c.336]    [c.154]    [c.60]    [c.401]    [c.415]    [c.98]    [c.31]    [c.20]    [c.264]    [c.429]    [c.18]   
Основы гистохимии (1980) -- [ c.44 , c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Фиксация



© 2025 chem21.info Реклама на сайте