Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детекторы тонкослойная

Рис. IV. 19. Тонкослойная хроматограмма неполностью разделенной смеси в газо-хроматографической колонке (а) и хроматограмма, полученная на выходе из колонки при помощи детектора (б). ТСХ дает 7 пятен, а детектор лишь три пика (/ — направление движения пластинки II — растворителя) Рис. IV. 19. <a href="/info/129036">Тонкослойная хроматограмма</a> <a href="/info/1158530">неполностью разделенной</a> смеси в <a href="/info/917006">газо-хроматографической колонке</a> (а) и хроматограмма, полученная на выходе из колонки при <a href="/info/1262728">помощи детектора</a> (б). ТСХ дает 7 пятен, а детектор лишь три пика (/ — <a href="/info/93982">направление движения</a> пластинки II — растворителя)

    Существенный недостаток количественных методов анализа тонкослойных хроматограмм, основанных на измерении пропускания света, был связан с нелинейной зависимостью сигнала оптического детектора от количества вещества в хроматографическом пятне. Эта нелинейность обусловлена специфическим законом прохождения света в рассеивающей среде, описываемым уравнением Кубелки — Мунка, и неоднородностью пластины по толщине слоя адсорбента. Последнюю можно учесть, измеряя оптические свойства подложки непосредственно в хроматографическом пятне. Использование двухволнового метода спектрофотометрического детектирования, когда излучение одной волны Л поглощается и веществом, и адсорбентом, а другой волны Лг — только адсорбентом, позволяет выделить сигнал, связанный с поглощением излучения только анализируемым веществом. Дальнейшая обработка сигнала детектора в соответствии с уравнением Кубелки — Мунка позволяет линеаризовать зависимость оптического сигнала от количества вещества в ТСХ. Поглощение света адсорбентом может быть учтено также при спектрофотометрическом сканировании пластины на просвет и отражение. Эти принципы реализованы в лучших современных зарубежных денситометрах — флуориметрах. Менее точным, но более простым решением является линеаризация зависимости сигнал — вещество с помощью двойного логарифмирования (с использованием ЭВМ). В результате этих усовершенствований воспроизводимость результатов в современной количественной ВЭТСХ приближается к 1%. Использование двухкоординатного сканирования в случае эллипсовидных пятен (двумерное размывание зон в ТСХ) и многошагового сканирования пятен неправильной формы (дву- [c.370]

    В этой главе мы рассмотрели теории, которые объясняют размывание хроматографических зон. Эти теории являются основополагающими для понимания любого хроматографического метода. К тому же они имеют большую практическую ценность, давая хорошее объяснение возможных влияний многих различных экспериментальных переменных. Однако следует уделять внимание не только теоретическим обоснованиям процессов, происходящих в хроматографической колонке. Как уже было показано, детектор и система записи являются жизненно важными дополнениями в хроматографических измерениях, а сам хроматографический процесс является только частью в общей аналитической системе, которая сочетает разделение и количественное измерение. Такие системы находят огромное практическое применение в современном химическом анализе. В гл. 17 будут рассмотрены четыре специфических примера тонкослойная хроматография, газо-жидкостная хроматография ионообменная хроматография и молекулярно-ситовая хроматография. [c.551]


    В, для пептидов — 0,9—1,2В. Чувствительность и специфичность электрохимического детектора высокие. По чувствительности они не уступают кулонометрическим детекторам, хотя окисляющая способность тонкослойных электродов с рабочей поверхностью 2—4 мм составляет лишь 1—10% от количества анализируемого вещества. Нижний предел детектирования катехоламинов и 5-гидроксииндолов составляет от 5 до 20 пг введенного в колонку вещества. На рис. 8.15 приведена хроматограмма 5-гидроксииндолов из солянокислого экстракта 0,5 мл плазмы крови. [c.157]

    В тонкослойных детекторах (рис. 18.1, а) толщина слоя жидкости определяется толщиной изолирующей прокладки между двумя блоками. Так как подобные детекторы имеют малый внутренний объем, они могут содержать один или несколько рабочих электродов, расположенных последовательно по ходу потока. Это позволяет селективно детектировать продукты электрохимической реакции, протекающей на предшествующем электроде. Регистрируя на втором электроде ток восстановления продуктов окисления на первом электроде, можно устранить также влияние мешающих веществ, которые окисляются необратимо. Иногда такой детектор позволяет существенно повысить чувствительность определений. 568 [c.568]

    Другие методы. Электрохимические методы (ЭХМ) пока не нашли широкого применения для количественной оценки тонкослойных хроматограмм, хотя могут значительно расширить возможности ТСХ при анализе неорганических и органических электролитов. ЭХМ отличаются высокой селективностью и быстротой. Чувствительность этих методов сильно зависит от природы анализируемых соединений и возможностей детектора. ЭХМ позволяют детектировать анализируемые вещества непосредственно в слое сорбента на пластине, после выделения зоны вещества с сорбентом без его жидкостного извлечения или после него. Используют также варианты количественной проточной ТСХ. [c.372]

    Электрохимический детектор более селективен при низких потенциалах рабочих электродов. Для 5-гидроксииндолов нужен потенциал 0,5—0,55 В, для катехоламинов — 0.5—0,7В, для пептидов — 0,9—1,2В. Чувствительность и специфичность электрохимического детектора высокие. По чувствительности они не уступают кулонометрическим детекторам, хотя окисляющая способность тонкослойных электродов с рабочей поверхностью 2—4 мм составляет лишь 1—10% от количества анализируемого вещества. Нижний предел детектирования катехоламинов и 5-гидроксииндолов составляет от 5 до 20 пг введенного в колонку вещества. На рис. 8.15 приведена хроматограмма 5-гидроксииндолов из солянокислого экстракта 0,5 мл плазмы крови. [c.157]

    Прямое соединение методов ГХ и ТСХ осуществляется очень просто и не требует особых затрат. Практически каждый газовый хроматограф можно модифицировать для сочетания с хроматографией в тонком слое. В принципе возможны два варианта такой комбинации. В первом из них тонкослойная пластинка служит только в качестве детектора (статический вариант). Во втором варианте эффективно используется разделительная способность обоих хроматографических методов (динамический вариант). [c.143]

    Благодаря большому количеству селективных методов обнаружения, применяемых в ТСХ, тонкослойная пластинка сама по себе может служить в качестве дополнительного детектора, селективного к отдельным компонентам смеси. Тонкослойную пластинку можно применить для анализа только тех фракций, кото-)ые достаточно хорошо удерживаются тонким слоем сорбента. 1ри использовании недеструктивных газохроматографических детекторов, например катарометра, элюат из колонки проходит через детектор и затем адсорбируется слоем сорбента. При использовании деструктивных детекторов, например пламенно-ионизационного, газовый поток из колонки необходимо делить на две части меньшую пропускают через детектор, а основной поток адсорбируют в тонком слое. Эффективность улавливания элюата достигает 80% [108] при условии, что толщина слоя на пластинке достаточна и в трубке, соединяющей выход колонки с пластинкой, не происходит конденсации веществ. [c.144]

    Другими вариантами ступенчатой деградации являются комбинация метода Эдмана с дансильным методом [108 — 110], микроопределение на фильтровальной бумаге, тонкослойная хроматография на полиамидных слоих и конденсации с пентафторфенилизотиоцианатом. В противополож-носты-фенилизотиоцианату фторпроизводное допускает применение при газохроматографическом определении тиогидантоинов детектора с электронным захватом [111]. [c.370]

    Недостаток описанного способа состоит в том, что он не позволяет использовать преимущества непосредственной связи между газовым хроматографом и тонкослойной хроматограммой. Кроме того, минорные компоненты, не зарегистрированные газохроматографическим детектором, могут уйти из поля зрения и при обнаружении на тонком слое. Чтобы разработать программу отбора фракций для анализа в тонком слое, необходимо произвести предварительный газохроматографический анализ разделяемой смеси [108]. [c.144]


    Принцип действия и разделение. Первая хроматограмма М. Цвета имела важные черты, роднящие ее с методом тонкослойной хроматографии. Цвет элюировал свои колонки до визуально обнаруживаемого разделения пигментов по окрашенным полосам в колонке, после чего он осуществлял свой анализ , отмечая размеры и положение полос в колонке. Для извлечения материала из колонки он с помощью деревянного поршня выталкивал столбик адсорбента из колонки, вырезал интересующие его зоны из общего объема адсорбента и экстрагировал соединение. Хроматографическая среда здесь использовалась для визуальной регистрации разделения — не нужно было собирать и анализировать ни жидких, ни газовых фракций, а также не нужно было записывать сигналы детектора — химикам достаточно было лишь бегло взглянуть на колонку, чтобы увидеть происходящее. [c.555]

    Колоночная хроматография является макрометодом. Применение зто-го метода для проведения микро- и полумикроопределений связано с использованием чувствительных детекторов, имеющихся лишь для некоторых веществ, действие которых основано, например, на измерении радиоактивности. За последние два десятилетия колоночная хроматография потеряла прежнее значение. В области аналитической химии ее вытеснили такие методы, как бумажная и тонкослойная хроматография. Однако колоночную хроматографию можно применять в области препаративной химии. Эта тенденция развития не характерна для ионообменной и гель-хроматографии. [c.354]

    Жидкостная Л. х. примен. для разделения в-в, способных образовывать комплексы,— аминов, карбоновых к-т, спиртов, серусодержащих соед. и др. Детектором в этом случае служит проточный спектрофотометр. Образование сорбционного комплекса — селективный процесс, поэтому Л. х. особенно эффективна при разделении изомеров, в т. ч. энантиомеров. Напр., на смолах с группами оптически активных и-аминокислот, координиров. с ионами Си +, разделяют энантиомеры аминокислот, оксикислот, аминоспиртов, диаминов. На карбоксильных и иминодиацетатных смолах с ионами Са- + илн NP+ разделяют и анализируют нуклеиновые основания и нуклеотиды. Методом газовой Л. х. на сорбентах, содержащих, напр., соли Ag+, разделяют олефины и аром, соединения. Тонкослойная Л х. примен. для разделения стероидов и липидов. [c.300]

    Тонкослойная хроматография (ТСХ английское TL ) и предшествовавший ей метод хродгатографии на бумаге до середины 70-х годов занимали центральное место в исследованиях структуры белков и нуклеиновых кислот. В последнее десятилетие эти методы были явно оттеснены электрофорезом и высокоэффективной жидкостной колоночной хроматографией при высоком давлении. Оба метода превосходят ТСХ но разрешающей способности, а второй из них — и по скорости анализа. Кроме того, в результате ЖХВД экспериментатор получает уже разделенные жидкие фракции исходного препарата, в то время как после ТСХ ему надо еш,е локализовать пятна на пластинке, а в случае необходимости дальнейшего анализа — выполнить длительные операции элюции из них веш,ества. Точное и проводимое в ходе самого фракционирования определение микроколичеств вещества во фракциях прп ЖХВД, которое позволяют осуществить высокочувствительные детекторы и интегрирующие устройства современных жидкостных хроматографов, оставляет далеко позади соответствующие возможности ТСХ — ввиду плохой воспроизводимости процессов элюции из пятен и высокого уровня фона или самопоглощения в слое носителя при использовании оптических, флюоресцентных и радиоактивных методов оценки количества вещества в пятнах на пластинке без его элюции. Наконец, в препаративном варианте фракционирования количественные возможности ТСХ на несколько порядков меньше, чем у обычной колоночной хроматографии и даже у электрофореза. [c.457]

    Очень полезным является использование тонкослойной хроматографии на сорбентах разных типов и с разными системами растворителей, особенно когда новых или неизвестных образцов несколько. Их можно наносить одновременно на пластинки с разными сорбентами и системами растворителей и получить большой объем информации по примерному подбору условий разделения за короткий отрезок времени. Большим преимуществом ТСХ для этой работы является то, что при проявлении пластин можно видеть положение пятен всех компонентов образца, в том числе и оставшихся на старте, и таким образом иметь полную картину разделения. Это зачастую позволяет избежать грубых ошибок при ВЭЖХ, так как не элюирующиеся компоненты не покидают начала колонки или двигаются слишком медленно и могут быть потеряны (не достигают детектора, поэтому не детектируются и отсутствуют на полученной хроматограмме). [c.192]

    О.-а. с. применяют для аналит. контроля газов (NH3, СО, СО2, HF, пары воды и др.), высокочувствит. анализа жидкостей (в частности, р-ров орг. соед., комплексов металлов) и твердых в-в (напр., руд). Оптико-акустич. детекторы используют гл. обр. в бумажной и тонкослойной хроматографии, где они позволяют определять в-ва непосредственно на хроматограммах. О.-а. с. дает возможность получать оптич, характеристики светорассеивающих образцов (полупровод ники, биол. объекты, полимеры и др.), измерять коэф поглощения, квантовые выходы люминесценции, теплопро водность разл. в-в, обнаруживать фазовые переходы в твер дых телах, исследовать хим. процессы на пов-сти твердого тела, изучать фотохим. р-ции и т.д. Лазерная оптико-акустич. микроскопия позволяет проводить локальный анализ твердых образцов с продольным разрешением 0,5-3 мкм и поперечным разрешением 1-5 мкм. [c.389]

    Предложен метод анализа сырья для гидротормозных жидкостей — кубовых остатков производства гликолей и этилцеллозольва, включающий тонкослойную хроматографию в аналитическом и препаративном вариантах, ГЖХ и ИК-спектроскопию. Найдены оптимальные условия хроматофафического разделения гликолей и их моноэфиров при анализе в изотермических условиях с детектором по теплопроводности и в условиях линейного профаммирования температуры колонки на хроматофафе со сдвоенным пламенно-ионизационным детектором. С целью надежной идентификации компонентов анализируемых смесей проведено препаративное вьщеление их методом ГЖХ и тонкослойной хроматофафии с последующим, анализом тремя методами — ГЖХ, тех и ИК спектроскопии. Комбинированное применение современных физических и физико-химических методов исследования к анализу сложных фракций кубовых остатков производства гликолей и этилцеллозольва является наиболее эффективным. Сочетание этих методов дает возможность целенаправленно регулировать компонентный состав гидротормозных жидкостей. [c.61]

    В этом определении особо подчеркивается хроматографическая "многомерность". Ианример, если используются параллельно две колонки и детектирование проводится при помощи двух детекторов, то это два параллельных одномерных разделения, а не двумерное хроматографирование. Приведенное выше онределение относится ко всем вариантам хроматографии — высокоэффективной жидкостной (ВЭЖХ), гель-нроникающей (ГПХ), сверхкритической флюидной (СФХ), тонкослойной (ТСХ) и т. д. Сюда же относятся и многократные разделения, в которых изменяется только емкость колонок. [c.77]

    В токсикологическом, клиническом и фармакологическом анализах 1,4-бенздиазепинов используют хроматографы с пламенноионизационным детектором [263, 266, 281] либо о детектором по захвату электронов [26, 184, 195, 262,266, 272, 2751. Пламенно-ионизационный детектор обладает невысокой чувствительностью (10— 100 мкг/мл пробы) и не имеет преимуществ перед тонкослойной хроматографией, спектрофотометрией и полярографией. Применение детектора по захвату электронов позволяет повысить чувствительность метода до 1—10 нг/мл, а предварительный кислотный гидролиз веществ — еще на порядок [26, 267]. В табл. 24 представлены наиболее часто встречающиеся условия проведения газожидкостной хроматографии 1,4-бенздиазепинов. [c.225]

    С этой целью в случае колоночной хроматографии вытекающую из колонки жидкость разделяют на малые фракции и определяют концентрацию содержащегося в них вещества. Детектирование можно осуществлять с помощью цветных реакций, проточных рефрактометров, фотометров, поляриметров и т.д. Для проявления бумажных или тонкослойных хроматограмм бумагу или пластинку опрыскивают какими-либо проявляющими реагентами, образующими с веществами окрашенные соединения. В ряде случаев пятна веществ на хроматограмме можно увидеть в УФ-свете. Хроматографической характеристикой вещества служит величина постоянная для каждого вещества в определенной системе растворителей и представляющая собой отношение длины пробега пятна веи ества на хроматограмме к длине пробега фронта растворителя. Вещество можно выделить из хроматограммы в индивидуальном виде, экстрагируя из пятна. В газовой хроматографии для обнаружения выходящего из колонки вещества применяются иламенно-ионизационные детекторы или детекторы теплопроводности (катаро-метры). Хроматографической характеристикой вещества в этом методе является время задержки его на неподвижной фазе (время удерживания), а также задерживаемый на ней объем, отнесенный к объему подвижной фазы (удерживаемый объем), и иногда — путь, пройденный на неподвижной фазе, также отнесенный к пути, пройденному подвижной фазой (значение / /). Выделение получаемых в процессе газовой хроматографии индивидуальных компонентов возможно вымораживанием их из соответствующих газообразных фракций. [c.30]

    Если неизвестная (по составу) смесь разделяется в хроматографической системе, для которой разделительное число SN=50, а количество обнаруженных разделенных зон р = 10. сколь много вешеств (в среднем) может такая смесь содержать Или, иначе говоря, сколь много пиков не обнаруживается (из-за перекрытия зон) Ответ оказывается следующим с вероятностью в 21% можно утверждать, что смесь содержит 12 компонентов с вероятностью в 2% можно утверждать, что в состав смеси входят 18 компонентов. При разделительном числе, равном всего 20, картина такая вероятность, что 10 разделенным пиков соответствуюет 12 компонентам, падает до 1% вероятность присутствия 18 компонентов возрастает до 6%, а вероятность наличия 35 компонентов все еще остается на уровне 1%. Преодолеть затруднения можно, обеспечив более высокую разрешаюшую способность (например, за счет применения тонкослойной хроматографии под высоким давлением) и работой со специфичными детекторами, но никогда не стоит слепо доверяться интеграторам. Не представляется возможным обнаружение 5% примеси в преобладающем пике даже при степени хроматографического разделения для этих двух соединений, равной 0.5. [c.230]

    Количественная оценка тонкослойных хроматограмм с помощью детекторов для ГХ (ДГХ) состоит из двух этапов перевод анализируемых веществ со слоя в газовую фазу и количественный анализ полученных смесей ДГХ (катарометр, ПИД, детектор электронного захвата, термоионный и др.). Наиболее широко пpимeняюt метод, реализованный в приборе Иатроскан ТН-10 (Япония) с применением ПИД. Вместо пластин для ТСХ при этом используют стеклянно-керамические стержни диаметром 0,9 мм, на которые нанесен слой силикагеля толщиной 50— 100 мкм по специальной технологии. [c.372]

    Как уже говорилось выше, каждый газовый хроматограф можно оборудовать для комбинирования с хроматографией в тонком слое. Особое внимание при этом следует обращать на трубку, соединяющую выход газохроматографпческой колонки с тонким слоем. Применяют трубки с внутренним диаметром от 0,5 до 1 мм Конец трубки должен находиться на расстоянии 0,6—2 мм от по верхности слоя в зависимости от скорости потока газа-носителя Трубка должна заканчиваться сужением с диаметром 0,4—0,6 мм Во избежание конденсирования фракций внутри трубки ее тем пература должна быть равна температуре колонки или чуть пре выщать ее. Соединительная трубка не должна иметь местных пе регревов во избежание возможного разложения менее термоста бильных компонентов смеси. В противном случае на тонкослойной хроматограмме могли бы появиться соединения, отсутствовавшие в исходной смеси <[107]. С этой точки зрения наиболее удобна цельностеклянная система, описанная Кайзером 108] . Не менее важно установить нужное соотношение потоков газа-носителя из колонки в детектор и на пластинку. Плавная установка любых соотношений осуществляется с помощью пневматической системы [c.146]

    Комбинирование обоих методов анализа прежде всего дает информацию о полноте газохроматографического разделения. Если на газохроматографической колонке разделяются не все компоненты исследуемого образца, то количество пятен па тонкослойной хроматограмме будет превышать число пиков на газовой хроматограмме. Можно также определить, все ли компоненты образца вышли из колонки если количество пятен на тонкослойной хроматограмме исходного образца превышает число пиков на газовой хроматограмме, то 3to означает частичные потери образца на колонке. Аналогичным образом можно проверить, все ли компоненты, вышедшие из колонки, зарегистрированы детектором. В процессе газохроматографического разделения под влиянием температуры из-за неправильного выбора неподвижной фазу или по каким-либо другим причинам может иметь место химическое превращение некоторых веществ. При этом регистрируются вещества, отсутствующие в исходном образце. Комбинирование газовой и тонкослойной хроматографии позволяет решить и эту проблему. Если на тонкослойной хроматограмме после газохро-матографцческого разделения появляются пятна, отсутствовавшие на тонкослойной хроматограмме исходного образца, то это означает, что в процессе газохроматографического анализа имеют место химические превращения. Образец может разлагаться при дозировании (мгновенно) или на колонке, т. е. в ходе процесса разделения. В первом случае продукты разложения обнаруживаются в виде четких компактных пятен, во втором — в Виде размытых пятен. При комбинировании ГХ и ТСХ возможны и такие случаи, когда число пятен на тонкослойной хроматограмме меньше числа газохроматографических пиков. Это может произойти из-за неправильного выбора типа сорбента или из-за разложения фракции на участке между выходом из хроматографической колонки и слоем (например, при перегреве соединительной трубки, под действием кислорода или влаги воздуха и т. п.). [c.147]

    К электрохимическим детекторам относят амперометрические, потенциометрические, амперометрические в импульсном режиме, кондуктометрические, полярографические и кулонометрические. Наибольшее применение находят амперометрические детекторы (АД) для анализа соединений, в молекулах которых есть функциональные группы, способные окисляться или восстанавливаться. Для расширения областей применения АД используют, во-первых, до- и послеколоночную дериватизацию анализируемых соединений во-вторых, рабочие электроды разной природы (см. табл. 4.1.64). Три типа чувствительных ячеек струя-стенка (Ао у-а1), тонкослойные с параллельным потоком (flow-by), с потоком, проходящим через пористый рабочий электрод (Яо -1Ьгои1Ь). [c.321]

    Фотометрические детекторы для жидкостной хроматографии являются, как правило, двухдучевыми. С их помощью определяют разность поглощения света в измерительной и сравнительной кюветах, через которые, соответственно, пропускают элюат с колонки и растворитель. Может быть использован и принцип двухволновой фотометрии, когда детектор имеет только одну кювету, через которую движется элюат с колонки. Фотометрирование проводят на двух длинах волн. При этом на одной длине водны поглощает как хроматографируемое вещество, так и растворитель, а на другой — только хроматографируемое вещество. Таким образом, можно выделить поглощение света анализируемым веществом. Однако для этого необходимо знать соотношение мольных акстинкций растворителя на обеих длинах волн. Преимуществом метода двухволновой фотометрии является возможность более точного учета изменения оптической плотности растворителя при градиентной элюции и фотометрии оптически неоднородных объектов, например при сканировании хроматографических капиллярных колонок или сканировании пластинок в количественной тонкослойной хроматографии, где необходимо определить оптическую плотность фона и поглощения хроматографического вещества в одной точке пространства. [c.95]


Смотреть страницы где упоминается термин Детекторы тонкослойная: [c.113]    [c.6]    [c.10]    [c.116]    [c.32]    [c.196]    [c.6]    [c.116]    [c.6]    [c.333]    [c.161]    [c.300]    [c.233]    [c.22]    [c.224]   
Физическая Биохимия (1980) -- [ c.175 , c.187 , c.190 , c.205 , c.207 ]




ПОИСК







© 2025 chem21.info Реклама на сайте