Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембранный потенциал и транспорт

    Системы пассивного транспорта, называемые далее каналами, не являются единой группой функциональных элементов в мембране. В состоянии покоя каналы закрыты и переходят в проводящее состояние только после их открытия. Открывание, или воротный механизм, запускается электрическим путем, т. е. при изменении мембранного потенциала, или химическим путем — при взаимодействии со специфической молекулой. Химическая природа воротного механизма в тесной связи с биохимией синапса рассмотрена в гл. 8 и 9. Хотелось бы лишь отметить, что воротный механизм также отличается от других транспортных систем по своей фармакологии, ионной селективности и кинетике. [c.132]


    Каналы пассивного транспорта ионов, проходящих через возбудимые мембраны, содержат два функциональных компонента воротный механизм и селективный фильтр. Воротный механизм, способный открывать или закрывать канал, может быть активирован электрически путем изменения мембранного потенциала или химически, например в синапсе, связыванием с молекулой нейромедиатора. Селективный фильтр имеет такие размеры и такое строение, которые позволяют пропускать ли- [c.162]

    Важная роль активного транспорта ионов заключается не только в поддержании мембранного потенциала на возбудимых мембранах. В равной степени функция нервной клетки зависит не только от мембранного потенциала (см. уравнение Нернста [c.168]

    Классическое описание транспорта ионов через биологические мембраны основано на представлении о диффузии не взаимодействующих между собой заряженных частиц в сплошной однородной среде. Электродиффузионные уравнения, полученные в приближении постоянного поля (приближение Гольдмана), составляют теоретическую основу электрофизиологии. Это уравнения [см. (XIX.2.4) (XIX.2.10)], описывающие поток одного вида ионов через мембрану, а также мембранный потенциал в условиях нулевого электрического тока  [c.114]

    Выражение для мембранного потенциала можно получить, используя аппарат кинетики химических реакций. Так, если в клеточной мембране существует система активного транспорта Ма наружу, а пассивно переносятся ионы К, Ма и С1, то стационарные потоки К+, Ма и С1 , направленные внутрь клетки и в наружную среду, с учетом влияния мембранного потенциала ср можно записать в таком виде  [c.160]

    Другой подход к описанию мембранного потенциала, создаваемого за счет пассивной диффузии и электрогенного транспорта ионов, основан на анализе эквивалентной электрической схемы мембраны. Простейшим электрическим аналогом является схема, состоящая из двух параллельно соединенных цепей (рис. ХХП.7). [c.160]

    Таким образом, мембранный потенциал используется всеми клетками для электрического транспорта разных веществ. [c.107]

    Электрический транспорт монгет быть использован и для удаления некоторых веществ из клетки. Приведем пример. Мы уже говорили, что избыток кальция в клетке опасен для нее. Если кальция в клетку попало много и кальциевый насос не справляется с его удалением, включается особая аварийная система и в дело вступает белок-переносчик. Он присоединяет внутри ион кальция, а снаружи — три иона натрия и переносит кальций наружу,, а натрий — внутрь клетки. В отличие от натрий-калиевого насоса, который использует энергию АТФ, этот кальциевый переносчик работает как электромотор, используя энергию мембранного потенциала. Правда, при каждом цикле работы внутрь клетки тут попадают три иона натрия, но это не так страшно, как попадание ионов кальция. [c.107]


    Все рассказанное нами наводит на мысль, что нервные клетки, несколько модифицировав свою мембрану, использовали мембранный потенциал, присущий любой живой клетке, для выполнения новой функции — передачи сигналов. То, что служило для транспорта веществ, стало служить для передачи информации. Такой способ эволюции называется смена функций он был открыт еще Дарвином и подробно разработан почти сто лет назад немецким зоологом А. Дорном. [c.107]

    Белки-каналы образуют в бислое заполненные водой поры, позволяя, таким образом, неорганическим ионам подходящего размера и заряда перемещаться через мембрану по их электрохимическим градиентам. Скорость прохождения в этом случае по крайней мере в 1000 раз выше, чем при транспорте с помощью белков-переносчиков. Эти ионные каналы имеют ворота и обычно открываются на короткое время в ответ на специфические возбуждения в мембране, такие, как связывание нейротрансмиттеров (нейротрансмиттер-зависимые воротные каналы) или изменение мембранного потенциала (потенциал-зависимые воротные каналы).  [c.407]

    Все формы направленного движения и транспорта нуждаются в энергии. В большинстве случаев эта энергия используется в форме АТР. Однако для переноса белков в митохондрии требуется еще наличие электрохимического градиента на внутренней митохондриальной мембране. Этот градиент образуется в процессе транспорта электронов по мере того, как протоны откачиваются из матрикса в межмембранное пространство (см. разд. 7.1.7). Внешняя митохондриальная мембрана свободно проницаема для ионов, поэтому на ней не поддерживается никакой градиент. Электрохимический градиент на внутренней мембране используется как аккумулятор энергии для осуществления большей части синтеза АТР в клетке. Кроме того, энергия градиента расходуется для переноса внутрь митохондрии белков, несущих положительно заряженные митохондриальные сигнальные пептиды. Если добавить ионо-форы, сбрасывающие митохондриальный мембранный потенциал (см. разд. 7.2.10), этот перенос блокируется. Каким образом электрохимический градиент способствует переносу белков Ответ на этот вопрос пока не получен. [c.30]

    Активный транспорт (прокачивание ионов через мембрану)-представляет собой, вероятно, самый важный регулятор транс-мембранного потенциала. Некоторые детали этого процесса мы обсудим позже. Вначале рассмотрим последствия активного транспорта ионов какого-либо одного типа только в одном на- правлении. Такой процесс называется электрогенным, так как ведет к накапливанию отрицательных зарядов на одной стороне-мембраны и положительных — на другой. Одним из главных ионов, участвующих в создании трансмембранного потенциала, является Н+. При откачивании Н+ из клетки внутри нее возникает отрицательный потенциал. [c.223]

    В пользу хемиосмотической гипотезы говорят следующие факты 1) существование протонного мембранного потенциала и зависимость его от интенсивности транспорта электронов 2) корреляция между эффективностью действия разобщителей на фосфорилирование и протонную проницаемость мембран 3) синтез АТФ хло-ропластами в темноте при искусственном создании [c.105]

    Было показано, что в принципе (в модельных условиях) во вторичном активном переносе может участвовать как пассивная, так и активная компонента мембранного потенциала. Так, в опытах нашей лаборатории [101] вторичный активный транспорт сахарозы в везикулах плазматических мембран клеток флоэмы борщевика, оцениваемый по изменению светопропускания суспензии везикул, наблюдался в отсутствие АТФ под влиянием диффузионного калиевого потенциала, создаваемого на мембране градиентом ионов К+ в присутствии валиномицина (рис. 19). Эти эксперименты прямо свидетельствуют об участии Е во вторичном активном транспорте. Результаты в пользу такого заключения получены недавно и в других лабораториях [484]. [c.77]

    Мембранный потенциал, рассчитанный по уравнению Гольдмана, оказался по абсолютной величине меньше мембранного потенциала, рассчитанного по формуле Нернста, ближе к экспериментальным его значениям в крупных клетках. И формула Нернста, и уравнение Гольдмана не учитывают активного транспорта ионов через мембрану, наличия в мембранах электрогенных (вызывающих разделение зарядов, а следовательно и возникновение разности потенциалов) ионных насосов, играющих важную роль в поддержании ионного равновесия в мелких клетках. В цитоплазматической мембране работают К+-Ка+-АТФазы, перекачивающие калий внутрь клетки, а натрий из клетки. С учетом работы электрогенных ионных насосов для мембранного потенциала было получено уравнение Томаса (Томас, 1972 г.)  [c.76]

    Сопряжение транспорта ионов через мембранный потенциал. При работе дыхательной цепи митохондрий происходит выброс протона из матрикса в окружающую среду (см. раздел 1), сопровождающийся появлением на мембране [c.135]


    Источником энергии, обеспечивающим активный транспорт в клетки различных микроорганизмов, в большинстве случаев является трансмембранный электрохимический потенциал ионов водорода, который может создаваться за счет переноса электронов или распада АТФ под влиянием мембранной АТФазы. Переносчики, имеющие места связывания протонов и молекул субстрата, используют мембранный потенциал (протонодвижущую силу) для транспорта в клетку ионов водорода и питательных веществ. Связывание с протоном должно повышать сродство переносчика к субстрату, а высвобождение его от протона на внутренней поверхности мембраны — понижать это сродство. Такой совместный транспорт одним переносчиком двух субстратов в одном направлении называется симпортом в отличие от унипорта, когда переносчик транспортирует только один субстрат. Многие питательные вещества поступают в клетки микробов также за счет симпорта с ионами Na+ или К . Существует еще механизм антипорта, когда один переносчик транспортирует два субстрата, но в противоположном направлении. [c.59]

    В работах лабораторий Либермана п Скулачева расположение дыхательной цепи определялось по ее способности образовывать мембранный потенциал. В среду вводились различные доноры и акцепторы электронов, не проникающие сквозь мембрану. Оказалось, что эти вещества взаимодействуют лишь с цитохромом с в митохондриях. Установлено, что транспорт протонов и (или) электронов по дыхательной цепи действительно происходит. В других экспериментах определена локализация компонентов в мембране митохондрий. На рис. 13.10 показано вероятное расположение цепн. Согласно хемиосмотической гипотезе, любая сопрягающая система должна создавать электрохимический потенциал понов Н ". Действительно, опыты с проникающими синтетическими ионами показали возникновение А1 5 в митохондриях, СМЧ, хлоропластах (см. гл. 14) и мембранах бактерий. В то же время теория Митчелла встречается с трудностями и вызывает возражения. Блюменфельд приводит аргументы, показывающие невозможность построения машины Митчелла в конденсированной фазе. В такой машине АТФ-синтетаза использует разность концентраций протонов в водной фазе по обе стороны мембраны для выполнения внешней работы. Это — энтропийная машина, получающая энергию из термостата в форме кинетической знергип протонов. Нротоны движутся преимущественно по градиенту концентраций и передают свои импульсы подвижным частям машины разность потенциалов А1 5 расходуется на создание [c.437]

    Таким образом, можно не рассматривать быстрые процессы 1)—3) и усреднять по времени положения электронов и атомов. Именно такая процедура применена в описанной выше релаксационной модели. Молекула, получив электрон, оказывается в неравновесной конформации, медленно релаксирующей к равновесию. Для туннельного эффекта требуется поэтому не совпадение электронных уровней восстановленных донора и акцептора, но наличие надлежащим образом расположенного виртуального электронного уровня акцептора в окислительной конформации. Энергия, выделившаяся при туннелировании, диссипирует, но энергия, медленно выделяемая при конформациопной релаксации, может быть конвертирована в энергию макроэрга. Будучи связан с условиями ре.эопанса электронных уровней энергии, туппольный эффект подвержен влиянию мембранного потенциала. Следовательно, возможен регуляторный процесс — мембранный потенциал, создаваемый активным транспортом ионов, зависит от скорости переноса электронов, в свою очередь регулируемой мембранным потенциалом. Реализуется обратная связь, [c.443]

    В гл. 6 рассматривались натриевые и калиевые каналы, регулирующие пассивный ток ионов во время потенциала действия (рис. 7.1). Однако еще одна функция аксональной мембраны связана с проведением нервных импульсов — активный транспорт ионов. Если бы вход ионов натрия в клетку сопровождался только выходом ионов калия, градиент концентрации между обеими сторонами клетки вскоре исчез. Пассивное проникновение ионов Na+ через мембрану в состоянии покоя приводит к тому же эффекту, поэтому входящие ионы натрия должны вновь выводиться наружу, а диффундирующие снаружи ионы К+ должны направляться внутрь аксона. Естественно, что для этого должна расходоваться энергия, поскольку указанный процесс осуществляется против градиента концентрации. Именно этой цели и служат ионные насосы, содержащиеся в мембране аксона благодаря метаболической энергии, накопленной в АТР, они осуществляют активный транспорт ионов для поддержания мембранного потенциала. Направление движения иона и направления градиентов схематически изображены на рис. 7.2. Ходжкин и Кейнес [1] исследовали активный транспорт ионов Na+ через мембрану нерва. Они показали, что поток радиоактивных ионов Na+ из клетки ингибируется 2,4-динитрофенолом (рис. 7.3, а), который блокирует синтез АТР. В ходе дальнейших экспериментов Ходжкин и Кейнес установили, что транспорт Na+ обеспечивается при участии ферментов (рис. 7.3,6). Охлаждение клетки до 9,8 °С (или до 0,5 °С) явно замедляло выход ионов натрия, хотя известно, что пассивная диффузия Na+ не столь сильно зависит от температуры. [c.167]

Рис. 7.10. Синтез АТР как обратимый протонный насос. Согласно Митче.ч-лу, во время окислительного электронного транспорта протоны проникают через мембрану. Созданный градиент pH и мембранный потенциал способствуют синтезу АТР. И наоборот, градиент pH образуется при гидролизе АТР [12]. (Воспроизводится с разрешения А. Ленинджера.) Рис. 7.10. Синтез АТР как <a href="/info/1565603">обратимый протонный</a> насос. Согласно Митче.ч-лу, во <a href="/info/799054">время окислительного</a> <a href="/info/1418899">электронного транспорта протоны</a> проникают <a href="/info/152902">через мембрану</a>. <a href="/info/445420">Созданный градиент</a> pH и <a href="/info/4005">мембранный потенциал</a> способствуют синтезу АТР. И наоборот, градиент pH образуется при гидролизе АТР [12]. (Воспроизводится с разрешения А. Ленинджера.)
    Активный ионный транспорт в нервной клетке имеет множество функций поддерживает мембранный потенциал возбудимой мембраны (натрий-калиевый насос), регулирует внутриклеточную концентрацию Са + ( a +,Mg2+-ATPaзa) и обеспечивает клетку энергией (РгАТРаза, протонный насос). Натрий-калиевый насос является электрогенным — на каждые три иона На+, транспортируемых наружу, направляются внутрь два иона К" " таким образом, при каледом цикле из клетки забирается по одному положительному заряду. АТР поставляет энергию для обеспечения активного транспорта (против ионного градиента), т. е. осуществляет связь между передачей импульса и метаболизмом нервной клетки. Система ионного транспорта включает АТРазу и ионофор — сложные мембранные белки. Один из белковых компонентов подвергается промежуточному фосфорили-рованию с помощью АТР. Гликозид дигиталиса и уабаин (стро- [c.184]

    Микроплазмодесмы представляют собой каналы, окруженные мембраной, наружный диаметр которых меньше 20 нм, прорезающие поперечную перегородку между соседними клетками (рис. 24, Б). Количество их достигает 30—40. С помощью микро-плазмодесм осуществляются прямые контакты между ЦПМ соседних клеток. Таким образом, имеющиеся данные указывают на существование путей, обеспечивающих возможность обмена информацией между клетками в трихоме. Обмениваемыми могут быть вещества, растворенные в цитоплазме. Это было показано при введении внутрь клетки красителей, постепенно диффундировавших в соседние клетки нити. Была установлена также передача по мембранам вдоль трихома энергии в форме электрической составляющей трансмембранного потенциала. Транспорт энергии происходит от места ее образования в освещенной части трихома к неосвещенному его концу. [c.78]

    Важной особенностью полиэфирных ионофоров является наличие в их молекуле карбоксильной группы, которая ионизуется в процессе комплексообразования. Поэтому, в отличие от положительно заряженных комплексов депсипептидов и нактинов (напрнмер, валиномицин-К ), комплексы полиэфирных антибиотиков, как правило, электронейтральны. Отсюда и их различное поведение при индуцируемом ими транспорте ионов через биологические и искусственные мембраны он практически ие зависит от мембранного потенциала. [c.596]

    Клеточные мембраны у всех организмов проявляют полифун-кциональные свойства осморегуляция, барьерные функции с селективной проницаемостью за счет пор, насосов, рецепторов, транспорт веществ (в том числе активный с затратой энергии), участие в создании мембранного потенциала, в превращении энергии при фотосинтезе и окислительном фосфорилировании [c.101]

    Перенос ионов характеризуется стандартными константами скорости реакции, йа+, i-, которые можно идентифицировать с проницаемостями мембраны для этих ионов. Этот простой подход приводит к тому же результату, что и подход Ходжкина, Хаксли и Катца. Уравнение (3.25) удовлетворительно согласуется с полученным экспериментально значением мембранного потенциала покоя, если предположить, что проницаемость мембраны для выше, чем для Na+ и СГ, так что отклонение от потенциала Нернста для ионов калия не очень велико. В то же время проницаемость для других ионов не пренебрежимо мала. Следовательно, аксон в состоянии покоя должен терять ионы К% а внутри мембранная концентрация Na соответственно должна расти. Этого, конечно не произойдет в присутствии активной Na , K -АТРазы, переносящей калиевые ионы из межклеточной жидкости в аксон и ионы натрия в противоположном направлении. Поскольку этот вид переноса не связан с протеканием тока и не влияет на мембранный потенциал, его п мяято называть электронейтральным насосом. Кроме того, активный транспорт может происходить и не на основе обмена ион за ион . Функционирование такого электрогенного насоса, изменяющего мембранный потенциал, наблюдается, например, при выдерживании мышечного волокна в безкалиевой среде, обогащенной натрием. При этом в результате обмена внутриклеточного калия на внеклеточный натрий волокно загружается ионами натрия. После возвращения волокна в среду, которая по составу соответствует обычной межклеточной жидкости, натрий выводится из клеток активным транспортом до такой степени, что мембранный потенциал сдвигается к более отрицательным значениям (происходит гиперполяризация клеточной мембраны). Гиперполяризацию можно снять уабаином [31]. [c.235]

    Хемиосмотическая гипотеза энергетического сопряжения, в живой клетке получила в последнее время много экспериментальных подтверждений. Эта гипотеза, которую многие специалисты называют уже теорией, не отрицает существования предшественника АТФ в системе окислительного фосфорилирования, но свойство унифицированной формы энергии относит к трансмембранному электрохимическому потенциалу ионов водорода Н+ ((Лцн ). Таким образом, клетка имеет две формы унифицированной энергии — химическую в форме АТФ и энергию в форме мембранного потенциала. Через мембранный потенциал энергия окисления трансформируется затем в дмическую работу (синтез АТФ, обратный перенос электронов в других местах энергетического сопряжения), в осмотическую работу (транспорт ионов против градиента через мембрану), в тепло. Главная же функция мембранного потенциала — сопряжение процессов окисления и фосфорилирования. [c.409]

    Необходимо отметить, что натриевые насосы как системы активного транспорта характерны для структурных мембран клетки, первыми при-нимаюшими на себя воздействие внешней среды и не требующими для функционирования высокого электрического сопротивления. Иначе обстоит дело с сопрягающими мембранами, выполняющими главную функцию —аккумулирование энергии —и требующими высокого электрического сопротивления [15, 33]. В этом случае действуют протонные насосы, которые служат главными узлами механизма сопряжения процессов окисления и фосфорилирования при генерации мембранного потенциала дыхательной цепью и АТФ-азой. При этом одна система разделяет водород на Н+ и /, а вторая — молекулу НгО, гидролизующей АТФ, на Н+ и НО-. [c.432]

    Основную роль в генерации и поддержании мембранного потенциала играет фермент Ма -К -АТФ-аза, которая за счет энергии АТФ выкачивает Ма из клетки, а К+ закачивает в клетку против их градиента концентрации (см. главу 5). Наличие градиента концентрации Ма" и играет важную роль в электровозбудимости клеточных мембран и транспорте глюкозы, аминокислот и других веществ. Плазматические мембраны участвуют в процессах секреции и поглощении больших молекул, а также в межклеточных взаимодействиях, распознавании внешних сигналов. [c.33]

    Активный транспорт ионов может быть электронейтральным или электроген-ным. Транспортная система электронейтральна в том случае, если ее функционирование сопровождается обменом внутриклеточных ионов на внеклеточные в соотношении заряд на заряд . В такой ситуации система активного транспорта является лишь средством поддержания концентрационных градиентов и не учав-ствует непосредственно в создании разности потенциалов на клеточной мембране. Потенциал на мембране создается тогда только за счет диффузии ионов по градиентам концентрации. [c.158]

    Первый член в числителе подлогарифмического выражения отражает активность электрогенного ионного насоса. Если активный транспорт неэлектрогенен, то этот член отсутствует и выражение (ХХП.3.2) становится идентичным уравнению Гольдмана [см. (ХХГ1.2)] для мембранного потенциала, обусловленного пассивными ионными потоками. [c.160]

    В функционировании биоэнергетических систем важное место принадлежит транспорту протонов. Перенос электронов в энергосопрягающих мембранах митохондрий, хлоропластов и бактерий сопровождается трансмембранным переносом Н+ и образованием градиента электрохимического потенциала этого иона А[ан+5 который включает электрический (мембранный потенциал) и концентрационный (градиент pH) компоненты  [c.162]

    Все каналообразующие белки и многие белки-переносчики позволяют растворенным веществам проходить через мембраны только пассивно ( с горки ). Этот процесс называется пассивным транспортом (или облегченной диффузией). Если молекула транспортируемого вещества не имеет заряда, то направление пассивного транспорта определяется только разностью концентраций этого вещества по обеим сторонам мембраны (градиентом концентрации). Однако если молекула заряжена, то на ее транспорт влияют как градиеш концентрации, так и разница электрических потенциалов на сторонах мембраны (мембранный потенциал). Вместе концентрационный и электрический градиенты составляют электрохимический градиент. Фактически в любой плазматической мембране есть градиент электрического поля. При этом внутренняя сторона мембраны обычно заряжена отрицательно по отнощению к наружной (см. разд. 6.4.15). Такой потенциал облегчает проникновение в клетку положительно заряженных ионов, но препятствует прохождению внутрь ионов, заряженных отрипательно. [c.382]

    Харольд и Альтендорф 16] указывают, что хороший индикатор AiJ) должен быстро диффундировать через мембрану... быть полностью диссоциированным при физиологических значениях pH, не нарушать процессов метаболизма и не подвергаться транслокации системами биологического транспорта . Этим требованиям может удовлетворять К" в клетках, обработанных 1—10 мкМ валиномицином с целью сделать мембрану проницаемой для этого иона. Поскольку мембранный потенциал у бактериальных клеток обычно составляет около 180 мВ с отрицательным полюсом внутри, концентрация калия в цитоплазме клеток, обработанных валиномицином, примерно в 20 раз больше, чем в суспендирующей среде. Концентрацию калия можно определить с помощью атомно-абсорбционной спектрофотометрии, пламенной фотометрии или — менее точно — ионселективного электрода (разд. 16.2.2). Поглощение К+ измеряют методом занимаемого объема (или используют одну из его модификаций), а концентрацию вычисляют, исходя из [c.457]

    В конечном счете в ходе окислительно-восстановительных превращений переносчиков на внутренней стороне мембраны тилакоида постепенно накапливаются протоны и возникает мембранный протонный потенциал. Градиент pH между внутренней и внешней фазами тилакоида составляет, по данным Ягендорфа, примерно 2,7, а мембранный потенциал 50 мВ. Процесс фосфорилирования сопровождается перераспределением ионов Н+, противоположным тому, которое возникает при транспорте электронов. По Митчелу, для синтеза одной молекулы АТФ из АДФ и неорганического фосфата достаточно перемещения через мембрану двух протонов (см. схему). Предполагается, что при этом за счет энергии мембранного потенциала происходит активация фермент-суб-стратного комплекса АТФ-синтетазы, или, как ее называют в последнее время, протонной АТФ-азы. [c.105]

    Особенно важен анализ влияния Е на процессы первичного активного транспорта, которые играют решающую роль в энергизации мембран путем создания соответствующих электрохимических градиентов. Из двух основных систем, обеспечивающих протекание этих процессов — транспортных АТФаз и ЭТЦ. определенные сведения по данному вопросу имеются относительно первой системы. Идея о том. что транспортные АТФазы. являясь электро-генными молекулярными машинами, по принципу обратной связи должны находиться под контролем мембранного потенциала, успешно разрабатывается в последние годы [367]. Однако она еще не получила достаточно полного обоснования. [c.76]

    Таким образом, одиночный ПД, возникший под влиянием внешнего раздражителя и выполняющий роль сигнала, достигнув того или иного органа, может вызвать кратковременные колебательные изменения той или иной функции, носящие подготовительный характер. Механизм трансформации ПД в функциональный ответ является, по-видимому, многоступенчатым (рис. 50). В тех органах, по которым ПД распространяется и которых он достигает, он электротонически вызывает изменение мембранного потенциала клеток. Это. в свою очередь, непосредственно влияет на структурное состояние мембранных систем, ответственных за пассивный и активный мембранный транспорт (каналы, транспортные АТФазы). В результате меняются [c.187]

    В настоящее время достаточно глубоко исследованы три схемы вторичного активного транспорта. Для простоты рассмотрен транспорт одновалентных ионов с участием молекул-переносчи-ков. При этом подразумевается, что переносчик в нагруженном или ненагруженном состоянии одинаково хорошо пересекает мембрану. Источником энергии служит мембранный потенциал и/или градиент концентрации одного из ионов. Схемы показаны на рис. 2.12. Однонаправленный перенос иона в комплексе со специфическим переносчиком получил название унипорта. При этом через мембрану переносится заряд либо комплексом, если молекула переносчика электронейтральна, либо пустым переносчиком, если перенос обеспечивается заряженным переносчиком. Результатом переноса будет накопление ионов за счет снижения мембранного потенциала. Такой эффект наблюдается при накоплении ионов калия в присутствии валиномицина в энергизированных митохондриях. [c.46]

    В аппарате Гольджи сомы нейрона формируются мембранные образования в виде пузырьков, не заполнеиных медиатором (фракция СПд). Эти пузырьки направляются в пресинаптическое окончание с помощью системы быстрого аксонного транспорта. В пресинаптическом окончании пузырьки заполняются медиаторами (АХ и АТФ) посредством АТФ-зависимо-го протонного насоса. Молекулы протонной АТФазы входят в состав мембраны синаптических пузырьков и поддерживают определенный уровень мембранного потенциала. Мембрана [c.213]

    Говоря об энергетическом состоянии клетки, следует отметить также важную роль энергизации мембраны, которая возникает в результате работы так называемого протонного насоса. Этот механизм, существующий в различных прокариотических и эукариотических мембранах, использует энергию окисления, света и гидролиза АТФ для откачивания протонов из клетки через мембрану. В результате создаются градиент концентрации ионов водорода (АрН) и электрический мембранный потенциал (АЧ ), которые в совокупности образуют трансмембранный электрохимический потенциал ионов водорода (Др1н+). Энергия, запасенная в этом потенциале (протонодвижущая сила), используется в процессах синтеза АТФ, активного транспорта и движения клеток с помощью жгутиков. Кроме того, со значением мембранного потенциала может быть связана активность некоторых ключевых ферментов, контролирующих, в частности, синтез и стабильность таких регуляторных молекул, как ффГфф и цАМФ. [c.49]


Смотреть страницы где упоминается термин Мембранный потенциал и транспорт: [c.259]    [c.88]    [c.159]    [c.216]    [c.447]    [c.24]    [c.136]    [c.143]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Мембранные

Мембранный потенциал



© 2025 chem21.info Реклама на сайте