Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетон-радикалы по карбонильной группе

    Кетоны. В ароматических кетонах с карбонильной группой могут быть связаны или два ароматических радикала, или же ароматический радикал и алкил, т. е. радикал жирного ряда. [c.469]

    Мы рассмотрим следующие основные группы реакций альдегидов и кетонов а) реакции окисления, б) реакции присоединения по месту двойной связи карбонильной группы, в) реакции замещения карбонильного кислорода, г) реакции за счет углеводородного радикала и д) межмолекулярные реакции. [c.137]


    При смешанной конденсации альдегидов и кетонов в реакцию вступает карбонильная группа альдегидов, являющаяся более активной (алкильный радикал обладает электронодонорными свойствами, вследствие чего электрофильная способность карбонильного углерода кетона уменьшается) кетоны же являются донорами атомов водорода. [c.181]

    Вполне естественно, что большинство свойств альдегидов и кетонов сходны. Однако по соседству с карбонильной группой в альдегидах находится атом водорода, а рядом с карбонильной группой кетонов — два органических радикала. Это различие в структуре обусловливает различие в свойствах а)альдегиды довольно легко окисляются, в то время как кетоны окисляются лишь с трудом б) альдегиды обычно более активны, чем кетоны, в реакции нуклеофильного присоединения — характерной реакции карбонильных соединений. [c.587]

    Кетонами называют соединения, содержащие карбонильную группу, соединенную с двумя атомами углерода. В заместительной номенклатуре кетонов группа (=0) обозначается суффиксом он или префиксом оксо , в зависимости от того, является ли эта группа старшей среди остальных суффиксных групп соединения или нет. При наименовании соединений содержащих несколько кетонных карбонильных групп используют соответствующие умножающие приставки. При использовании радикало-функциональной номенклатуры названия соединений этого класса составляют путем добавления к слову кетон названий заместителей у >С=0 функции в алфавитном порядке. [c.141]

    Для получения оптически активных альдегидов и кетонов используют реагенты на карбонильную группу, в которые введен оптически активный радикал, например  [c.105]

    Альдегиды и кетоны в зависимости от природы радикала делятся на предельные и непредельные. Предельные альдегиды и кетоны с равным числом атомов углерода представляют собой изомеры. Поскольку в состав альдегидов и кетонов входит карбонильная группа, они обладают и рядом общих свойств. [c.102]

    При идентификации неизвестных кетонов их молекулярный вес можно определить по массе молекулярных ионов, которым отвечают довольно интенсивные пики, а величину радикалов у карбонильной группы — по пикам обычных осколочных ионов. По характеру перегруппировочных ионов во многих случаях можно установить характер разветвления радикалов. Так, если в кетоне К] — метил, а Кз имеет прямую цепь и разветвление около 3 атома углерода, то в масс-спектре наблюдается наиболее интенсивный пик перегруппировочных ионов с массой 58. Если К1 — этил, а Ка обладает прямой цепью и разветвлением около 4 атома углерода, то образуется интенсивный пик с массой 72. При замене в таком кетоне этильного радикала иа пропильный в спектре появляются два пика, принадлежащих перегруппировочным ионам с массой 58 и 86. Наличие иона с массой 86 характерно для кетонов, у которых К1 — изопропил, а Кг — любая длинная цепь. Если же в таком кетоне заменить К1 на бутил или гексил, то в спектре появляются интенсивные пики, принадлежащие двум перегруппировочным ионам с массой 58 и 100. [c.120]


    Если радикал в молекуле магнийорганического соединения объемистый и не содержит атомы водорода у Р-углеродного атома, то восстановление по приведенной выше схеме невозможно, а присоединение по обычному пути идет медленно (особенно если карбонильная группа в кетоне пространственно экранирована). В этом случае основным направлением реакции является образование алкоголята соответствующего винилового спирта (енола). В процессе такой реакции, которую называют енолизацией, неорганическая часть реактива Гриньяра проявляет [c.234]

    Группа атомов С=0 называется карбонильной группой или карбонилом. Карбонил может связать два радикала, образуя кетоны. [c.381]

    В, кетонах под действием кислоты Каро происходит разрыв связи между углеродным атомом радикала и углеродным атомом карбонильной группы, в циклических кетонах происходит расширение цикла с образованием лактонов  [c.660]

    Введение карбонильной группы (С = 0). Усиливает физиологическое действие соединения. Многочисленные примеры показывают, что альдегиды и кетоны физиологически активнее соответствующих углеводородов, а если вместо атома водорода в радикал ввести галоген, активность увеличивается еще больше. Например, хлораль обладает более сильным гипнотическим действием, чем ацетальдегид. [c.145]

    Используется также и такой способ наименования, при котором в порядке возрастания величины называют оба углеводородных радикала, связанных с карбонильной группой, и добавляют слово -кетон  [c.342]

    Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу С=0. В альдегидах к одной из связей углерода присоединен водород, ко второй - углеводородный радикал. Единственным исключением является первый член гомологического ряда - формальдегид Н2С=0. В кетонах к обеим связям присоединены углеводородные радикалы. Радикалы могут происходить от предельных, непредельных или ароматических углеводородов. В систематической номенклатуре эти соединения называют по исходным углеводородам с добавлением суффикса -аль для альдегидов и -он для кетонов, однако чаще альдегиды назы- [c.417]

    Пик молекулярного иона в циклических кетонах является характерным. Как и в алифатических кетонах, первичное расщепление циклических кетонов происходит по соседству с карбонильной группой, но ион. образовавшийся при этом, должен подвергнуться дальнейшему расщеплению, чтобы дать фрагмент. Основной пик в спектре циклопентанона и циклогексанона соответствует т/е 55. Механизм в обоих случаях сходен водородная перегруппировка первичного радикала до сопряженного вторичного радикала, за которой следует образование резонансно-стабилизированного иона с т/е 55  [c.63]

    Реакция протекает между карбонильной и метиленовой группами. Карбонильная группа кетонов также способна к таким реакциям, но в меньшей степени. Для того чтобы указанное взаимодействие наблюдалось, необходимо, чтобы метиленовая группа была достаточно реакционноспособна, как это, например, наблюдается при наличии активирующих соседних групп > СО, — N или —N02. Присутствие в молекуле гетероциклического или ароматического радикала, а также системы сопряженных двойных связей, влияет аналогично. К соединениям, вступающим в рассматриваемую реакцию, относятся низшие кислоты и их эфиры, кетоны, нитропарафины, нитрилы, 1,3-дикетоны, как, [c.189]

    Структурная изомерия алифатических альдегидов обусловлена только изомерией углеводородного радикала. Для кетонов возможна как изомерия углеродной цепи, так и изомерия положения карбонильной группы. [c.230]

    Исследование масс-спектров 42 кетонов с молекулярными весами от 58 (ацетон) до 198 (тридеканон-2) позволило, как и в случае других классов соединений, установить корреляции между структурой и масс-спектрами и определить некоторые эмпирические правила, с помощью которых можно проводить идентификацию кетонов [196]. Обычные осколочные ионы в масс-спектрах алифатических кетонов обязаны своим образованием, в первую очередь, отрыву от карбонильной группы радикала Нь а также радикала Йг, где Н] соответствует наименьшей алкильной группе в структуре Н1—СО— —Кг. В результате этих процессов образуются максимальный пик в масс-спектре и пик, составляющий около 40% от максимального. Ароматические и циклические кетоны диссоциируют аналогично по связи карбонильной группы с алкильным, ароматическим или циклическим радикалом. Наиболее интенсивные пики в их спектрах соответствуют отрыву от молекулярного иона групп с массами 28, 29, 42 и 43. Значительно более сложные процессы приводят к образованию перегруппировочных (псевдомолекулярных) ионов в масс-спектрах алифатических кетонов, но для ароматических и циклических кетонов наличие перегруппировочных пиков не характерно. [c.120]

    Осуществить конденсаци/о Х1а с алифатическими альдегидами (нониловый), кротоновым альдегидом, а также кетонами (цикло-пентанон, циклогексанон, ацетофенон) не удалось, так как поло жительный индукционный эффект алкильного радикала в этих соединениях увеличивает электронную плотность углеродного атома карбонильной группы. [c.79]


    Низшие кетоны часто называют по радикало-функциональной номенклатуре. Названия кетонов, в которых карбонильная группа связана с бензольным кольцом, имеют суффикс -фенон. [c.117]

    Для того чтобы назвать кетон, называют оба- углеводородных радикала при карбонильной группе и добавляют окончание кетон или аналогично альдегидам к названию соответствующего углеводорода добавляют слог -он (диэтилкетон, метилэтилкетон и т. д.). И здесь иногда применяются тривиальные названия (ацетон и др.), [c.247]

    Пены находят широкое применение, в частности, в процессах флотации руд металлов, твердого топлива и других полезных ископаемых. Пенная флотация частиц минералов происходит вследствие их адгезии к пузырькам воздуха, которые вместе с частицами поднимаются на поверхность раствора. Порода хорошо смачивается водой и оседает во флотомашинах. Флотационные реагенты по характеру действия делят на три класса собиратели,регуляторы и пенообразователи. Собиратели способствуют адгезии частиц к пузырькам газа. Их молекулы имеют полярную часть, обладающую специфическим сродством к данному минералу, и неполярную — углеводородный радикал, который гидрофобизнрует поверхность частицы и обеспечивает ее сродство к пузырьку газа. Регуляторы применяют для увеличения избирательности флотационного процесса они изменяют pH (кислоты, щелочи), подавляют смачиваемость минералов и активизируют их флотацию (соли с флотационно-активными ионами), улучшают смачиваемость породы, уменьшают вредное влияние находящихся в пульпе ионов и т. д. Пенообразователи, или вспениватели, повышают дисперсность пузырьков и устойчивость пены. Обычно это соединения, содержащие в молекуле гидроксильные группы (спирты, фенолы), трехвалентный азот (пиридин, ароматические амины), карбонильную группу (кетоны). [c.351]

    Ароматические кетоны. В ароматических кетонах с карбонильной группой могут быть связаны или два ароматических радикала, или ароматический радикал совместно с алкилом. Примером первой группы является дифенижетон, или бензофенон С,Н,—СО—С,Н,, представителем второй группы жирноароматических кетонов может служить метилфенилкетон, или ацетофе-нон СН,—СО—С,Н,  [c.314]

    Из кетонов, содержащих карбонильную группу в цикле, радикал-анионы получены в случае 9-флуоренона [58, 136], 2,7-дифторфлуоренона [136], 4,5-фенантриленкетона [136] и антрона [c.31]

    Таким образом, алкильные радикалы, обладая электронодонорными свойствами, замедляют эту реакцию, а в случае хлораля — за счет электроноакцепторного действия группы СС1з (—/-эффект) происходит увеличение реакционной способности карбонильного углерода. Следует обратить внимание на то, что в случае кетонов в отличие от альдегидов с карбонильной группой связаны два радикала, понижающие активность молекулы. Вот почему альдегиды-обладают большей химической активностью, чем кетоны. [c.127]

    Установлено, что кетоны индольного рядд, содержащие в положении 1 углеводородный радикал, при нагревании с полисульфидом аммония с удовлетворительным выходом переходят в амиды соответствующих кислот. По такому пути реагируют кетоны, содержащие карбонильную группу в положении 2 и 3. [c.713]

    При окислении парафинов и нафтенов карбоновые кислоты образуются с деструкцией углеродной цепи. Наиболее вероятно, что непосредственными предшественниками кислот являются кетоны. Они окисляются легче, чем соответствующие углеводороды и преимущественно по атому углерода, соседнему с карбонильной группой, образуя а-кетопероксидный радикал и а-кетогидропероксид  [c.360]

    Ароматические кетоны — это соединения, в которых карбонильная группа связана с двумя ароматическими радикалами. Если один радикал ароматический, а другой — aлифaтичe киЙJ то такие кетоны называются жирно-ароматическими  [c.316]

    Кетоны в обычных условиях не окисляются. В более жестких условиях (при повышенной температуре, в присутствии катализаторов) они окисляются только сильными окислителями (хромовая смесь и т. п.). При этом происходит разрыв углерод-углеродной связи, соединяющий углеводородный радикал с карбонильной группой, и образование двух кислот. Кетоны не вступают в реакцию полимеризации, а для альдегидов она характерна например, формальдегид полимери-зуется уже при обычной температуре в присутствии катализаторов (H2SO4. НС1)  [c.263]

    Реакция. Расщепление кетонов по Норишу типа I, фотохимическое расщепление связи при а-углеродном атоме возбужденной карбонильной группы на ацильный и алкильный радикалы, декарбонирование ацильного радикала и его рекомбинация с алкильным радикалом с образованием С—С-связи. То, что рекомбинация происходит вне клетки растворителя, можно доказать анализом продуктов реакции несимметричных кетонов [89]. [c.243]

    Синтез кетонов из солей карбоновых кислот становится возможным, если последние предварительно обработать дихлортрифенилфосфораном (приготовляют, пропуская хлор через раствор трифенилфосфина в инертном растворителе). Полученное производное (I) вводят в реакцию с магнийорганическим соединением. Выход кетонов составляет от 80 до 95%. Радикал кислоты может содержать галоген, цианогруппу или карбонильную группу, которые в этом превращении не участвуют. Таким образом, рассматриваемая реакция может служить методом синтеза функционально замещенных кетонов  [c.358]

    При электролизе кетон-радикала 2 На ртутном катоде при pH 2,5 и потенциале —1,1 В, соответствующем потенциалу второго пика на переменно-токовой полярограмме, радикальный фрагмент восстанавливается сначала до гидроксиаминовой группы, которая далее превращается во вторичный амин. Карбонильная группа Ие претерпевает никаких превращений. Продуктом электролиза является триацетонамин 1. Последний при потенциале —1,.3 В, соответствующем третьему пику кетон-радикала 2, превращается в 4-гидрокси-2,2,6,6-тетраметилпиперидин И, [c.48]

    При электролизе кетон-радикала 2 в щелочной среде с ртутным катодом в области потенциалов —1,3- —1,8 В радикальный фрагмент восстанавливается до гидроксиаминовой группы, а карбонильная группа — до спиртовой и продуктом электролиза является 1,4-днгидроксипиперидин 3. [c.48]

    Реакции альдольно-кротоновой конденсации. Эти реакции протекают с альдегидами и кетонами, у которых атом углерода, непосредственно связанный с карбонильной группой, имеет хотя бы один атом водорода. Для понимания механизма реакции необходимо рассмотреть влияние карбонильной группы на алифатический радикал. Электроноакцепторная карбонильная группа вызывает поляризацию связей с соседними атомами, в частности связи С—Н у а-атома углерода. Атом водорода становится подвижным, возникает СН-кислот-ный центр (сравните с механизмом реакции элиминирования в галогеналканах, см. 4.4.3). За счет этого кислотного центра оксосоединение может при действии сильных оснований отщеплять протон и превращаться в карбанион. Отрицательный заряд в образовавшемся карбанионе делокализован при участии альдегидной или кетонной группы. Анион представляет собой сильный нуклеофил и реагирует со второй молекулой карбонильного соединения по механизму нуклеофильного присоединения. [c.242]

    Реакция замещения. Для альдегидов и кетонов характерна реакция замещения кислорода карбонильной группы на радикал = NOH. В результате реакции образуются альдоксимы или кетоксимы. Метод, основанный на этих реакциях, называют методом оксимирования по продуктам реакции, или гидроксиламиновым методом, по применяемому рабочему раствору. В качестве рабочего раствора используют спиртовые или водные растворы солянокислого д гидроксиламина NHgOH-H l или сернокислого гидроксиламина (ЫНг0Н)2-Н2804. При действии солей гидроксиламина на карбонильные соединения происходит образование оксима с выделением эквивалентного количества минеральной кислоты (соляной или серной)  [c.228]

    Основное направление научных исследований — структурная органическая химия. Экспериментально доказал тождественность всех четырех валентностей углерода. Опроверг (1865) представления Л. В. Г, Кольбе об особой изомерии кетонов. получающихся разными путями, доказав, что полученный двумя разными способами метиламинкетон — один и тот же продукт. Сформулировал (1869) правило, согласно которому при окислении кетонов разрываются связи между карбонильной группой и одним из соседних с ней атомов углеродного радикала, причем состав и строение радикала влияют на место разрыва в кетоне и на состав продуктов окисления (правило Попова). Занимался (с 1864) цинкорганическими синтезами, главным образом окси- и оксосо-единений. Вместе с Э. К. Т. Цинке в лаборатории Кекуле сформулировал (1872) правило, согласно которому окисление гомологов бензола начинается с углеродного атома, непосредственно связанного с бензольным кольцом. Впервые в истории химии построил (1872) ряд радикалов но возрастающей устойчивости и установил правило, согласно которому более устойчивый радикал отщепляется вместе с карбонильной группой. Это дало возможность устанавливать химическое строение кетонов, спиртов, кислот и углеводородов. [104] [c.402]


Смотреть страницы где упоминается термин Кетон-радикалы по карбонильной группе: [c.283]    [c.567]    [c.359]    [c.202]    [c.168]    [c.567]    [c.50]    [c.471]    [c.202]    [c.308]    [c.279]   
Свободные иминоксильные радикалы (1970) -- [ c.46 , c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Группа кетонная

Карбонильная группа



© 2025 chem21.info Реклама на сайте