Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы изомеризации высших алканов

    Газойль и фракции, полученные при фракционной перегонке тяжелых жидких топлив, используют в каталитическом крекинге. Процесс проводят при высоких температурах (>450°С) на кислых катализаторах, обычно на алюмосиликатах, молекулярных ситах или цеолитах. Предполагают, что протекающие реакции включают образование карбениевых ионов, при котором проходит расщепление С—С-связей, сопровождающееся изомеризацией н-алканов в разветвленные алканы. Реакцию расщепления можно рассматривать как реакцию, обратную реакции алкилирования алканов, описанной ранее. Конечным результатом процесса является превращение высококипящих нефтяных фракций в высокооктановые топлива. Родственным каталитическому крекингу процессом является гидрокрекинг, при котором нефтяные фракции и водород проводят над бифункциональным катализатором, обладающим как крекирующей, так и гидрирующей активностью. Катализатором крекинга служит алюмосиликат, а катализатором гидрирования — металлы никель, платина или палладий. Таким образом, алкены, образующиеся при крекинге, быстро гидрируются в алканы. [c.158]


    Процесс был реализован на установке гидроочистки дизельных фракций Л-24-6, дооборудованной вторым реактором. Принципиальная схема процесса мало отличается от схем реакторного блока установок высоко-температурой изомеризации легких алканов. В России процессы гидроизомеризации или мягкого гидрокрекинга распространены недостаточно широко. [c.905]

    Благодаря более высокой активности и селективности, а также низким эксплуатационным затратам низкотемпературные процессы изомеризации пентан-гекса-новых фракций занимают лидирующее место по числу промышленных установок. Усовершенствование процессов, разработка новых более эффективных катализаторов и технологии жидкофазного адсорбционного выделения н-алканов позволяют в настоящее время получать изокомпоненты с октановым числом до 93 пунктов (ИМ). Вместе с тем для заводов, где требуется относительно невысокое октановое число изокомпонентов предлагается также более простая технология среднетемпературной изомеризации с применением новых регенерируемых цеолитных и металлоксидных катализаторов. Сведения о составе предлагаемых катализаторов и особенностях их эксплуатации носят, как правило, конфиденциальный характер. [c.869]

    Стабильность металлцеолитных катализаторов и их регенерация. Металлцеолитные катализаторы обычно используют в процессах, проводимых под давлением водорода, и при этих условиях они проявляют высокую стабильность. Так, активность катализатора изомеризации н-алканов МВ-5390 (SK-100) на основе цеолита типа У не снизилась после 2000 ч работы [8]. При испытании контакта Pt-СаНУ в изомеризации н-гексана в течение более 2500 ч изме- [c.181]

    Закоксованные катализаторы изомеризации н-алканов на основе цеолитов типа Y с 0,5% платины или палладия предлагают реактивировать следующим образом выжигают отложения кокса, охлаждают до температуры ниже 315° С, проводят частичную гидратацию (равномерно по всей массе контакта) и, наконец, медленно нагревают в атмосфере водорода при 450° С до полного восстановления активности [149]. Особенно важно, чтобы в процессе гидратации вода распределилась в катализаторе равномерно. Добиться этого можно тремя способами 1) охладив катализатор до комнатной температуры, выдерживают его на воздухе до адсорбции 4—10% HjO и прогревают до 80° С, чтобы ускорить диффузию молекул HjO 2) проводят первые две операции, а далее катализатор не прогревают, а помещают в сосуд, закрывают и выдерживают до установления равновесия 3) через катализатор пропускают инертный газ, содержащий определенное количество паров воды, до введения 4—10% Н2О. Активность катализаторов гидрокрекинга углеводородного сырья с высоким содержанием азота (> 0,05%) можно восстановить, обрабатывая их в течение 0,25—16 ч водородом при температуре, на 40° С превышающей температуру [c.183]


    Декатионированные и поликатионные формы цеолитов типа фожазита проявляют некоторую активность в изомеризации н-алканов и цикланов и в отсутствие гидро-дегидрирующих компонентов, но при температурах на 80—100° С вьшхе, чем металлцеолитные катализаторы [22, 35, 237, 242]. В этих условиях фожазиты быстро дезактивируются. Высокой активностью обладают водородная [16, 35, 36, 219, 221, 222, 224, 225] и некоторые катионные модификации [35, 219, 222] морденита. Активность Н-морденитов в реакции н-пентана не меняется при введении палладия [35, 36, 222, 224, 225]. Однако небольшие количества благородных металлов резко повышают селективность и стабильность этих катализаторов [16, 36, 224]. Именно металлсодержащий катализатор применяется в промышленном процессе изомеризации пентан-гексановых фракций [16]. [c.204]

    Основными критериями для оценки катализаторов служат объемная скорость подачи сырья, выход стабильного риформата (катализата), октановое число продукта или выход ароматических углеводородов, содержание легких фракций в риформате, выход и состав газа, срок службы катализатора. При анализе работы установок, а также при выборе оптимального режима каталитического риформинга надо иметь в виду следующее платина не только выполняет свои функции (дегидрирования-гидрирования), но и защищает прилежащие кислотные центры от закоксовывания, поэтому при низком ее содержании (менее 0,3%) катализатор быстро дезактивируется при недостаточных кислотных свойствах катализатора глубина ароматизации циклопентанов мала, и в катализате риформинга содержится много н-алканов, выход его велик, но октановое число невысокое при высоких кислотных свойствах катализатора парафиновые углеводороды в условиях риформинга изомеризуются настолько быстро, что уже в начальных стадиях процесса достигается равновесие парафины изопарафины и далее идет интенсивный гидрокрекинг. Кроме того, сильная кислотная функция ускоряет изомеризацию циклогексанов в циклопентаны, и реакция, идущая по схеме [c.140]

    Хотя изомеризация пентановых и гексановых фракций имеет важное промышленное значение, в процессе риформинга эти реакции не играют существенной роли, так как пентановые и гексановые фракции бензина и без риформинга имеют сравнительно высокое октановое число. Изомеризация алканов Се—Сю дает достаточно высокооктановые продукты. Хотя теоретически изомеризация алканов С должна сопровождаться существенным повышением детонационной стойкости, при практическом осуществлении процесса возникают эксплуатационные трудности вследствие одновременного протекания реакций диспропорционирования. Поэтому реакции изомеризации играют при процессах риформинга лишь подсобную роль. Например, ароматизация замещенных циклопентанов основывается на способности катализатора изомеризовать пятичленные цикланы в шестичленные. [c.185]

    При крекинге алканов под высоким давлением водорода, т. е. в условиях процесса деструктивной гидрогенизации, образование непредельных соединений происходит в незначительной степени вследствие их гидрирования, полнота которого зависит от условий процесса и катализатора. Однако и в условиях гидрогенизации имеет место изомеризация и циклизация, т. е. образование циклических углеводородов — цикланов. [c.275]

    В качестве сырья могут использоваться пентановая. гексановая или смеси обеих фракций (табл. 3.11). Сырье подвергают гидроочистке от сернистых соединений и осушке. Технологическая схема процесса представлена на рис. 3.11. Подготовленное сырье смешивают с водородом, нагревают в печи 1 и направляют в реактор 2, где происходит насыщение ароматических и алкеновых компонентов и изомеризация линейных алканов в изоалканы. Продукты реакции, охлажденные в теплообменнике, 4)аправляются в реактор 3. в котором изомеризация завершается при более низкой температуре, чем в реакторе 2. Продукты реакции снова охлаждают, и затем в сепараторе высокого давления 4 отделяют жидкий продукт от циркулирующего газа. Газ из сепаратора 4 возвращают в реактор 2. Жидкий продукт поступает в стабилизационную колонну 6 (или колонну ректификации — в случае изомеризации пентана). Кубовый поток из колонны 6 подают на зашелачивание раствором соды, после чего получают готовый продукт. В табл. 3.11 дается характеристика нестабильного продукта до стабилизации. [c.88]

    Сб—Сб. Сущностью процесса изомеризации является каталитичо ское превращение легких нормальных алканов, имеющих низкие октановые числа, в соответствующие углеводороды изостроения с более высокими октановыми числами (см. гл. 16). Изомеризация высших алканов не дает существенного повышения октанового числа, поэтому в промышленности пе Г[рименяется. [c.260]

    Изомеризация алканов протекает по карбкатионному механизму. В условиях процесса риформинга изомеризация алканов приводит к образованию разветвленных углеводо 5одов, обладающих более высокими октановыми числами, чем нормальные углеводороды. Применяемый в настоящее время температурный режим при каталитическом риформинге не способствует получению высокооктанового компонента вследствие протекания реакций изомеризации, так как в таких условиях изомеризации частично подвергаются лишь углеводороды С4 и С5. Изомеризация н-алканов С-—Сз теоретически должна обеспечить повышение октанового числа продукта, но практически при существующих условиях эта реакция не протекает. Вместо нее указанные углеводороды вступают в реакции гидрокрекинга, поэтому при риформинге парафинов повышение температуры при прочих равных условиях увеличивает выход продуктов гидрокрекинга и снижает выход изомеров исходного парафина. Увеличение давления повышает выход продуктов гидрокрекинга и изомеризации. [c.9]


    Алканы, особенно изоалканы, взаимодействуя с алкенами в присутствии таких катализаторов, как галогениды алюминия, трехфтористый бор, фтористый водород и серная кислота, дают высшие члены ряда. Каталитическое алкилирование, таким образом, является методом получения топлив с высокими октановыми числами из некоторых газообразных низкомолекулярных алканов, образующихся в процессе переработки нефти. Как видно из предыдущего, изоалканы, необходимые для реакции алкилирования, могут быть легко получены с помощью процессов изомеризации. Так, изобутан, имеющий наибольшее промышленное значение как алкилиру-ющий реагент, получают изомеризацией н-бутана. Олефины, необходимые для каталитического алкилирования, например пропен и бутен, являются побочными продуктами другого процесса переработки нефти — каталитического крекинга. Алкилирование приводит к довольно сложным смесям продуктов. Так, например, алкилирование нзобутана пропеном в присутствии фтористого водорода при 40°С дает следующие продукты пропан, 2,3-диметилпентан, 2,4-ди-метилпентан, 2,2,4- и 2,3,4-триметилпентаны, 2,2,3- и 2,3,3-триэтил-пентаны. Продукт реакции является, таким образом, смесью высо-коразветвленных алканов, обладающих высокими октановыми числами. Реакция представляет собой цепной процесс, инициированный протонированием олефина фтористым водородом. Изопропил-катион отрывает гидрид-ион от изобутана, давая грег-бутил-катион, который присоединяется к пропену. Образующийся при этом диметил-пентил-катион, может претерпевать внутримолекулярную перегруппировку, давая изомерные катионы, которые превращаются в диме-тилпентаны за счет отрыва гидрид-иона. Продукты состава Сз образуются в результате взаимодействия изобутена, образующегося путем элиминирования протона из грег-бутил-катиона, с пропеном. [c.157]

    Любое из индивидуальных соединений содержится в сырой нефти, естественно, в небольших количествах, поэтому до его выделения необходимо повысить концентрацию. Перегонкой можно грубо отделить широкую фракцию Се—Са, но даже в этой фракции содержание ароматических углеводородов довольно низкое. Цнкло-дегидрогенизацию алканов в арены осуществляют при высоких температурах и давлениях в присутствии металлических катализаторов. Обычно в качестве катализатора используют платину (плат-форминг) на оксиде алюминия высокой чистоты. На металлических центрах осуществляются реакции гидрогенизации — дегидрогенизации, а кислотные центры на оксиде алюминия необходимы для катализа процесса изомеризации. Реакции гидрокрекинга могут проходить на центрах общего типа. Платину обычно наносят на носитель в виде платинохлористоводородной кислоты, которая также образует кислотные центры на оксиде алюминия. Количество платины в катализаторе колеблется от 0,3 до 1,0% по массе, а процесс происходит при 500—525°С и давлении от 1,0-10 до 4,0-10 Па. Поверхность катализатора может легко дезактивироваться сернистыми соединениями и отложением кокса. Поэтому исходное сырье обессеривают до содержания серы <3 м. д. по массе и реакцию проводят в присутствии водорода, чтобы избежать отложения кокса. [c.323]

    Несмотря на многочисленные публикации о высокой активности платинированных цеолитных и сульфатированных окисноциркониевых катализаторов, ведущие фирмы-разработчики катализаторов изомеризации алканов не предлагают их дяя процессов изомеризации и-бутана, вероятно, из-за недостаточной селективности. [c.898]

    Направленные химические преобразования содержащихся в сырье нежелательных соединений дают возможность повысить выход масел за счет образующихся из этих соединений продуктов. Исключение процессов физического разделения позволяет избежать получения малоценных побочных продуктов, например концентратов тяжелых аренов и смол. Все побочные продукты гидрогенизационных процессов масляного направления находят квалифицированное применение. Высокие выход масел и качество основных и побочных продуктов обеспечивают экономическую эффективность этих процессов. Интенсивная изомеризация алканов наблюдается в жестких условиях гидрообработки, характерных для процессов изомеризации при применении катализаторов с высокой изомериэующей способностью. [c.156]

    Гидрогенизациониая очистка. Сущность процесса гидрирования заключается в превращении ароматических углеводородов в нафтеновые при повышенном давлении (до 6,0 МПа) в присутствии катализаторов. Процесс имеет высокий выход, относительно низкие эксплуатационные затраты, но предъявляет повышенные требования к качеству исходного сырья чтобы исключить возможность изомеризации н-алканов, необходимо использовать сырье с содержанием н-парафинов не менее 99%. Так как в нашей стране еще не налажено производство жидких парафинов такого качества, промышленного внедрения способ пока не получил. [c.234]

    Современное развитие технологии производства катализаторов дает возможность применять процесс изомеризации алканов в области пониженных температур (-200 °С), что является термодинамически благоприятным фактором и способствует значительному повышению выхода ди- и триметилзамещенных изомеров, ответственных за высокое октановое число катализата. Гидроизомеризация ароматических углеводородов риформата в изоалканы целесообразна для толуольной и ксилольной фракций, бензольная фракция по предложенной авторами схеме подвергается традиционному процессу РЕГИЗ без изменений. [c.268]

    При применении катализаторов типа Фридель—Крафтса изомеризация парафинов, за исключением бутана, обычно сопровождается побочными реакциями, включающими и разрыв связи С—С. В процессе реакции синтезируются соединения, кипящие либо выше, либо ниже первоначального углеводорода. Реакции перераспределения, проходящие особенно с пентанами или более высокими парафинами, вызываются, очевидно, крекингом изо-парафиновых молекул, которые галоидом алюминия пе активируются [409]. По аналогии с реакциями, происходящими в авто-деструктивном алкилировапии, описываемый процесс является все-таки соединением деалкилирования (крекинг) и алкилирования [410], которые дают изопарафины более высокого либо более низкого молекулярного веса, чем первоначальный алкан. Возможно, проведением изомеризации под давлением водорода [411 — 413], в присутствии изобутана [412, 414], ароматики [412], нафтеновых углеводородов [412, 415—418] или гетероциклических углеводородов, таких как тиофен [419], можно свести к минимуму боковые реакции для нентанов и гексанов, но не для гептанов и более высоких парафинов. Устранение побочных реакций обычно сопровождается замедлением изомеризации, однако, прибавление олефинов уменьшает предохраняющее действие вышеприведенных агентов. Реакции изомеризации проходят через индукционный период в течение этого времени проходят незначительные реакции перераспределения [420, 421]. [c.117]

    Четвертый пример -реализация адсорбционной стадии парофазного процесса при весьма высоких температурах, обусловленных спецификой телнологии смежных производств. Так, процесс денормализации бензиновых фракций цеолитами СаА может осуществляться при 280-330°С под высоким давлением (при таких параметрах выходят продукты реакции из реактора изомеризации алканов) с хорошими экономическими характеристиками, несмотря на низк)ю активность сорбента. [c.215]

    Изомеризация алканов притека( т по карбкатионному механизму. В условиях процесса риформинга изомеризация алканов приводит к образованию малоразветвленных изомеров, обладающих более высокими октановыми числами, чем нормальные углеводороды. [c.252]

    Поскольку низкие температуры благоприятствуют образованию разветвленных алканов, изомеризацию следует проводить при минимальных рабочих температурах. Это облегчает задачу разделения углеводородов, так как целевой изомер присутствует в более высокой концентрации. Однако обычные катализаторы, в присутствии которых процесс может протекать при низких температурах, являются сильными кислотами (получаемыми, как правило, на основе безводного хлористого алюминия) и поэтому вызывают коррозию. Некорродирующие катализаторы требуют более высоких температур и более высокого давления водорода, что приводит к образованию большего количества побочных продуктов. Оба эти процесса рассматриваются здесь в спе1шальных разделах, и поскольку второй процесс проводится под давлением водорода, он называется гидроизомеризацией .  [c.29]

    Эти недостатки привели к утрате его промышленного значения. Современные промышленные катализаторы изомеризации алканов представляют собой бифункциональные системы металл — носитель типа катализаторов риформинга. В качестве металлического компонента катализатора используют платину или палладий, в качестве носителя — фторированный или хлорированный оксид алюминия, аморфные или кристаллические алюмосиликаты, внесенные в матрицу оксида алюминия. Для предотвращения закоксовывания катализатора процесс проводят под давлением водорода 1,4—4 МПа. Первые алюмоплатиновые катализаторы, содержащие 1—2 % хлора или фтора, обладали недостаточной активностью, поэтому процесс проводился при высокой температуре (350—400°С), что снижало термодинамически возможную степень изомеризации. Этот процесс в технике получил название высокотемпературной изомеризации. Повышение активности катализатора и снижение рабочих температур до 230—380 С было достигнуто увеличением кислотности носителя при переходе на металлцеолитные катализаторы (среднетемпературная изомеризация). Наибольшую активность имеют платиновые или палладиевые катализаторы на оксиде алюминия, содержащие 7—10 % хлора. Они позволяют проводить реакцию при температуре 100—200°С (низкотемпературная изомеризация). Необходимым условием изомеризации на бифункциональных катализаторах, как и каталитического риформинга, является глубокая очистка сырья и водородсодержащего газа от примесей влаги, серы, азота и кислорода, отравляющих катализатор. Для восполнения потерь галогена на катализаторе в сырье вводят небольшое количество галогонсодержащих сподинений. [c.361]

    Макрокинетика процесса. Превращение сырья в условиях процесса гидрокрекинга идет по следующим направлениям. В первую очередь гидрогенолизу подвергаются неуглеводородные соединения, вследствие чего из сырья удаляются гетероатомы в виде НгО, ЫНз и НгЗ. Одновременно происходит гидрирование углеводородов, имеющих ненасыщенный характер. Полициклические арены и циклоалканы гидрируются в замещенные моноциклические. Алканы подвергаются изомеризации и расщеплению. Значительно труднее (в более жестких условиях или в присутствии более активных катализаторов) происходит насыщение последнего ароматического кольца и гидрогенолиз алканов и моноциклоалканов. Соотношение скоростей различных реакций гидрокрекинга легкого газойля каталитического крекинга на катализаторе с высокой кислотной активностью при 10,5 МПа приведено на рис. 14.1. [c.387]

    Основной недостаток процесса каталитической гидродепарафинизации — снижение ИВ масла на 7-8 единиц. В усовершенствованном процессе (изодепарафи-низации) расщепление алканов нормального строения сопровождается их изомеризацией, и в этом случае ИВ не уменьшается, а несколько увеличивается. Особенность процесса каталитической гидродепарафинизации — высокая чувствительность катализатора к отравлению соедш1ениями азота и серы, поэтому их содержание в сырье должно быть не более 10 и 100 млн, соответственно. [c.721]

    В первую очередь необходимо отметить реакцию изомеризации углеродного скелета парафиновых (алканов) и циклоларафиновых (цикланов) углеводородов, протекающую не менее интенсивно, чем изомеризация олефинов и циклоолефинов в присутствии алюмосиликатов или активированной окиси алюминия. Кроме того, эти катализаторы осуществляют ароматизацию как путем дегидрирования гексаметиленов и дегидроизомеризации пентаметиленов, так и путем дегидроциклизации парафинов [72, 73]. Кроме реакций изомеризации и ароматизации, для этих процессов весьма характерным является гидрокрекинг высокомолекулярных углеводородов, что позволяет получать высокооктановые бензины ш сырья с большим содержанием лигроиновых фракций [19]. Б процессах риформинга под давлением водорода происходит также почти полное обессеривание используемого сырья. Применяемые катализаторы обычно позволяют работать на сырье с содержанием серы до 0,5%, однако некоторое повышение рабочего давления предотвращает отравление катализатора и при более высоком содержании серы [20]. Следует отметить, что, несмотря на затраты водорода на реакции обессеривания и гидрокрекинга, выделение водорода при ароматизации настолько значительно, что в комплекс нефтеперерабатывающих заводов, кроме установок по риформин-гу, часто входят установки по гидрогенизации и даже по синтезу аммиака [18, 27]. [c.91]

    Бифункциональные катализаторы, разработанные для процесса гудриформинга, обладают [198] весьма высокой избирательностью в реакциях дегидрогенизации цикланов Се, дегидроизо-меризации алкилциклопентанов и изомеризации алканов нормального и слабо разветвленного строения в сильно разветвленные алканы. [c.22]

    Процесс катформинг. Этот процесс [19] был разработан фирмой Атлантик рифайнинг. Он проводится на катализаторе, представляющим собой сочетание гидрирующего компонента — платины — с крекиоующим компонентом—кислотным алюмосиликатом. Эти катализаторы обладают [18] высокой активностью и избирательностью в реакциях изомеризации алканов и цнкланор, а также в реакции гидроизоморизации ненасыщенных углеводородов. [c.57]

    Каталитическим риформингом лигроинов, характеризующихся высоким содержанием ароматических углеводородов, с доведением процесса до равновесия невозможно повысить их октановые числа поэтому может оказатгся целесообразной экстракция с последующей рециркуляцией низкооктановых компонентов или с повторным риформингом. Следовательно, для оптимального облагораживания легких алканов в результате реакций изомеризации и дегидроциклизации потребуются фракционирующие установки. [c.123]

    В процессе каталитического крекинга образуется меньшее количество газа (метана, этана) и больше средних углеводородов (Сз—Сю), чем в старых способах. Полученный бензин содержит меньше алкенов, больше ароматических углеводородов, получающихся в результате циклизации и дегидрирования алканов, и большее количество изоалканов, чем обычный бензин крекинга. Изоалканы получаются из первично образующихся при крекинге алкенов в результате изомеризации и гидрирования (необходимый водород получается при образовании ароматических углеводородов в присутствии катализатора). Полученный бензин имеет высокое октановое число, и он более устойчив. [c.400]

    Исследование влияния температуры на направление термического распада показало, что при температуре порядка —20° имеют место только процессы гомолитического распада с участием растворителя (уравнение (П-9)) и диспропорционирования (уравнение (П-10)) 1 ]. При более высокой температуре (О—20°) наряду с алканами и алкенами образуется катализатор изомеризации олефинов, т. е. хромгидридное соединение. Как эти данные, так и характерное изменение состава продуктов реакции термического распада во времени дают основание предполагать, что распад триалкилпроизводных хрома начинается с гомолитического распада (по уравнениям (П-9) и (П-10)), нриводяш его к образованию органических соединений Сг (П) и Сг (I). Последние в результате реакции элиминирования образуют гидриды хрома (без [c.48]


Смотреть страницы где упоминается термин Процессы изомеризации высших алканов: [c.8]    [c.306]    [c.70]    [c.156]    [c.868]    [c.175]    [c.662]    [c.66]    [c.120]    [c.120]    [c.905]    [c.120]    [c.872]    [c.210]    [c.29]   
Смотреть главы в:

Нефть и нефтепродукты -> Процессы изомеризации высших алканов




ПОИСК





Смотрите так же термины и статьи:

Алканы

Высшие н-алканы



© 2025 chem21.info Реклама на сайте