Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отрицательная миграция

    Так как — величина отрицательная (миграция направлена в сторону убывания концентрации), имеем [c.129]

    Механизм подобного действия ПАВ связан с тем, что АПАВ повышают отрицательный заряд структурных составляющих торфа и, соответственно, содержание связанной воды (см. табл. 4.1), тогда как при адсорбции КПАВ отрицательный потенциал торфяных ассоциатов и содержание связанной воды снижаются. Соответственно меняется и процесс миграции ионов в торфе, а именно АПАВ снижают, а КПАВ — интенсифицируют перераспределение ионов в торфе в процессе влагообмена [c.80]


    Допустим, что в мембране одновременно происходят два необратимых и взаимосвязанных процесса, движущие силы которых и Х2. Величина Х1 соответствует движущей силе векторного процесса транспорта -го компонента газовой смеси, в качестве которой принимают отрицательную разность химических потенциалов на границе мембран ( 1 = —Ац,). Сопряженный процесс с движущей силой Ха может быть векторным, как например, перенос у-го компонента, или скалярным, как процессы сорбции и химические превращения. Феноменологическое описание этих процессов идентично, сорбцию можно рассматри-вать как отток массы диффундирующего компонента из аморфной фазы в кристаллическую, где миграция вещества незначительна. В качестве движущей силы скалярного процесса примем химическое сродство Х2=Аг. Заметим, что, согласно принципу Кюри — Пригожина, сопряжение скалярных и векторных процессов при линейных режимах возможно в анизотропных средах (например, в мембранах гетерофазной структуры) или даже в локально-изотропных, но имеющих неоднородное распределение реакционных параметров [1, 5]. [c.17]

    Видно, что в случае миграции одного из двух алкильных заместителей по ароматическому циклу, сопровождающейся увеличением расстояния между заместителями, теплота реакции невелика и может быть как меньше (переход о-ксилола в л1-кси-лол), так и больше нуля (переход ж-ксилола в п-ксилол). Невелики и изменения энтропии, которые также могут быть как положительными, так и отрицательными. [c.201]

    Надежное высоковольтное питание постоянным током является необходимым условием для работы электрофильтров, поскольку на промышленных установках применяются отрицательные потенциалы до 90 кВ, а для очистки окружающего воздуха применяются положительные потенциалы до 13 кВ. Ток, подаваемый на промышленные электрофильтры, в соответствии с размером и режимом работы электрофильтра изменяется между 30 и 500 мПа, поэтому необходимы трансформаторы и- выпрямители мощностью до 40 кВ-А. Поскольку скорость миграции зависит от зарядки н напряженности осадительного поля, необходимо прикладывать наибольшее возможное напряжение, не вызывающее зажигание дуги. [c.500]

    Ввиду всех этих замечаний сторонники минеральной гипотезы допускали, например, что оптическая деятельность и гетерогенные соединения могли попадать в готовую нефть из осадочных пород или в результате бактериальной деятельности уже на позднейших этапах ее миграции. Экспериментально подобная возможность никем не была доказана. Далее выдвигались предположения, что очаги нефтеобразования могли находиться и на сравнительно небольших глубинах порядка 50 км, где возможно допустить присутствие отдельных изолированных масс карбидов. Однако гравиметрическая съемка показала в Апшеронском районе не только отсутствие предполагаемых карбидных масс, но даже аномалии отрицательного порядка, т. е. вообще удаление в этом районе удельно-тяжелых масс от поверхности. [c.188]


    В реальном электролизере создать по всему сечению диафрагмы скорость противотока, равную скорости миграции ионов ОН, не представляется возможным. В диафрагме движение электролита происходит через капиллярные поры. Скорость движения электролита в поре неодинакова по ее сечению. Она максимальна в центре поры и минимальна около стенки. В то же время скорость движения ионов ОН равномерна по всему сечению поры. Поэтому, если даже средняя скорость противотока выше скорости движения ионов ОН, последние все же могут проникать в анодное пространство. Кроме того, необходимо отметить трудность создания абсолютно равномерной протекаемости по всей поверхности диафрагмы, что также отрицательно сказывается на выходе по току. [c.149]

    На рис. 8.17,6 обе зоны загибаются вверх в области перехода по мере того, как материал приобретает свойства р-ти-. па. Миграция электронов по зоне проводимости из р- в л-область происходит так легко потому, что они двигаются вниз по градиенту в область меньшей энергии. Наоборот, дырки двигаются в свою область меньшей энергии (обратной по смыслу энергии электронов), мигрируя из п- в р-область. Миграция дырок или электронов в противоположных направлениях затрудняется потенциальным барьером, обусловленным смещением зон. Подразумеваемое в этой картине разделение зарядов означает, что в темноте в равновесных условиях потенциал изменяется поперек перехода, л-область имеет отрицательный потенциал относительно р-области, а собственно область перехода будет обеднена переносчиками заряда. [c.275]

    В растворе электролита происходит миграция катионов и анионов, которые движутся в направлениях, противоположных знакам их зарядов, т. е. в соответствии с направлением электрического поля, устанавливающегося между двумя электродами (катодом и анодом электролизера или отрицательным и положительным полюсами источника тока). [c.9]

    Мо — У, железа и никеля в сплавах ре—N1 — в сторону катода. В сплаве железа, содержащем 4 ат.% N1, при температуре 1300° С была обнаружена инверсия направления миграции ионов никеля. Выше этой температуры последние уже перемещаются в сторону анода. Этот факт можно объяснить быстрым уменьшением силы дырочного ветра с повышением температуры это приводит к тому, что выше 1300° С ионы никеля уже мигрируют под превалирующим действием силы постоянного электрического поля (расчеты показали, что в об,оих сплавах железа и никеля ионы последнего несут отрицательный, а ионы железа —положительный заряд). [c.206]

    Следует заметить, что на электрофоретическое перемещение заряженных частиц всегда накладывается электроосмотический поток, который способствует пассивному транспорту пробы, а не ее разделению, и в большинстве буферов направлен к катоду. Его величина зависит от pH буфера и свойств поверхности капилляра. Он может быть настолько большим, что к катоду будут перемещаться не только нейтральные молекулы, но даже отрицательно заряженные частицы, несмотря на их электрофоретическую миграцию к аноду. Возникновение электроосмотического потока обусловлено образованием отрицательных зарядов на поверхности кварцевых капилляров вследствие диссоциации силанольных групп. При этом образуется двойной электрический слой, в котором преобладают положительно заряженные ионы. При наложении электрического поля жидкость засасывается в капилляр и двигается к отрицательному полюсу, поскольку она содержит положительно заряженные частицы. Это явление и называется электроосмосом. [c.582]

    Этот ЭОП сильно зависит от значений pH буфера и от свойств поверхности капилляра. Он может быть настолько большим, что будут двигаться не только нейтральные молекулы, но даже отрицательно заряженные ионы могут перемещаться к детектору, несмотря на их электрофоретическую миграцию. [c.8]

    Градиент потенциала в растворе электролита может возникать либо в результате наложения внешнего электрического поля на электрохимическую систему (см. гл. 4 и 5), либо в результате различия в скоростях движения положительных и отрицательных ионов, приводящего к появлению так называемого диффузионного потенциала (см. ниже). Следовательнс, в отличие от злектропроводно-сти, где можно было пренебречь и конвекцией, и молекулярной диффузней и рассматривать миграцию в чистом виде, при изучении диффузии электролитов необходимо учитывать градиенты как химического, так и электрического потенциалов. [c.140]

    Одиночные электролиты. Полностью ионизированный электролит в растворе (например, Na l в воде) состоит из положительно и отрицательно заряженных ионов. При наличии единственного электролита в растворе содержится по одному виду положительных и отрицательных ионов, причем во избежание возникновения очень сильных электрических полей концентрации обоих видов ионов должны быть практически равны во всех точках. Поэтому при диффузии электролита скорость диффузии катионов и анионов должна быть одинакова. Однако собственные коэффициенты диффузии каждого из них могут отличаться (например, в растворе НС1 ион обладает гораздо более высоким собственным коэффициентом диффузии, чем ион С1"). В результате тенденции к более быстрой диффузии одного из ионов возникает небольшое разделение зарядов, приводящее к градиенту потенциала, который замедляет ионы и ускоряет ионы 1 по сравнению со скоростями, с которыми они должны были бы диффундировать. При расчете действительного эффекта необходимо знать собственный коэффициент диффузии каждого иона, а также его подвижность, т. е. скорость миграции при градиенте потенциала единичной силы. Обе эти величины в действительности пропорциональны одна другой, т. е. [c.26]


    Электродвижущая сила этого элемента Етв. возникает при уменьшении свободной энергии Абг реакции окисления металла, что приводит к появлению концентрационного градиента, вызывающего диффузию (градиент поля, приводящий к миграции заряженных частиц, по Вагнеру, не возникает из-за равномерного распределения положительных и отрицательных зарядов в объеме окисла). На поверхности раздела металл — пленка протекает анодная реакция по фор- Ме Пленпа Газ муле (44)  [c.61]

    Наиболее широко к изучению проблемы к.п.д. электрофильтра подошел Куперман [172—174], который учитывал вихревую диффузию, электростатическую миграцию и повторное увлечение частиц. Как положительный, так и отрицательный перенос частиц в турбулентном потоке является теоретически обоснованным, но при наличии турбулентного граничного слоя инжекция частрц сквозь ламинарный слой не может быть использована для объяснения увеличения осаждения при росте числа Рейнольдса. Вместо этого, как отмечал Фридландер, считают, что положительная диффузия способствует миграции частицы из области повышенной [c.461]

    Предполагается, что рост тонкой сплошной оксидной пленки определяется проникновением электронов из металла в оксид [7] или, в некоторых случаях, миграцией ионов металла в сильном электрическом поле, которое создается отрицательно заряжённым кислородом, адсорбированным на поверхности оксида [8]. Когда толщина сплошной оксидной пленки достигает нескольких тысяч ангстрем, диффузия ионов сквозь оксид становится определяющим скорость фактором. Такое цоложение существует до тех пор, пока оксидная пленка остается сплошной. В конце концов, при достижении критической толщины пленки возникшие в оксиде напряжения могут способствовать его растрескиванию и отслоению, при этом скорость окисления незакономерно возрастает. [c.191]

    Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме [7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах [c.193]

    На основании этих результатов сделан вывод, что дейтерий отщепляется амином и образующийся аммоний-ион остается спаренным с карбанионом ионной связью. Катион необязательно должен оставаться в исходном положении, так как резонанс кольцевой системы обеспечивает делокализацию отрицательного заряда по всем атомам вплоть до кислорода заместителя. В таком случае ионная пара, которая теперь лежит в плоскости кольца, может скюльзить вдоль планарной структуры или возвращаться в исходное положение, не обменивая дейтерий на протоны растворителя. Для данного процесса Крам предложил название механизм направленной миграции (основание мигрирует вдоль молекулы), чтобы объяснить явление изоинверсии. Заметим, что в метаноле (более сильная кислота, чем трет-бутанол) карбанион гораздо легче протонируется и поэтому его период полупревращения не достаточно продолжителен, чтобы обеспечить процесс направленной миграции. [c.446]

    Во время работы гальванического элемента, изображенного на рис. 19.2, окисление Zn приводит к появлению дополнительных ионов Zn-" в анодном отделении элемента. Если не существует способа нейтрализации их положительного заряда, дальнейщее окисление приостанавливается. Подобно этому восстановление Си вызывает появление избыточного отрицательного заряда в растворе в катодном отделении. Принцип электронейтральности соблюдается благодаря миграции ионов через солевой мостик , который показан на рис. 19.2. Солевой мостик представляет собой U-образную трубку, содержащую раствор какого-либо электролита, например NaNOj (водн.), ионы которого не реагируют с другими ионами в гальваническом элементе, а также с материалами, из которых сделаны электроды. Концы U-образной трубки закрывают стекловатой или гелем, пропитанным электролитом, чтобы при перевертывании трубки электролит не вылился из нее. При протекании на электродах процессов окисления и восстановления ионы из солевого мостика проникают в анодное и катодное отделения гальванического элемента, чтобы нейтрализовать образующиеся там заряды. Анионы мигрируют по направлению к аноду, а катионы-по направлению к катоду. В принципе во внещней цепи не протекает никакого тока до тех пор, пока ноны не получат возможность мигрировать через раствор из одного электродного отделения в другое и тем самым замыкать электрическую цепь. [c.206]

    В настоящее время химическая поляризация ядер (ХПЯ) исследована во многих реакциях термического распада перекисей и азосоединений, процессах изомеризации с миграцией молекулярных фрагментов и др. На рис. 111.17 в качестве примера показано, как выглядит спектр ПМР продуктов, получающихся при термическом распаде перекиси ацетилбензоила в тетрахлорэтилене при 100°С видны несколько сигналов эмиссии (направлены вниз), обусловленных отрицательной сверхравновеснон ХПЯ. Для каждого пика на рисунке указано его отнесение. Обнаружение эффектов химической поляризации является надежным критерием существования радикальных стадий реакции. [c.83]

    Ионы, существующие в растворе электролита, испытывают различные воздействия со стороны окружающих частиц и соверщают постоянные перемещения, которые в отсутствие внешнего электрического поля имеют хаотичный характер. Наложение электрического поля приводит к появлению действующих на ионы электрических сил, которые имеют определенное направление. В результате возникает преимущественное перемещение (миграция) положительных ионов к отрицательному электроду, а отрицательных ионов — к положительному. Это обеспечивает перенос электрических зарядов. Возникает электрический ток, величина которого зависит от заряда ионов, их размера, характера сольватации и других взаимодействий с окружающими частицами, что, очевидно, связано с природой электролита и растворителя, а также с концентрацией раствора. Кроме того, величина электрического тока зависит от приложенного напряжения, геометрического расположения и размеров электродов, которые непосредственно влияют на напряженность возникающего электрического поля, а следовательно, и на скорость направленного движения ионов. Средняя скорость упорядоченного движения и данного типа ионов, отнесенная к напряженности действующего электрического поля Е, называется подвижностью (иногда абсолютной скоростью) иона и = ь/Е и определяется лишь природой и концентрацией раствора, а от величины электрического поля не зависит. В поле с напряженностью = 1 В-см числовые значения и к V совпадают. [c.216]

    Видно, что эти механизмы состоят из двух или трех стадий соответственно, и тем не менее вполне возможна согласованность двух или трех из них. Принципиально механизмы можно различить, изучая влияние заместителей на миграцию групп. В механизме а реакция по отношению к мигрирующей группе является электрофильным ароматическим замещением с переходным состоянием, в котором кольцо положительно заряжено. Электронодонорные заместители в орго- или /гара-положении будут способствовать миграции, электроноакцепторные — замедлять ее. При механизме б реакция является нуклеофильным ароматическим замещением с отрицательно заряженным переходным состоянием эффект заместителей будет противоположным. Полученные результаты согласуются с механизмом а [189]. Остается открытым вопрос о числе стадий в механизме. Имеются доказательства того, что в некоторых случаях процесс двухстадиен интермедиат 62 был выделен в виде литиевого производного и превращен в диарилацетилен нагреванием [190] кроме того, показано протекание водородно-дейтериевого обмена [185]. Однако в других случаях возможно согласованное осуществление двух стадий. Стереоселективность реакции не требует такого согласованного механизма, так как винильные карбанионы могут сохранять конфигурацию (т. 1, разд. 5.5). [c.151]

    Поскольку реакция включает миграцию аллильной группы от серы, азота или кислорода к соседнему отрицательно заряженному атому углерода, ее можно рассматривать как особый случай перегруппировок Стивенса или Виттига (реакции 18-24 и 18-25). Однако в указанных реакциях могут мигрировать и другие группы, а в данном случае мигрирующей группой должна быть аллильная. При этом имеются две возможности 1) ион-радикальный механизм или механизм с участием ионной пары (реакции 18-24, 18-25) и 2) согласованная перициклическая [2,3]-сигматропная перегруппировка. Эти два пути нетрудно различить, так как последний всегда включает аллильный сдвиг (как в перегруппировке Кляйзена), а первый — нет. Конечно, миграция групп, отличных от аллильной, может происходить только по ион-радикальному механизму или по механизму с участием ионной пары, поскольку согласованный [c.213]

    Отметим, что при электролизе (рис. 103) ток генератора (внешний ток генератора) течет от положительного к отрицательному полюсу этого генератора. Тогда медная пластинка служит положите.пьным полюсом (ее называют анодом), а цинковая пластинка — отрицательным полюсом (ее называют катодом). Следовательно, ток течет от медного анода к цинковому катоду через промежуточный мостик хлористого патрия, в котором происходит миграция иопов. В атом случае в противоположность окислительно-восстановительной реакции ионы 30 движутся к медному аноду, а ионы Си + — к цинковому катоду. [c.287]

    Из этого определения вытекает, что в почве допускается такое содержание экзогенных химических ве1цеств, при котором как прямой контакт с ней человека, так и один из путей миграции по экологическим цепочкам почва— растение—человек почва—растение—животное — человек почва—атмосферный воздух—человек почва—вода—человек почза—вода—рыба—человек и др. гарантирует отсутствие отрицательного влияния на здоровье человека, не нарушает процессы самоочищения почвы и не влияет на санитарно-бытовые условия жизни. Научно обоснованные гигиенические нормагивы позволяют оценивать существующие уровни загрязнения почвы химическими веществами, эффективность оздоровительных мероприятий по ее охране и стимулируют развитие прогрессивных мало- или безотходных технологических процессов. Гигиеническая регламентация в почве экзогенных химических соединений является одним из важных профилактических мероприятий в санитарной охране ночвы и здоровья населения. Установление величин ПДК 3 почве осуществляется в соответствии с Методическими рекомендациями по гигиеническому обоснованию ПДК химических веществ в почве (№ 2609-82) и Методическими указаниями по оценке степени опасности загрязнения почвы химическими веществами (4266-87). [c.108]

    Из термооптических кривых (рис. 20) ленты ПИЛ видно, что лента, находившаяся в грунте в течение 7 лет, имеет повышенную Гд по сравнению с исходной лентой, что можно объяснить протеканием в ней процессов термоокислительного распада, миграции пластификатора и др. При повьппешшх температурах разность хода 5 изменяется с положительного значения на отрицательное. Причина этому - переориентация молекул пластификатора — диоктилфталата при повышенных температурах. Из-за весьма малого светопропускания ленты, а также наличия красителя в ней черная полоса, характеризующая момент компенсации оптической разности хода, в области изменения знака двулучепреломления выражена нечетко, поэтому кривая в этой области показана пунктиром. [c.32]

    С этой точки зрения можно вьщелить пять факторов, воздействующих на покрытие в условиях грунта отсутствие возникновения и развития в покрытии краевых трещин, разрушающих образцы при обычно принятых испытаниях одностороннее действие агрессивной грунтовой среды адгезия и миграция составляющих клеевого слоя и грунтовки в основу покрытия расклинивающее действие грунта поверхностноактивное действие почвенной влаги с растворенными в ней веществами. Первые три фактора относятся к положительным в том смысле, что они увеличивают долговечность покрытия в сравнении с образцами, испытывавшимися в аналогичных условиях воздействия окружающей среды и напряжения. Последние два фактора - к отрицательным в указанном смысле. [c.76]

    При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингообразования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования. [c.38]

    Начнем элюцию кислым полибуфером. Через некоторое время в верхней части колонки pH начнет изменяться в сторону закисления. Когда он уменьшится до значения р1 наиболее щелочного пз белков, этот белок начнет диссоциировать от обменника, вымываться током буфера и перемещаться вместе с ним по колонке. Но здесь он попадет в область, где снижение pH еще не началось или если и началось, то не достигло значения, равного его р1. Белок снова приобретет отрицательный заряд и свяжется с обменником. В ходе дальнейшей элюции pH понизится и в этой области. Рассматриваемый белок снова десорбируется и переместится еще ниже, где опять сорбируется. Так начинается миграция зоны первого из белков вниз по колонке. Скорость миграции будет определяться скоростью распространения изменения pH по высоте колонки. Она будет заведомо меньше, чем скорость элюции, и тем меньше, чем менее концентрированный полибуфер используется для элюции. [c.331]

    Наряду с КЗЭ, при котором удается осуществить разделение только за счет разницы в подвижности, и который в настоящее время представляет собой наиболее распространенный метод, выделяют также капиллярный гель электрофорез (КГЭ) с капилляром, заполненным гелем. При этом на электрофоретическую миграцию молекул оказывает влияние матрица геля, и поэтому достигается селективное разделение молекул по размерам. Незаряженные молекулы можно разделять с помощью мицеллярной электрокинетической хроматографии (МЭКХ). В данном случае к буферу добавляется детергент, и нейтральные молекулы распределяются между буфером и мицеллами в соответствии с их гидрофобностью. Разделение основано на подвижности мицелл, заряженных в большинстве случаев отрицательно. Поскольку в основе разделения лежит процесс распределения, можно с полным основанием говорить о хроматографическом методе. При изоэлектрической фокусировке (ИЭФ) происходит разделение в градиенте pH, формируемом добавлением амфолита к буферу в электрическом поле. Небольшое распространение получила пока электрохроматография (ЭХ), при которой применяется стационарная среда ВЭЖХ, а течение эдюента и перенос пробы происходит только за счет электроосмотического потока. В качестве самой старой капиллярной техники следует упомянуть изотахофорез (ИТФ), который в настоящее время вновь приобрел значение для концентрирования проб в КЭ. [c.7]


Смотреть страницы где упоминается термин Отрицательная миграция: [c.700]    [c.145]    [c.76]    [c.22]    [c.277]    [c.391]    [c.321]    [c.196]    [c.124]    [c.167]    [c.193]    [c.196]    [c.259]    [c.497]    [c.501]    [c.505]    [c.111]    [c.34]   
Иммунология (0) -- [ c.8 , c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Миграция

отрицательная



© 2024 chem21.info Реклама на сайте