Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная структура и молекулярная масса

    Характерной особенностью растворов ВМВ является их высокая вязкость по сравнению с чистым растворителем даже при малых концентрациях. Особенно сильно это свойство проявляется у полимеров с длинными линейными макромолекулами, например у каучука. Растворы полимеров с той же молекулярной массой, но сферической формой молекул (глобулярные ВМВ) имеют меньщую вязкость. Отсюда следует, что вязкость растворов полимеров возрастает пропорционально асимметрии их молекул. При одинаковой химической структуре молекул вязкость закономерно возрастает с увеличением молекулярной массы. Вязкость зависит также от концентрации полимера и межмолекулярных сил взаимодействия. [c.472]


    Как указывалось в 11,1, полимеры получаются полимеризацией и поликонденсацией мономеров. В зависимости от условий процесса образуются полимеры, различающиеся как по молекулярной структуре (молекулярная масса, молекулярно-массовое распределение, разветвленность), так и по содержанию примесей, размеру и структуре частиц (при гетерофазном получении полимера). На оптические свойства полимера наиболее существенное влияние оказывают чистота и однородность материала, которые определяют его прозрачность (мутность), окраску (чаще всего желтизну), а также наличие градиентов показателя преломления. [c.74]

    Химическая модификация полимеров методом хлорирования является важным промышленным способом направленного изменения их свойств и широко используется в настоящее время. При хлорировании могут быть получены продукты с разнообразными свойствами огнестойкостью, газонепроницаемостью, свето-, тепло- и химической стойкостью, адгезией к поверхностям различной природы, хорошей вулканизуемостью. Эти свойства зависят от состава, структуры, молекулярной массы полимера, метода и глубины хлорирования, а также от распределения атомов хлора в макроцепях. [c.46]

    Молекулярная масса. С ростом молекулярной массы в полимере сначала возникает, а затем и совершенствуется флуктуационная сетка. Это приводит к увеличению поглощения энергии при деформации в момент роста трещины. Прочность увеличивается с ростом молекулярной массы до определенного предела, соответствующего полному формированию надмолекулярной структуры, после чего далее меняется незначительно. В области молекулярных масс более 50—100 тыс. прочность мало зависит от молекулярной массы. [c.206]

    Филаменты актина могут диссоциировать йа глобулярные молекулы с молекулярной массой примерно 58 000. В самом филаменте эти молекулы агрегированы в две цепи, которые скручены в двойную спираль (рис. 15.10). Филаменты миозина также могут диссоциировать на отдельные молекулы миозина с молекулярной массой около 525 000. При помощи электронного микроскопа установлено, что они имеют форму стержней длиной 200 нм и диаметром 2,0 нм на одном конце такого стержня расположена головка длиной 20 нм и диаметром 4 нм. Рентгенограммы показывают, что вторичная структура таких стержней представляет собой а-спираль, причем стержень, вероятно, состоит из двух скрученных цепей, имеющих конформацию -спирали. Каждый филамент миозина состоит примерно из 600 молекул. Электронные мик- [c.436]


    Физико-механические свойства полиэтилена определяются его молекулярной и надмолекулярной структурой молекулярной массой и ММР, ДЦР и КЦР, кристалличностью. Предел текучести, модуль упругости при изгибе, твердость полиэтилена возрастают с уменьшением числа коротких боковых цепей в макромолекуле и с повышением кристалличности и плотности полимера. Прочность при растяжении, относительное удлинение, температура хрупкости, стойкость к растрескиванию под напряжением и ударная вязкость в большей степени определяются молекулярной массой, чем степенью кристалличности. [c.149]

    Комплекс всех процессов превращений различных твердых горючих ископаемых, вызываемых действием тепла, принято называть термической деструкцией Этим названием подчеркивается, что при нагревании угля прежде всего происходят изменения молекулярной структуры органической массы углей [c.15]

    Исследование масс-спектров 42 кетонов с молекулярными весами от 58 (ацетон) до 198 (тридеканон-2) позволило, как и в случае других классов соединений, установить корреляции между структурой и масс-спектрами и определить некоторые эмпирические правила, с помощью которых можно проводить идентификацию кетонов [196]. Обычные осколочные ионы в масс-спектрах алифатических кетонов обязаны своим образованием, в первую очередь, отрыву от карбонильной группы радикала Нь а также радикала Йг, где Н] соответствует наименьшей алкильной группе в структуре Н1—СО— —Кг. В результате этих процессов образуются максимальный пик в масс-спектре и пик, составляющий около 40% от максимального. Ароматические и циклические кетоны диссоциируют аналогично по связи карбонильной группы с алкильным, ароматическим или циклическим радикалом. Наиболее интенсивные пики в их спектрах соответствуют отрыву от молекулярного иона групп с массами 28, 29, 42 и 43. Значительно более сложные процессы приводят к образованию перегруппировочных (псевдомолекулярных) ионов в масс-спектрах алифатических кетонов, но для ароматических и циклических кетонов наличие перегруппировочных пиков не характерно. [c.120]

    Помимо того что пиролиз сам по себе представляет определенные аналитические возможности, следует учесть, что для газо-жидкостной хроматографии, инфракрасной и ультрафиолетовой спектроскопии и других современных методов анализа часто необходимым или благоприятным условием является термическое разложение исследуемого вещества до проведения или во время анализа. При спектроскопических исследованиях предпочитают пользоваться жидким образцом, так как в случае твердого вещества изменения степени кристалличности и непрозрачности дают эффекты, не связанные непосредственно с молекулярной структурой. При масс-спектрометрии исследуемое вещество необходимо переводить в парообразное состояние для высокомолекулярных образцов это можно сделать только путем пиролитического разложения [15, 47] см. главу VI. [c.152]

    Вначале имеет смысл рассмотреть вопрос о том, каким образом конфигурация (т. е. первичная структура) полимерной цепочки может оказывать влияние на процесс кристаллизации. Наиболее важной характеристикой первичной структуры макромолекулы является, по-видимому, молекулярная масса, а также ширина молеку-лярно-массового распределения полимера. Как всегда, начнем анализ с простого случая. В этом смысле благоприятным объектом является полиэтилен (или полиметилен), который обладает наиболее простым молекулярным строением и который, кроме того, привлек внимание большого числа исследователей после первых опытов по получению полимерных монокристаллов. К сожалению, серьезным недостатком полиэтилена является то обстоятельство, что блочные образцы обладают чрезвычайно широким распределением по молекулярным массам. На это обращал неоднократно внимание автор при обсуждении зависимости равновесной температуры плавления от молекулярной массы [1], возможности фракционирования при кристаллизации [2—6] и т. д. Ниже будет обсуждаться проблема образования кристаллов с выпрямленными цепями в случае полимеров низкой молекулярной массы с использованием результатов, полученных в указанных работах. [c.199]

    Обобщение масс-спектров органических соединений различных классов позволило автору установить типичные направления распада молекул. Эмпирические закономерности, связывающие определенные Молекулярные структуры с масс-спектрами, послужили основой для идентификации, качественного анализа смесей органических веществ, определения индивидуального и группового состава. Перечисленным выше вопросам посвящены гл. 8—10. [c.6]

    Корреляции между молекулярной структурой и масс-спектрами [c.330]


    Белки относятся к высокомолекулярным соединениям, в состав которых входят сотни и даже тысячи аминокислотных остатков, объединенных в макромолекулярную структуру. Молекулярная масса белков колеблется от 6000 (нижний предел) до 1000000 и выше в зависимости от количества отдельных полипептидных цепей в составе единой молекулярной структуры белка. Такие полипептидные цепи получили название субъединиц. Их мол. масса варьирует в широьсих пределах —от 6000 до 100000 и более. [c.44]

    Основная трудность оценки химических превращений полимеров, происходящих под действием механических сил, связана с разработкой методик, в частности, для измерения характеристик молекулярной структуры (молекулярной массы, ММР, развет-вленности и плотности поперечных связей) и химических параметров (природы радикалов, концентрации и продолжительности их жизни). С появлением новых, усовершенствованных, приборов эти исследования активизировались, что позволило уточнить и модернизировать известные теории. Например, в настоящее время концентрацию и состав радикалов можно весьма точно определить методом ЭПР, а молекулярную массу, ММР и развет-вленность — с помощью ГПХ (см. гл. 4). [c.28]

    Спектры ряда чистых высокомолекулярных соединений оыли изучены О Нилом и Виром [9], пытавшимися установить связь между молекулярной структурой и масс-спектром. На рис. 15 и 16 изображены графики, выра- [c.352]

    Масс-спектрометрическое правило сдвига [И] широко используется при установлении структуры алкалоидов и иллюстрирует основную идею общей применимости. Часто можно определить местонахождение заместителя в молекуле, если существуют пизкознергетические направления распада сложной молекулы и если на этот распад влияет заместитель. Для этого находят фрагмент, молекулярная масса которого увеличилась на массу, соответствующую массе заместителя или характеристического фрагмента последнего. [c.323]

    При свободнорадикальной прививке акрилонитрила на вторичную ацетилцеллюлозу образуется привитой сополимер, боковые цепи в котором имеют атактическую структуру. Молекулярная масса привитых цепей ПАН в 3-5 раз больше, чем гомополимера акрилонитрила, одновременно образующегося при этой реакции. Объяснить, чем обусловлена атактичность прививаемых цепей и гомополимера с точки зрения особенностей присоединения мономерных звеньев к радикалу растушей цепи. Будут ли различаться температуры стеклования вьщеленных в результате исчерпывающего гидролиза привитых цепей ПАН и гомополимера ПАН, образующегося при реакции привитой сополимеризации  [c.389]

    В процессе отжига высокоориентированного волокна микрофиб-риллярная структура частично разрушается, и восстанавливается исходная структура. Аналогичным образом, если вытяжка происходит при повышенной температуре и производится сравнительно медленно, перегруппировавшиеся обломки разрушенной структуры стремятся вновь восстановить ламелярную морфологию. Изложенное показывает, что правильный выбор технологии холодной вытяжки (скорость растяжения и температура) наряду с выбором исходной структуры, молекулярной массы и молекулярно-массо- [c.66]

    Закон эквивалентов. Для молекулярных соединений массовые количества составляющих элементов пропорциональны их химгтеским эквивалентам] при отсутствии молекулярной структуры массовые количества составляющих элементов могут отклоняться от значений их химических эквивалентов. В аммиаке на 1 масс.ч. водорода (его химический эквивалент) приходится точно 14/3 масс.ч. азота. Последняя величина и есть эквивалентная масса азота. Для оксида титана (+2) стехиометрического состава TiO 47,90/2 масс.ч. Ti (эквивалентная масса титана в этом соединении) соединяются с 8 масс.ч. кислорода. В оксиде титана состава TiOo 82 то же количество титана соединяется с 8 0,82 = = б,56 масс.ч. кислорода, т.е. на 8 — 6,56 = 1,44 меньше его эквивалентной массы. Итак, если валовой состав соединения содержит дробные индексы, то массовые количества составляющих элементов отличаются от эквивалентных масс. [c.19]

    Вопрос о структуре и молекулярной массе протолигнина, с одн троны, тесно связан с пониманием места и роли лигнина в структу [стительной ткани, а с другой - определяет подход к оценке хара ра его превращений в технологических процессах. Вместе с тем да однозначный ответ на этот вопрос не просто, так как извлечь основн] 1ссу лигнина из растительной ткани в неизменном виде невоэможь рособы его выделения различны, а методы определения молекул 1Й массы выделенных препаратов многообразны. В результате все того данные различных авторов по этому вопросу противоречивы. [c.117]

    Условия термопластификации в значительной мере зависят от особенностей молекулярной структуры органической массы углей. Наличие, например, в ней большого количества весьма реакционноспособного кислорода, способного в условиях термической деструкции связывать водород в момент его выделения, препятствует гидрированию промежуточных продуктов и образованию термопластификата. Большое значение имеют строение и размеры элементарных структурных единиц. С ростом конденсированной ароматической части макромолекул веществ угле также снижается возможность их термопластифи- [c.248]

    Различие показателей преломления рабочего и сравнительного лотока элюента приводит к разнице в длине оптического пути, Цторая измеряется интерферометрическим РМД как изменение Длин волн света. Показания этого типа РМД достаточно линейны, а чувствительность в 10 раз выше, чем для других РМД. При оптимальных рабочих условиях возможно детектирование около 3 мкг/мл растворенного вещества. РМД может детектировать любой тип анализируемых веществ, независимо от температуры кипения, структуры, молекулярной массы и других физико-химических свойств. Предел обнаружения для лучших РМД достигает 10 е.п.п., шум в 100 раз выше шума УФ-детектора. Детектор хорошо применим в тех случаях, когда нет необходимости в высокой чувствительности, например в препаративной хроматографии. [c.275]

    Для качественного анализа и установления структуры сме сеи ХМС дает различные возможности Во первых это полные масс спектры компонентов, являющиеся как бы отпечаткамп пальцев молекулярной структуры и характеризующие молеку лярную массу и массы основных структурных фрагментов, по которым можно установить их состав и наличие определенных функциональных групп Масс спектры высокого разрешения позволяют с большой точностью установить элементный состав молекулярного и осколочных ионов а значит, и структур исходной молекулы Во вторых, масс хроматограммы дают воз можность определить времена удерживания (или индексы удер живания) дтя всех разделенных компонентов, причем благода ря селективному ионному детектированию и специальным мето дам обработки данных степень разделения масс хроматограмм как правило, значительно выше, чем обычных хроматограмм регистрируемых другими хроматографическими детекторами Селективный характер детектирования с помощью масс спект рометра позволяет выделить определенные классы веществ из сложной и даже неразделенной хроматограммы В третьих, разные методы ионизации обладают селективностью по отно шению к некоторым структурным или функциональным особен ностям анализируемых молекул Выбирая соответствующий способ ионизации, можно осуществить селективный анализ оп ределенных типов структур или удостовериться в наличии опре деленных функциональных групп [c.89]

    Молекулярная структура угля в заметной мере определяет и его надмолекулярную структуру. По мере увеличения доли углерода, входящего в ароматические фрагменты, возрастает степень их конденсированности, и за счет ван-дер-ваальсовых сил начинают формироваться кристаллитоподобные образования. Рост ароматичности происходит за счет диспропорционирования водорода между дегидрирующимися нафтеновыми структурами и подвергающимися гидрогенолизу мос-тиковыми связями и функциональными группами. В результате средняя молекулярная масса снижается и достигает минимума примерно при 75 масс. % углерода в органической массе угля, а затем начинает возрастать за счет процессов конденсации. Потеря функциональных групп приводит к ослаблению межмолекулярных донорно-акцепторных и водородных связей, что облегчает переориентацию макромолекул и формирование кристаллитов. Таким образом, изменение молекулярной структуры вещества приводит к изменению надмолекулярной структуры угля в ходе углефикации. Углям различных степеней унификации могут быть приписаны следующие надмолекулярные структуры (рис. 9.3). [c.447]

    Получение белков. Белки микробного происхождения находят применение в здравоохранении, пищевой промышленности, животноводстве, реже — в других отраслях производства. Разнонап-равленность практического применения зависит от химической структуры, молекулярной массы и физико-химических свойств белков. [c.459]

    Токсичность полийеррв зависит от их химического состава и структуры, молекулярной массы, скорости диффузии и всасывания в ткани, характера взаимодействия с компонентами живой клетки и свойств образующихся при этом веществ. Более токсичны катионные полимеры, препятствующие нормальному функционированию активных отрицательно заряженных групп ферментов (табл. 1.8) [42]. [c.54]

    Количество дисульфидов (первичных) в нефти и других сернистых соединений с двумя атомами серы является незначительным в легких и средних фракциях нефти. Из этих фракций нефтей Вассон и Агаджари были выделены 2-метилтиено(3,2)- и 3-метил-тиено (2,3) тиофены (Р. Хопкинс и др., 1966). Начиная с молекулярной массы 500 и более в нефтяных фракциях можно обнаружить присутствие заметных количеств сернистых компонентов с двумя атомами серы. По мере увеличения молекулярной массы количество этих структур возрастает и в некоторых фракциях (молекулярные массы около 800—1000) может достигнуть 100% (М. А. Бестужев, Д. Жоли, 1967). Асфальтено-смолистые компоненты нефти с молекулярной массой 900—1000 могут содержать два и три атома серы в молекуле. Более подробные данные об этих структурах приведены в разделе, касающемся асфальтенов. [c.72]


Смотреть страницы где упоминается термин Молекулярная структура и молекулярная масса: [c.154]    [c.173]    [c.24]    [c.417]    [c.2248]    [c.202]    [c.144]    [c.149]    [c.417]    [c.228]    [c.7]    [c.167]    [c.190]    [c.317]   
Смотреть главы в:

Технология пластмасс на основе полиамидов -> Молекулярная структура и молекулярная масса




ПОИСК





Смотрите так же термины и статьи:

Альдегиды, корреляция между молекулярной структурой и масс-спектрами

Амины, корреляции между молекулярной структурой и масс-спектрами

Вискозиметрический метод определения молекулярной массы и структуры полимеров

Влияние молекулярной массы, структуры и молекулярной ориентации на прочность полимеров

Индолы, корреляции между молекулярной структурой и масс-спектрами

Корреляции между молекулярной структурой и масс-спектрами

Меркаптаны, корреляции между молекулярной структурой и масс-спектрам

Молекулярная масса

Молекулярная масса и пространственная структура рецепторов

Молекулярная масса и четвертичная структура

Молекулярная масса структура

Молекулярная масса структура

Молекулярная структура и масс-спектр

Молекулярный вес (молекулярная масса))

Нитрилы, корреляции между молекулярной структурой и масс-спектрами

Нитриты, корреляции между молекулярной структурой и масс-спектрами

Нитрозоамины, корреляции между молекулярной структурой и масс-спектрам

Нитрозосоединение, корреляции между молекулярной структурой и масс-спектрами

Нитросоединения, корреляции между молекулярной структурой и масс-спектрами

Нитросоединения, корреляции между молекулярной структурой и масс-спектрами Нонан, масс-спектр

Нитросоединения, корреляции между молекулярной структурой и масс-спектрами Нонанол, масс-спектр

Структура молекулярная

Тиофены, корреляции между молекулярной структурой и масс-спектрами

Тиоэфиры, корреляции между молекулярной структурой и масс-спектрами

Трехмерная структура таблица молекулярных масс

Фенолы, корреляция между молекулярной структурой и масс-спектрами



© 2025 chem21.info Реклама на сайте