Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматическое электрофильное замещение и влияние заместителей

    Для реакций такого типа характерны все особенности ароматического электрофильного замещения (влияние заместителей и т. д. см. ниже), но они имеют гораздо меньшее препаративное значение, чем реакции, которые уже были рассмотрены выше. [c.166]

    В реакциях нуклеофильного замещения в ароматическом ряду, так же как и при электрофильном замещении, влияние заместителя на реакционную способность обусловлено его способностью притягивать или подавать электроны при нуклеофильном замещении в ароматическом ряду, так же как и при электрофильном, заместитель оказывает влияние главным образом в орто- или мара-положениях кольца. При нуклеофильном замещении в ароматическом ряду оттягивание электронов вызывает активацию, а подача электронов — дезактивацию. [c.794]


    АРОМАТИЧЕСКОЕ ЭЛЕКТРОФИЛЬНОЕ ЗАМЕЩЕНИЕ И ВЛИЯНИЕ ЗАМЕСТИТЕЛЕЙ [c.33]

    Обратим внимание на то, что заместители, увеличивающие основность, активируют также ароматическое ядро в реакциях электрофильного замещения, а заместители, уменьшающие основность, дезактивируют ароматическое ядро в реакциях электрофильного замещения (разд. 11.5). Основность зависит от положения равновесия и, следовательно, от относительной стабильности реагентов и продуктов. Реакционная способность в реакции электрофильного замещения в ароматическом ряду зависит от скорости реакции и, следовательно, от относительной устойчивости реагентов и переходного состояния. Однако влияние данного заместителя одно и то же в обоих случаях, поскольку лимитирующим фактором является способность участвовать в распределении положительного заряда. [c.712]

    Влияние нитрогруппы на ароматическое ядро. Нитрогруппа относится к заместителям второго рода оттягивая электроны из ароматического ядра, она уменьшает его активность в реакциях электрофильного замещения. Вступающий заместитель направляется в мета-положение  [c.290]

    Влияние заместителя в фенильном кольце олово- и свинецорганических соединений в общем соответствует их влиянию в ароматическом электрофильном замещении, однако при детальном рассмотрении обнаруживаются определенные отклонения. Так, влияние как активирующих, так и пассивирующих групп оказалось значительно меньшим не только по сравнению с электрофильным замещением в обычных ароматических соединениях, но и сравнительно с протолизом кремний- и германийорганических соединений. В отдельных группах заместителей также наблюдаются отличия. Например, влияние алкильных заместителей, в данном случае [c.136]

    Изучение реакций электрофильного замещения гомологов и других производных ферроцена позволило прийти к выводу, что ферроцен представляет собой единую ароматическую систему (а не два изолированных циклопентадиенильных ароматических кольца) и влияние заместителей передается из одного кольца в другое примерно так, как в бензольном кольце из мета-положения. Однако заместитель оказывает все же большее влияние на то кольцо, в котором он находится, как это впервые выяснили Н. А. Несмеянов и О. А. Реутов на [c.455]

    Влияние заместителей при сульфировании аналогично другим реакциям электрофильного замещения в ароматическое ядро, причем для сульфирования характерна средняя селективность в отношении ориентации в разные положения молекулы и относительной реакционной способности. Так, толуол сульфируется в 5 раз быстрее бензола, причем получается 75% пара-, 20% орто-и 5% лета-толуол сульфокислот. Электроотрицательные группы значительно дезактивируют ароматическое ядро, вследствие чего не удается ввести вторую сульфогруппу при действии серной кислотой. В отношении состава изомеров сульфирование имеет некоторые особенности, зависящие от обратимости реакций. При мягких условиях состав изомеров определяется относительной реакционной способностью различных положений ядра, при нагревании или при большой продолжительности реакции он зависит от термодинамической стабильности изомеров. Так, нафталин в первом случае дает главным образом 1-сульфокислоту, а во втором 2-изомер. [c.329]


    Электрофильные замещения в аренах сопровождаются переносом электрона от сопряженной системы ароматического ядра к атакующей группе. Введение заместителя в ароматическое ядро приводит к перераспределению исходной электронной плотности за счет воздействия заместителя. Кроме того, направленность атаки зависит от эффективных объемов заместителя и входящей группы. Следует отметить, что введенная алкильная группа может оказывать пространственное влияние как на общую реакционную способность, так и на селективность при атаке определенных положений ядра. Эти явления находят практические применения- при использовании объемных групп (например, грег-бутильных) для экранирования необходимых положений ароматического ядра. Кроме того, скорость реакции зависит от стабильности сг-комплекса, а заместитель способен локализовать (или делокализовать) имеющийся в этом комплексе заряд. [c.40]

    Ароматические амины легко вступают в реакции электрофильного замещения. Однако аминогруппа, являясь заместителем первого рода, оказывает настолько сильное активирующее влияние на бензольное ядро, что при некоторых реакциях электрофильного замещения, например нитровании, может произойти разрущение молекулы анилина. Поэтому аминогруппу перед нитрованием предварительно защищают ацилированием  [c.302]

    Бензол — ароматическая система. Электронное строение молекулы бензола. Понятие ароматичности . Гомология и изомерия ароматических углеводородов. Номенклатура. Способы получения бензола и его гомологов. Химические свойства. Реакции электрофильного замещения. Механизм реакции, я- и о-Комплексы. Два типа ориентантов (I и П рода). Механизм ориентирующего влияния заместителей. [c.171]

    Электрофильное замещение в ароматическом ряду. Ориентация и взаимное влияние заместителей [c.218]

    Влияние заместителей в бензольном кольце на реакции электрофильного замещения в ароматическом ряду [c.226]

    Вопрос о влиянии заместителей, уже имеющихся в ароматическом кольце, на реакционную способность кольца в отношении дальнейших электрофильных атак и места последующих замещений, изучен довольно хорошо. Предложено большое число эмпирических правил, касающихся этих влияний легче всего эти правила могут быть интерпретированы исходя из электронодонорных или электроноакцепторных свойств уже присутствующего заместителя. [c.154]

    Относительное содержание о--, м- и /г-изомеров, образуюш,ихся при реакции электрофильного замещения, зависит от природы уже имеющегося в ароматическом кольце заместителя. Направляющее действие определяется влиянием этого заместителя на энергетические уровни каждого из переходных состояний, соответствующих атакам орто-, мета- и пара-положений, а сле- [c.157]

    ВЛИЯНИЕ ЗАМЕСТИТЕЛЕЙ НА ЭЛЕКТРОФИЛЬНОЕ ЗАМЕЩЕНИЕ В АРОМАТИЧЕСКОМ РЯДУ [c.615]

    В заключение можно сказать, что как реакционная способность, так и ориентация при электрофильном замещении в ароматическом ядре определяются скоростями образования соответствующих промежуточно образующихся карбониевых ионов. В свою очередь эти скорости зависят от устойчивости этих ионов, которая зависит от электронодонорного или электроноакцепторного влияния заместителей. [c.354]

    Мы знаем, что влияние заместителя на реакционную способность и ориентацию в реакциях электрофильного замещения в ароматическом ряду определяется принципом чем стабильнее промежуточный карбониевый ион, т м быстрее он образуется. [c.790]

    Итак, реакции нуклеофильного и электрофильного замещения в ароматическом ряду аналогичны в том, что имеющийся заместитель оказывает на ход реакции максимальное влияние (независимо от того, является ли оно активирующим или дезактивирующим), если он находится в орто- или пара- [c.797]

    Изучение кинетики изотопного обмена водорода в ферроцене и его производных позволяет количественно оценить изменение реакционной способности под влиянием заместителей при электрофильном замещении, а также провести количественное сравнение с бензолом и соответствующими его производными и другими ароматическими системами [60]. [c.16]

    Химические свойства ароматических соединений. Реакции присоединения и окислеши. Реакции электрофильного замещения в ароматическом раду. Механизм электрофильного замещения. Влияние заместителей на ориентацию в бензольном кольце и реакционную способность. Цу клеофильное и свободно-радикальное замещение в ароматическом кольце. [c.190]

    Влияние заместителей (как и в случае галогенирования арил-меркурбромидов) обычное для ароматического электрофильного замещения. Это означает, что определяющей скорость стадией реакции является электрофильная атака протона на ароматический атом углерода. Влияние заместителей описывается уравнением Гамметта при использовании сг+ с р = —1,77 (рис. 9). Возможность корреляции только при использовании констант о +, по-видимому, свидетельствует о прямом сопряжении заместителя с реакционным центром, т. е. переходное состояние реакции должно быть ближе к (Т-комплек-су (Е — электрофил)  [c.106]


    Виланд исследовал влияние полярных заместителей в фенильных группах тетрафенилгидразина на степень его гомолитической диссоциации. В случае самого тетрафенилгидразина обратимая окраска возникает при кипячении в толуоле (110 °С), но не при кипячении в бензоле (80 °С). В случае тетра-тг-толилгидразина окраска возникает при кипячении в бензоле. Следовательно, /гара-метильная группа, по-видимому, лишь в малой степени способствует диссоциации. Но сильные эффекты наблюдаются в случае -f-М-заместителей, электроположительно сопряженных с центром диссоциации. Тетра-и-анизил-гидразин образует темно-зеленые растворы нри комнатной и более низкой температурах. Степень диссоциации этого вещества составляет, вероятно, несколько процентов при криоскопических концентрациях, т. е. недостаточно велика, чтобы ее можно было заметить при температуре замерзания бензола или нитробензола (5—6 °С). Однако тетра-тг-диметиламинофенил-гидразин дает темно-желтые растворы в бензоле и нитробензоле, в которых он диссоциирует соответственно на 10 % при температурах замерзания этих растворителей. Установлен следующий порядок влияния заместителей на степень диссоциации тетрафенилгидразинов n-( H3)2N> тг-СНзО>- n- Hg. Другим крайним случаем является заместитель —М-типа, например группа n-NOg, ингибирующая диссоциацию. Виланд отметил те случаи, в которых эти эффекты соответствуют влиянию заместителей при электрофильном замещении в ароматическом ряду когда наблюдается несоответствие между влиянием заместителей на ароматическое электрофильное замещение и на диссоциацию, приводящую к образованию триарилметилов. [c.1028]

    Для обсуждения направляющего влияния при электрофильном замещении в ароматическом ядре удобно разделить материал на четыре части влияние полярности заместителя, стерический эффект заместителя, влияние полярности замещающего вещества и стерический эффект заме-щающего вещества. [c.412]

    Влияние строения ароматического соединения при реакциях алкилирования в общем такое же, как при других про сссах электрофильного замещения в ароматическое ядро, но имеет свои особенности. Реакция алкилирования отличается сравнительно малой чувствительностью к электронодонорным заместителям в ядре. Так, активирующее влияние алкильных групп и конденсированных ядер при катализе реакции хлористым алюминием изменяется следующим образом (для бензола величина принята за 1)  [c.244]

    Влияние заместителей на реакционную способность ароматического ядра и ориентацию вступающей нитрогруппы такое же, как при других реакциях электрофильного замещения в ароматическое ядро. Ввиду значительного дезактивирующего влияния нитрогруппы каждая последующая стадия нитрования протекает значительно медленнее предыдущей l(k //г -lXl]. Поэтому реакцию л/ожно осуществить с высоким выходом любого из продуктов последовательно-параллельного замещения (моно-, ди- или три-нитролроизводных), подбирая силу нитрующего агента и температуру. Так, при нитровании толуола вначале в более мягких условиях (40°С) образуются мононитротолуолы (смесь 58—59% орто-, 4—5% мета- и 36—39% паро-изомеров), которые затем в более жестких условиях (70—80°С) дают дннитротолуолы (смесь в ос-новнсм 2,4- и 2,6-изомеров) и в конце концов — тринитротолуол  [c.343]

    Видно, что эти механизмы состоят из двух или трех стадий соответственно, и тем не менее вполне возможна согласованность двух или трех из них. Принципиально механизмы можно различить, изучая влияние заместителей на миграцию групп. В механизме а реакция по отношению к мигрирующей группе является электрофильным ароматическим замещением с переходным состоянием, в котором кольцо положительно заряжено. Электронодонорные заместители в орго- или /гара-положении будут способствовать миграции, электроноакцепторные — замедлять ее. При механизме б реакция является нуклеофильным ароматическим замещением с отрицательно заряженным переходным состоянием эффект заместителей будет противоположным. Полученные результаты согласуются с механизмом а [189]. Остается открытым вопрос о числе стадий в механизме. Имеются доказательства того, что в некоторых случаях процесс двухстадиен интермедиат 62 был выделен в виде литиевого производного и превращен в диарилацетилен нагреванием [190] кроме того, показано протекание водородно-дейтериевого обмена [185]. Однако в других случаях возможно согласованное осуществление двух стадий. Стереоселективность реакции не требует такого согласованного механизма, так как винильные карбанионы могут сохранять конфигурацию (т. 1, разд. 5.5). [c.151]

    Какого влияния на реакцию электрофильного замещения следует ожидать от присутствия в ароматическом кольце в качестве заместителя группы ЫНЗОаСбИд N( Hз)з Ы(СНз)2  [c.47]

    Появление уравнения Гаммета вызвало огромное количество экспериментальных исследований, в ходе которых было показано, что а-константы, онределенные нз констант понизацнн бензойных кислот, не во всех случаях служат правильной мерой электронного влияния заместителей. Существенные отклонения наблюдаются во всех тех случаях, догда заместитель находится в пара-положении к реакционному центру и может оказывать на него влияние ио механизму прямого полярного сопряжения. К таким реакциям в первую очередь относятся изучаемые в настоящей книге реакции электрофильного и нуклеофильного ароматического замещения. Для этих случаев были разработаны новые константы заместителей, обозначаемые как а+ для электрофильных и для нуклеофильных реакций. В ряде случаев появилась потребность в константах заместителей, в которых учитывалось бы только их индуктивное влияние. Они определены из констант ионизации феиилуксусных кислот или из констант скоростей гидролиза их эфиров и обозначаются как а° (табл. 1). [c.49]

    Это очень напоминает ситуацию, имеющую место при элек-трофильном замещении в хлорбензоле (стр. 160), когда преимущественное орто-пара-ориентирующее влияние заместителя (преимущественная стабилизация переходных состояний, соответствующих орто- и пара-замещению, за счет взаимодействия пеподеленных электронных пар атома хлора с системой зх-орби-талей ароматического кольца) сопровождается общим уменьшением скорости замещения по сравнению со скоростью замещения в самом бензоле (сильный индуктивный эффект атома хлора способствует общей дезактивации ароматического кольца и снижению его реакционной способности в отношении реакций электрофильного замещения). [c.181]

    Так как положительный заряд может взаимодействовать иепосредствен-110 с заместителем, влияние заместителя при электрофильном ароматическом замещении характеризуется очень большой резонансной компонентой. Значения (1+ (98], приведенные в табл. 4.1 (см. разд. 4.3), являются иаилучшими числовыми показателями оценки относительной стабилизующей способности различных заместителей. [c.349]

    Для ароматических кислот влияние заместителей аналогично группы СНд, ОН и NHa уменьшают силу бензойной кислоты, а группы С1 и NOa ее увеличивают. Таким образом, среди групп, ослабляюш их силу кислоты, находятся те группы, которые активируют кольцо по отношению к электрофильному замещению (и дезактивируют по отношению к нуклеофильному замещению). Среди групп, увеличивающих силу кислоты, находятся группы, которые дезактивируют кольцо по отношению к электрофильному замещению (и активируют по отношению к нуклеофильному замещению). Более того, группы, оказывающие наибольший эффект — активирующий или дезактивирующий — на реакционную способность, оказывают наибольшее влияние на кислотность. [c.573]

    Заместители в ароматическом кольце субстрата относительно мало влияют на скорость процесса ио сравнению с их влиянием на аналогичные реакции электрофильного замещения некоторые парциальные факторы реакции замещения фенильными радикалами приведены при формулах (34) — (36). Более высокую реакционную способность орто- и пара-положений можно объяснить способностью заместителя X делокализовать иеспаренный электрон [в (37)]. Однако возможно также, что циклогексадиенильный радикал является плохой моделью переходного состояния для экзотермического присоединения реакционноспособных радикалов типа Ме- или РЬ-, когда в переходном состоянии можно ожидать слабого связывания. Данные по ориентации в различных субстратах коррелируют с рассчитанными энергиями локализации [ЗЗа]. Заместители в арильном радикале оказывают вторичный эффект как на реакционную способность по отношению к субстрату, так и на соотношение изомеров за счет полярных эффектов, например и-МОгСбН4- реагирует с нитробензолом медленнее, чем /г-СНзСбП4-. Были рассчитаны величины р Гаммета для реакций замещения большим количеством замещенных арильных и других радикалов [ЗЗа]. [c.583]

    Простейшая реакция электрофильного замещения — дейтерирование — происходит в кислой среде [15, 16]. Изучение кинетики изотопного обмена водорода в ферроцене и его производных позволяет количественно оцепить изменение реакционной способности под влиянием заместителей при электрофил ьном замещении, а также провести количественное сравнение с бензолом и соответствующими его производными и другими ароматическими сй-стемами. Наиболее удобный донор дейтерия — дейтеротрифторуксусная кислота. Константа скорости водородного обмена ферроцена равна 1,6 10 сек при 25° в бензольном растворе (соотношение ферроцена, дейтеро-трифторуксусной кислоты и бензола 1 3 20). Атомы бензола в этих условиях не обмениваются, [константа скорости водородного обмена для толуола в тех же условиях равна 3-10 сек , т. е. скорость водородного обмена у ферроцена более чем на три порядка выше, чем у толуола. Электроноакцепторные заместители резко уменьшают скорость водородного обмена. В аце- [c.7]


Смотреть страницы где упоминается термин Ароматическое электрофильное замещение и влияние заместителей: [c.225]    [c.148]    [c.187]    [c.15]    [c.343]    [c.348]    [c.1748]    [c.460]   
Смотреть главы в:

Химия и технология ароматических соединений в задачах и упражнениях -> Ароматическое электрофильное замещение и влияние заместителей

Химия и технология ароматических соединений в задачах и упражнениях -> Ароматическое электрофильное замещение и влияние заместителей

Химия и технология ароматических соединений в задачах и упражнениях Издание 2 -> Ароматическое электрофильное замещение и влияние заместителей




ПОИСК





Смотрите так же термины и статьи:

Заместителей влияние

Заместителей влияние на электрофильное замещение

Заместители электрофильное замещени

Замещение электрофильное

Электрофильность



© 2024 chem21.info Реклама на сайте