Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства промышленных молекулярных сит

    ПОЛУЧЕНИЕ И свойства ПРОМЫШЛЕННЫХ МОЛЕКУЛЯРНЫХ СИТ [c.737]

    Получение и свойства промышленных молекулярных сит 743 [c.743]

    Цеолиты типа молекулярных сит легко вступают в реакции ионного обмена. Ионы натрия, ограничивающие вход молекул через восьмичленное кислородное кольцо в молекулярных. ситах типа 4А, можно удалить обменом на ионы кальция. Поэтому на этом материале не могут адсорбироваться молекулы размером более 5А. На рис. 2 показано влияние степени замещения ионов натрия ионами кальция на адсорбционные свойства. Молекулярные сита типа А, в которых более 30% натрия заменены катионами кальция, адсорбируют молекулы размерами до 5А и выпускаются как сита типа 5А. (промышленные молекулярные сита типа 5А, выпускаемые фирмой Линде содержат около 70% катионов кальция и лишь 30% натрия).- Как видно из рис. 2, двуокись углерода, диаметр молекулы которой равен 2,8 А, адсорбируется одинаково хорошо на молекулярных ситах типа 4А и 5А. Изобутан (диаметр молекулы 5,6 А) не адсорбируется на обоих 4,9 А) не может адсорбироваться до замены примерно 30% материалах. С другой стороны н-бутан (диаметр молекулы ионов натрия кальцием при большей полноте замены натрия он адсорбируется очень быстро. Таким образом, молекулярные сита типа 5А адсорбируют не только все те вещества, которые адсорбируются на ситах типа 4А, но и углеводороды нормального строения, не адсорбируя углероды, изостроения и циклические углеводороды, содержащие более, чем трехчленные циклы. [c.201]


    Следует отметить одно обстоятельство любая молекула полимера имеет определенные свойства (например, молекулярную массу) полимер же как продукт, получаемый в лаборатории или промышленным путем, представляет собой смесь, молекулярная масса которой колеблется в некоторых интервалах. Этот интервал молекулярных масс может быть узким или широким в зависимости от условий реакции и природы реагентов, участвующих в полимеризации. [c.327]

    Специалисты, работающие в промышленности (инженеры, гидравлики и др.), интересуются прежде всего макроскопическими свойствами вязкой жидкости, а связь между этими свойствами, и молекулярной структурой жидкости или конкретными свойствами молекул не имеет для них значения. [c.105]

    Указанный метод был использован для определения молекулярного веса политетрафторэтилена, близкого по свойствам к полимеру, применяемому в промышленности. Молекулярный вес образцов, определенный этим методом, составил 389 ООО—8 900 ООО. Кривая молекулярно-весового распределения политетрафторэтилена имеет резко выраженный максимум . [c.42]

    Распределение по молекулярным весам оказывает определенное влияние на физико-механические свойства полимера, поэтому оно является одним из важных факторов для контроля и улучшения эксплуатационных свойств промышленных изделий. Следовательно, определение распределения по молекулярным весам является одной из важнейших проблем полимерной химии. В настоящее время этот весьма трудный вопрос решен еще далеко не полностью. [c.34]

    Гидрированный полибутадиен близко напоминает по физическим свойствам полиэтилен. Принципиальное отличие его в том, что он имеет более высокую прочность на разрыв, более низкие жесткость, твердость и температуру хрупкости. Сопоставление всех этих свойств наводит на мысль, что гидрированный полибутадиен имеет более высокий молекулярный вес, чем промышленный полиэтилен, и до некоторой степени меньшую кристалличность. Это находится в соответствии с известными дан- [c.169]

    В последнее время были развиты методы растворной полимеризации для получения чередующихся (альтернантных) сополимеров [16]. Такой подход к проблеме сополимеризации позволяет получить полимеры принципиально новой структуры и, возможно, избежать проблем, связанных с композиционной неоднородностью сополимера. Альтернантные сополимеры бутадиена с нитрилом акриловой кислоты уже выпускаются в промышленном масштабе. Показано, что в том случае, когда эти сополимеры содержат звенья бутадиена в гране-конфигурации, полимерные цепи способны к ориентационной кристаллизации [17, 18]. Для получения резин с оптимальными физико-механическими свойствами необходимо получение альтернантных сополимеров с достаточно высокой молекулярной массой ([г)] = 2—2,5). [c.63]


    Приведенные выше данные свидетельствуют о непосредственной связи технических свойств полибутадиенов с их молекулярными параметрами микроструктурой, молекулярной массой, молекулярно-массовым распределением и разветвленностью полимерных цепей. Однако качество СК до настоящего времени оценивается большим числом показателей, характеризующих технологические и физико-механические свойства резиновых смесей и их вулканизатов. Оценка качества каучуков, и в частности бутадиеновых, по их молекулярным параметрам представляется более точной и объективной, но количественное определение молекулярной массы, ММР и разветвленности требует применения сложной (и дорогостоящей) физической аппаратуры, трудоемких методов и поэтому не нашло применения в промышленной практике. В последние годы был проведен цикл исследований, показавших, что достаточно [c.195]

    Синтез термоэластопластов осуществляется с помощью катализаторов, образующих так называемые живые цепи, сохраняющие способность к росту в течение неограниченного времени [4]. В качестве катализаторов такого типа промышленное признание получили литийорганические соединения. Они позволяют получать полимеры с более регулярной микроструктурой эластомерного блока, чем при использовании органических соединений других щелочных металлов, и тем самым обеспечить термоэластопластам лучший комплекс свойств. Литийорганические инициаторы, используемые для синтеза термоэластопластов, должны обладать высокой скоростью инициирования, обеспечивающей получение полимеров с узким молекулярно-массовым распределением. С этой целью обычно применяется вгор-бутиллитий [5]. [c.284]

    Активность катализатора определяется соотношением алкилов алюминия и четыреххлористого титана. Изменяя это соотношение, можно регулировать процесс полимеризации и получать полимеры с заданными свойствами. При увеличении содержания четыреххлористого титана в сфере реакции возрастает скорость полимеризации этилена, значительно повышается выход полиэтилена, но уменьшается его молекулярный вес. Активность катализатора можно значительно повысить введением, третьего компонента. В промышленности обычно применяют диэтилалюминийхлорид, в присутствии которого легче регулировать процесс полимеризации и получать полиэтилен с необходимым молекулярным весом. Кроме того, диэтилалюминийхлорид является менее пожаро- и взрывоопасным, чем три-этилалюминий. [c.7]

    Табл. 7 иллюстрирует влияние содержания К2О на свойства двух типов промышленных катализаторов Сасол плавленый магнетит для реакторов с циркулирующим кипящим слоем и осажденный РегОз для реакторов с неподвижным слоем. Упомянутая в предыдущем подразделе взаимосвязь между количествами образующихся продуктов позволяет охарактеризовать распределения продуктов по числу атомов углерода на основании селективности или по СН4, или по твердому парафину. (Для процессов в неподвижном слое обычно указывают селективность по твердому парафину, так как селективность по СН4 очень низка и определяется менее точно.) Из табл. 7 видно, что увеличение содержания К2О в обоих катализаторах сильно повышает селективность по продуктам с большей молекулярной массой. Возрастает ненасыщенность продуктов. Приведенные значения селективности образования легких кислот указывают, что концентрация в катализате кислородсодержащих продуктов также увеличивается. С ростом концентрации К2О активность катализатора в реакторе с кипящим слоем возрастала, а в неподвижном слое — уменьшалась. Это не является особенностью [c.186]

    В данной главе описано промышленное получение наиболее ванхыых цеолитов основных типов и рассмотрены основные их свойства. Промышленное применение молекулярных сит стимулировало интенсивные научные поиски, которые привели к открытию новых химических и структурных свойств цеолитов. [c.737]

    При использовании молекулярных сит для промышленного разделения учитываются следующие характерные их свойства 1) молекулярные сита погло1цают только те вещества, молекулы которых соответствуют размерам пор 2) молекулярные сита имеют высокую адсорбционную емкость при низких концентрациях адсорбата 3) ненасыщенные органические соединения и полярные вещества особенно хорошо удерживаются молекулярными ситами 4) молекулярные сита способны поглощать влагу из газов даже [c.187]

    В табл. 4 приведены некоторые свойства (вязкость, молекулярный вес) промышленных образцов ПЭТФ. [c.194]

    В качестве ингибиторов были предложены ра.зличные органические соединения. Известно, что в других системах очень эффективными ингибиторами коррозии алюминия являются такие вещества, как экстракты торфа, агар, крахмал и растворимые масла. Зуссманом и Акерсом выяснены ингибирующие свойства промышленных экстрактов таннина. Они нашли, что этот ингибитор обладает очень плохими защитными свойствами. Для рассматриваемых целей наиболее благоприятные результаты получены с маслорастворимыми сульфонатами, описанными Симоновым [146]. Молекула сульфоната содержит полярную группу и углеводородную часть. Эта группа связывается с металлической поверхностью, тогда как углеводородный остаток имеет большое сродство с маслом. Использование для сульфоната подходящего масляного растворителя приводит поэтому к образованию масляной пленки, прочно пристающей к металлу и препятствующей проникновению воды. Чтобы используемые сульфонаты обладали достаточной олеофпль-ностью, нх молекулярный вес должен быть больше 400. Препятствием для применения этого вида обработки являются те же самые причины, которые были упомянуты ранее для растворимых масел — возможность разрушения масла, перегрев и локальная коррозия. [c.128]


    Бриедис И. П. Молекулярно-массовые характеристики и их корреляция с реологическими свойствами промышленных термопластов. Автореф. дис.. .. д-ра техн. наук Рига, ИМИ АН СССР, 1985. [c.259]

    В качестве промышленных гетерогенных катализаторов используют лишь ограниченное число цеолитов. Дело в том, что для применения в промышленных процессах необходимо, чтобы цеолиты превосходили уже существующие катализаторы по активности, а во многих случаях и по селективности. Основное применение цеолитные катализаторы нашли в неф-теперерабатьшающей промышленности, где их использование связано с двумя важнейшими свойствами цеолитов молекулярно-ситовым эффектом и чрезвычайно высокой кислотностью. Сравнительно недавно цшроко-пористые цеолиты начали использовать и в качестве носителей для тонко-диспергированных металлов. Промышленные катализаторы относятся к фожазитам РС и У) или к синтетическим морденитам и цеолитам Т (типа эрионита). [c.15]

    Полипропилен. Среди полимерных материалов, получивших промышленное признание в шестидесятые годы, по ряду своих свойств полипропилен безусловно занимает ведущее место. Его получают из дешевого и доступного пропилена полимеризацией при низком давлении на катализаторе Циглера — Натта. Полимер имеет в основном стереорегулятор-ную структуру (все метильные группы расположены в строгой последовательности), чем и объясняются его высокие физико-механические свойства. Промышленный полипропилен имеет молекулярный вес 80 000— 200 000 и содержание стереорегулярной (изотактической) части 80—95%. [c.140]

    Предварительную оценку потенциальных возможностей не — сзтяного сырья можно осуществить по комплексу показателей, входящих в технологическую классификацию нефтей. Однако этих показа — т елей недостаточно для определения набора технологических процес — ( ов, ассортимента и качества нефтепродуктов, для составления материального баланса установок, цехов и НПЗ в целом и т.д. Для этих целей т лабораториях научно-исследовательских институтов проводят тщательные исследования по установлению всех требуемых для проектных разработок показателей качества исходного нефтяного сырья, его узких фракций, топливных и масляных компонентов, промежуточного сырья ддя технологических процессов и т.д. Результаты этих исследо — паний представляют обычно в виде кривых зависимости ИТК, плотности, молекулярной массы, содержания серы, низкотемпературных и нязкостных свойств от фракционного состава нефти (рис.3.3), а также 1 форме таблиц с показателями, характеризующими качество данной нефти, ее фракций и компонентов нефтепродуктов. Справочный материал с подробными данными по физико-химическим свойствам отечественных нефтей, имеюищх промышленное значение, приводится в многотомном издании "Нефти СССР" (М. Химия), [c.92]

    Концерн FU HS является пионером в разработке целого ряда новых технологий, например молекулярной конверсии минеральных масел (серия масел M ), производства экологически безопасных смазочных материалов (серия PLANTO). Молекулярная конверсия (M ) - это название технологии, с помощью которой впервые в Германии в промышленном масштабе было химически конвертируемо и улучшено минеральное масло методом гидрокрекинга под воздействием высокой температуры и давления в каталитическом конвертере молекулярная структура масла изменяется и маслу придаются заданные свойства. Используя МС-масло в качестве базового, с 1987 г. FU HS выпускает высокоэффективные моторные, трансмиссионные и гидравлические масла нового поколения. [c.150]

    В настояшее время в опытном и промышленном масштабе выпускаются как изопреновые (СКИЛ, карифлекс и др.), так и бутадиеновые (СКДЛ, интен и др.) каучуки литиевой полимеризации. Для улучшения технологических свойств этих полимеров необходимо регулирование их ММР на рис. 2 приведены кривые ММР (гель-хроматограммы) полиизопренов типа карифлекс. а в табл. 2 — данные по молекулярной структуре ряда марок промышленных полибутадиенов литиевой полимеризации. [c.57]

    Другие каучуки, получаемые методом растворной полимеризации. Методом полимеризации в растворе получают морозостойкие и бензомаслостойкие каучуки на основе циклических окисей— сополимеры окиси пропилена и аллилглицидилового эфира (СКПО), а также сополимеры окиси этилена и эпихлоргидрина [14, 15]. Эти каучуки выпускаются в промышленном масштабе. Предполагается, что для сополимеров типа СКПО ухудшение эластических свойств в области низких температур, по-видимому, связано с образованием стереорегулярных — изотактических блоков пропиленоксида и другими особенностями их молекулярной структуры. В случае сополимеров окиси этилена и эпихлоргидрина, где сомономеры входят в полимер в соизмеримых количествах (обычно 1 1), ухудшение эластических свойств может быть связано с образованием длинных блоков обоих сойолимеров, которые способны к образованию кристаллической фазы. [c.62]

    Синтез сегментированных или блокполиуретанов, как и соответствующая реакция диизоцианата и низкомолекулярного диола -(жесткий сегмент), осуществляется посредством конденсацноннвй полимеризации. Это неизбежно выражается в широком молекулярно-массовом распределении как сегментов, так и полимера в целом [52, 53]. В связи с этим заслуживают внимания данные по влиянию молекулярно-массового распределения на свойства сегментированных полиуретанов [54]. Объектами исследования служили системы, в которых действие водородных связей было сведено к нулю, так как наличие их могло затруднить трактовку экспериментальных результатов. Молекулярная масса эластичного сегмента менялась от 1003 до 1744. Полидисперсные жесткие сегменты получались ступенчатой реакцией 1,4-бисхлорформиата и пиперазина. Полиуретан затем синтезировали из предварительно сформированных жестких и полиэфирных сегментов. Учитывая, что промышленный политетрагидрофуран, использованный авторами, имел широкое молекулярно-массовое распределение, образцы с узким молекулярно-массовым распределением готовились из отдельных фракций. [c.541]

    Для серийного производства мелких деталей оказались незаменимыми уретановые термоэластопласты вследствие возможности переработки их современными скоростными методами литья под давлением или экструзией на оборудовании промышленности пластмасс. Таким способом перерабатываются высокомодульные эластомеры, используемые в качестве конструкционных материалов. К изделиям из них относятся детали для авхомобилей (твердость по Шору А 85—95) сферические подшипники рычагов переключения скоростей, подшипники рулевой колонки, шайбы под концевые подшипники. Термоэластопласты с высокой твердостью пригодны также для уплотнения пневматических и гидравлических устройств, изготовления бесшумных шестерен, сильфонов, деталей низа обуви. Термопласты с молекулярной массой менее 20 000 растворимы и применяются для изготовления клеев, которые обладают уникальным свойством — прочно склеивать любые виды натуральной и искусственной кожи. [c.548]

    Наиболее важными структурными свойствами мембран являются их химическая природа, наличие заряженных частиц (на молекулярном уровне) и микрокристаллитной структуры (надмолекулярный уровень), пористость (размер пор, распределение пор по размерам и плотность, объем пустот), тип ячейки и степень асимметрии. Наиболее важными технологическими свойствами мембран являются проницаемость и селективность. Хотя большинство этих параметров и можно более или менее точно определить, они могут меняться со временем или с изменением рабочих условий. Поэтому такие вторичные свойства, как сопротивляемость сжатию, термостойкость, стойкость к гидролизу или микробному разложению, также во многом определяют экономику данного процесса и даже саму возможность его промышленного осуществления. [c.64]

    При добавлении Ь120 к N 0 на каждый ион замещающий появляется 1 ион и дырочная проводимость (т. е. проводимость р-типа) возрастает (стрелка 1), при добавлении к N10 ОагОз число ионов (осуществляющих проводимость р-типа) уменьшается и проводимость р-типа падает (стрелка ). С работах ряда авторов [см., например Рогинский С. 3., Хим. наука и промышленность, 2, 138 (1957)] были изучены каталитические свойства окислов-полупроводников (N 0, 2пО,ХггОз и др.) и показано существование корреляции между их электронными свойствами и каталитической активностью, а также возможность путем соответствующих добавок изменять в заданном направлении каталитические свойства этих окислов для определенных реакций. Так, например, при окислении СО на N 0 введение в N 0 даже нескольких сотых процента заметно снижает каталитическую активность N 0 (повышает энергию активации изучаемой реакции) 2п0 с добавками, понижающими ее активность по отношению к окислению СО и распаду МгО, имеет повышенную активность для реакции изотопного обмена молекулярного водорода. — Прим. перев. [c.28]

    Почти все известные присадки, являясь поверхностно-активны-ми веществами (ПАВ), концентрируются на поверхности раздела фаз, образуя тончайщие адсорбционные слои, резко изменяющие молекулярную природу и свойства поверхностей. При этом, во-первых, изменяется кинетика процессов перехода веществ через поверхность раздела фаз, во-вторых, что не менее важно, изменяются условия молекулярного взаимодействия соприкасающихся фаз. Добавлением малых количеств ПАВ можно изменить ход физико-химических процессов и условия взаимодействия фаз. Впервые для отделения жидкой фазы (масла) от твердой (парафина) была использована запатентованная Г. И. Девисом депрес-сорная присадка парафлоу 1[88]. В сороковых годах многими работами было подтверждено, что добавление депрессорных присадок улучщает показатели процесса депарафинизации [89, 90], однако в промышленность эта идея внедрена не была. За последние 10—15 лет интерес к использованию присадок в процессе депарафинизации масел значительно возрос, о чем свидетельствуют многочисленные публикации и патентные данные >[35, 42, 45, 46, 91, 92 и др.]. Остановимся только на последних работах. [c.167]

    Фундаментальные и прикладные исследования на современном этапе развития науки связаны с огромным количеством поступающей информации, выполнением большого числа экспериментальных работ. Организация сбора, обрабо1ки, хранения и анализа этого потока данных традиционными способами не может удовлетворить потребности теоретических и прикладных работ ни по точности, ни по оперативности получения. Современная фунда-ментальйая наука анализирует явления на атомарно-молекулярном уровне, и для их идентификации необходима очень высокая точность. Что касается прикладных наук, то, помимо точности, получаемая информация должна обладать свойствами доступности, полноты и оперативности, с тем чтобы способствовать скорейшему внедрению разработок в промышленность. [c.52]

    Так, известны различные методы получения полиэтилена. Первоначально промышленный метод заключался в проведении процесса при температуре около 200°С и давлении 1200—2000 атм при возбуждении реакции небольшими добавками кислорода. Однако в настоящее время полиэтилен получают при менее высоком и даже при атмосферном давлении в присутствии катализаторов. Хорошие результаты получены в случае применения в качестве катализатора триэтилалюминия А1(С2Н5)з совместно с четыреххлористым титаном Т1С14. Описано применение катализатора, состоящего из 8Юг и АЬОз с нанесенной на них окисью хрома, и др. В зависимости от условий процесса и вида катализатора получается полиэтилен с различным средним молекулярным весом, с различной степенью разветвленности цепей, степенью кристалличности и соответственно различными свойствами.  [c.562]

    В Советском Союзе эпоксидные смолы применяются в основном в виде лаков для защиты от коррозии емкостей, трубоироводов, цистерн и др. Нащей промышленностью освоены различ-H ,ie марки эпоксидных смол, известных под маркам,ih Э/1,-5, ЭЛ-6, ЭД-13, ЭД-15, Э-40, Э-41, Э-400 и различающихся молекулярным несом, физико-механическими свойствами, адгезией, типом от-вердителя и др. Некоторые смолы отверждаются без нагрева (холодная сушка) или требуют незначительного нагрева. [c.407]

    В промышленности уже в течение многих лет применяется окисление прямогонных нефтяных остатков, главным образом с целью изменения реологических свойств получаемых из них битумов. В процессе продувки остатков воздухом кислород взаимодействует с компонентами сырья при температуре 200—350 °С. При этом химический состав и соответственно молекулярная структура и свойства остатков изменяются. Соотношение углерод водород для асфальтенов снижается при окислении с 11 1 до 10,5 1. Для смол и масел это соотношение уменьшается, но в меньшей степени (с 8 1 до 7,7 1). Пары воды, двуокись углерода и низкомолекулярные продукты окисления (эфиры, кислоты и альдегиды) удаляются из реакционного объема вместе с продувочными газами. Целевым продуктом является окисленный битум, который существенно отличается от исходного, неокисленного сырья. При окислении изменяется его групповой состав уменьшается содержание масел и значительно возрастает количество асфальтенов, продуктов поликонденсации. Количество силикагелевых смол в некоторых случаях уменьшается, а в других несколько возрастает. [c.32]

    Формальдегид является реакционноспособным мономером, он способен подвергаться атаке как электрофильными, так н нуклеофильными агентами. Это обусловливает возможность применения большого количества катализаторов ионной природы для полимеризации формальдегида. Выбор катализатора зависит от заданных свойств полимера. Аннонные катализаторы позволяют получать продукт с высоким молекулярым весом и широким молекулярно-весовым распределением, так как они менее чувствительны к полярным примесям. Но в промышленности применяют и катионные катализаторы, поскольку практическое значение имеет полиформальдегид со сравнительно небольшим молекулярным весом. [c.48]

    Для трансмиссионных масел разработана и выпускается в промышленности присадка, ОТП (осерненный тетрамер пропилена). Ее получают обработкой серой фракции 150—200 °С полимера пропилена, состоящей в основном из тетрамеров и пентамеров. Присадка ОТП имеет среднюю молекулярную массу 370—420 и содержит 20—22 % серы. Она является высокоэффективной противозадирной присадкой, не уступающей бис(алкилбензил)дисульфидам. При добавлении б—6 % присадки ОТП к маслам повышаются их эксплуатационные свойства и снижается расход. В последние годы предложен сцособ очистки ОТП [а. с. СССР 734 249] путем обработки его 38—58 %-ным раствором щелочи при нагревании. ОТП вначале охлаждают до 70—95 °С, очистку ведут при нагревании до 120—140 °С. Очищенная таким образом присадка обладает также противокоррозионными свойствами. [c.108]


Смотреть страницы где упоминается термин Свойства промышленных молекулярных сит: [c.767]    [c.6]    [c.321]    [c.510]    [c.336]    [c.94]    [c.150]    [c.128]    [c.501]   
Смотреть главы в:

Цеолитовые молекулярные сита -> Свойства промышленных молекулярных сит




ПОИСК





Смотрите так же термины и статьи:

ДНК молекулярные свойства



© 2025 chem21.info Реклама на сайте