Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биосинтез липидов организмами

    При рассмотрении путей биосинтеза важно идентифицировать хотя бы некоторые из промежуточных продуктов (интермедиатов). Один из них — 3-фосфоглицерат. Поскольку 3-фосфоглицерат является первичным продуктом фотосинтеза, он вполне законно может рассматриваться как исходное вещество, из которого образуются все остальные углеродсодержащие соединения. В большинстве организмов фосфоглицерат может легко превращаться в глюкозу и фосфоенолпируват, которые в свою очередь могут вновь давать фосфоглицерат. Любое из этих трех соединений может служить предшественником при синтезе других органических соединений. Первая стадия биосинтеза включает реакции, в результате которых образуется 3-фосфоглицерат (или фосфоенолпируват) либо из СО2, формиата, ацетата и липидов, либо из полисахаридов [c.457]


    Нередко функцию углеводов в обмене веществ сводят только к энергетическому обеспечению химических реакций. Это далеко не так. Бесспорно, что при распаде (окислении) углеводов в организме идет высвобождение энергии, которая запасается далее в макроэргических связях АТФ, и что АТФ, синтезированная сопряженно с окислением углеводов, поставляет энергию для осуществления химических процессов и для других нужд организма. Однако углеводы выполняют еще одну важнейшую функцию в процессе обмена веществ—они являются источником большого числа органических соединений, которые служат исходными продуктами для биосинтеза липидов, белков и нуклеиновых кислот. В углеводах, образующихся в процессе первичного биосинтеза органического вещества, связывается углерод и запасается энергия. [c.328]

    Синтез белка подчиняется закону все или ничего и осуществляется при условии наличия в клетке полного набора всех 20 аминокислот. Даже при поступлении всех аминокислот с пищей организм может испытывать состояние белковой недостаточности, если всасывание какой-либо одной аминокислоты в кишечнике замедлено или если она разрушается в большей степени, чем в норме, под действием кишечной микрофлоры. В этих случаях будет происходить ограниченный синтез белка или организм будет компенсировать недостаток аминокислоты для биосинтеза белка за счет распада собственных белков. Степень усвоения белков и аминокислот пищи зависит также от количественного и качественного состава углеводов и липидов, которые резко сокращают энергетические потребности организма за счет белков. Экспериментальный и клинический материал свидетельствует, что диета с недостаточным содержанием жиров и низкокалорийная пища способствуют повышению экскреции аминокислот и продуктов их распада с мочой. [c.412]

    Цикл лимонной кислоты занимает центральное место в многочисленных биосинтетических процессах, Большинство живых организмов синтезирует углеводы из ди- и трикарбоновых кислот, образовавшихся в цикле Кребса, или из соединений, которые могут превращаться в промежуточные продукты этого цикла (биосинтез углеводов см. стр. 64). В биосинтезе липидов (см. гл. Липиды и липопротеиды ) важнейшим промежуточным соединением является ацетил-КоА. Процесс биосинтеза жирных кислот начинается с конденсации ацетил-КоА с щавелевоуксусной кислотой. [c.401]

    Основные процессы биосинтеза жирных кислот и липидов у микроорганизмов протекают теми же путями, что и у растительных, и животных организмов. [c.332]


    БИОСИНТЕЗ ЛИПИДОВ ОРГАНИЗМАМИ [c.300]

    При длительном голодании запасы гликогена во всем организме истощаются и главным топливом становятся жиры. Глюкозы и пирувата хватает лишь на короткое время. Хотя гидролиз липидов и приводит к образованию некоторого количества глицерина (который окисляется до диоксиацетона и фосфорилируется), количество предшественников глюкозы, образованных этим путем, ограничено. (Следует при этом иметь в виду, что организм животного не может превращать аце-тил-СоА обратно в пируват.) Таким образом, потребность в глюкозе и в пирувате сохраняется. Первое из этих соединений необходимо для процессов биосинтеза, а второе играет важную роль в качестве предшественника оксалоацетата — субстрата, регенерирующегося в цикле трикарбоновых кислот. В результате всего этого в процессе голодания организм вынужден перестроить свой метаболизм. Надпочечники выделяют глюкокортикоиды (например, кортизол гл. 12, разд. И, 3,6). Через механизмы индукции ферментов эти гормоны повышают количество различных ферментов в клетках органов-мишеней, таких, как, например, печень. Глюкокортикоиды повышают, кроме того, чувствительность клеточных рецепторов к циклической АМР, а следовательно, и к таким гормонам, как глюкагон [57]. Было высказано предположение, согласно которому этот эффект обусловлен тем, что кортикоиды обеспечивают сохранение нормального ионного окружения, и в частности нормальных концентраций ионов Са +, К и Na+. [c.515]

    Белки способны также выполнять энергетическую функцию, особенно при избыточном их поступлении с пищей или в экстремальных ситуациях, когда белки тела подвергаются усиленному распаду, восполняя недостаток питательных веществ, например при голодании или патологии (сахарный диабет). Как известно, при сгорании 1 г белков освобождается энергия, равная 16,8 кДж. Эта энергия обычно может быть полностью заменена энергией окисления углеводов и липидов, однако при длительном исключении последних из пищи у животных не наблюдается существенных патологических отклонений, тогда как исключение белков из пищи даже на короткий срок приводит к выраженным нарушениям, а иногда и к необратимым патологическим явлениям. Если животные находятся на малобелковой диете, то у них очень быстро развивается белковая недостаточность—патологическое состояние, характеризующееся нарушением ряда важных физиологических функций организма. Аналогичные изменения наблюдаются у людей при недостаточном потреблении белка. Следовательно, белки являются незаменимыми для организма веществами, выполняющими прежде всего пластическую функцию. Специфическая роль белков, однако, этим не ограничивается. В опытах на крысах было показано, что белковая недостаточность у животных проявляется не столько в уменьшении массы органов и тканей, сколько в снижении активности ферментов, обусловленном замедлением процессов биосинтеза белка. [c.409]

    Пути биосинтеза жирных кислот и липидов в различных живых организмах достаточно близки и во многом идентичны. [c.300]

    Некоторые из этих путей включают реакции, сопровождающиеся выделением энергии, запасаемой в виде АТР, большая часть которой используется в дальнейшем для энергетического обеспечения восстановительных процессов биосинтеза. В ходе этих восстановительных процессов образуются менее реакционноспособные гидрофобные липидные групировки и боковые цепи аминокислот, которые так необходимы для сборки нерастворимых внутриклеточных структур. Структурная организация природных олигомерных белков, мембран, микротрубочек и волокон является результатом агрегации, обусловленной сочетанием гидрофобных взаимодействий, электростатических сил и водородных связей. Главный результат метаболизма состоит в синтезе сложных молекул, которые весьма специфическим образом самопроизвольно взаимодействуют друг с другом, образуя требуемые для организма структуры— богатые липидами цитоплазматические мембраны, регулирующие вместе с внедренными в них белками поступление веществ в клетки. [c.502]

    Характерным структурным компонентом большинства липидов являются жирные кислоты, в которых запасается большая часть энергии, выделяющаяся при их окислении. В свободном виде в организме они появляются после ферментативного гидролиза триглицеридов или их биосинтеза в жировой ткани печени. [c.185]

    Эта реакция необратима и в основном протекает в микросомах и митохондриях гепатоцитов, а также в цитозоле клеток. Уксусная кислота, являясь естественным субстратом клеточных ферментов, образует ацетил-КоА, который затем вовлекается в цикл Кребса. Последствия избыточного образования уксусной кислоты при алкогольной интоксикации проявляются во-первых, в усилении процессов биосинтеза с участием аце-тил-КоА, что приводит к нерациональному использованию энергии во-вторых, в накоплении в тканях восстановленных и снижении содержания окисленных форм НАД, что имеет принципиальное значение для понимания биохимической сущности алкогольного отравления. Для окисления 125 г этанола требуется столько же НАД, сколько потребляется при окислении 500 г глюкозы, т. е. того количества углеводов, которое расходуется организмом за сутки. В результате нарушаются жизненно важные обменные процессы, такие, как гликолиз, энергетический обмен, усиливается синтез жирных кислот и липидов, что, в частности, может приводить к жировому перерождению печени. [c.412]


    Биохимические функции. Высокая гидрофобность Т3 и является основанием для действия их по цитозольному механизму. Оказалось, что рецепторы тиреоидных гормонов в основном находятся в ядре и образованные гор-мон-рецепторные комплексы, взаимодействуя с ДНК, изменяют функциональную активность некоторых участков генома. Результатом действия Т3 и Т4 является индукция процессов транскрипции и, как следствие, биосинтез многих белков. Эти молекулярные механизмы лежат в основе влияния тире-оидньгх гормонов на многие обменные процессы в организме. Тиреоидные гормоны обладают выраженным анаболическим действием, важным проявлением которого является повышение поглощения кислорода тканями организма, а также повышение эффективности Ка /К -АТФ-азного насоса. Гормоны щитовидной железы участвуют в регуляции обмена липидов, в частности холестерина, углеводов, а также водно-солевого обмена. Гипертиреоз проявляется в патологической интенсификации основного обмена, гипертонии, тахикардии. Это происходит на фоне гипергликемии, глюкозурии в условиях отрицательного азотистого баланса. Гипофункция щитовидной железы проявляется в резком снижении скорости метаболических процессов, гипотонии и брадикардии. Врожденный гипотиреоз приводит к замедлению умственного развития в результате поражения ЦНС. Приобретенный гипотиреоз может [c.152]

    При недостатке витамина В12 или его отсутствии у животных развиваются различные формы анемии, ухудшается усвоение пищи, нарушается обмен белков, липидов, углеводов. Все эти нарушения исчезают при введении животным витамина В12 Этот витамин интенсивно действует на органы кроветворения стимулирует образование крови в костном мозге. Кроме того витамин В12 улучшает усвоение белков в организме, прини мает участие в биосинтезе биологически активных соединений содержащих метильные группы, в обмене нуклеиновых кислот, белков и некоторых других веществ. [c.92]

    Настоящий справочник отличается от имеющихся тем, что в нем не только описана химическая структура и биологическая роль основных биохимических компонентов живой клетки, но и охарактеризованы пути метаболизма данных компонентов в живом организме. Он состоит из семи разделов, в каждом из которых в алфавитном порядке дана соответствующая тepминoлorиЯi В разделах Белки , Нуклеиновые кислоты , Углеводы , Липиды приведены структурные формулы и показана биологическая роль биохимических компонентов клетки, описаны и проиллюстрированы схемами основные пути распада и синтеза важнейших биологически активных молекул. В разделе Ферменты содержатся сведения о типах ферментативного катализа, скорости ферментативных реакций, единицах измерения ферментативных реакций, о принципах классификации ферментов, регуляции биосинтеза и активности ферментов. Раздел Витамины включает характеристику отдельных представителей водо- и жирорастворимых витаминов. Особое внимание уделено ферментным реакциям, в которых участвуют витамины, приведены данные о содержании витаминов в продуктах питания, о суточной потребности человека в витаминах, о применении витаминов и витаминных препаратов в медицинской практике, сельском хозяйстве и т. д. В разделе Гормоны -освещены достижения по биохимии пептидных, белковых и стероидных гормонов. Рассмотрены вопросы биосинтеза, механизм действия гормонов на молекулярном уровне, взаимодействие гормонов с [c.3]

    Различия в жирнокислотном составе липидов растений, животных и бактерий в определенной степени обусловлены различиями путей биосинтеза высших жирных кислот в этих организмах. [c.197]

    Неомыляемые липиды. — При омылении ткани мозга жиры, белки, фосфолипиды и сложные липиды в значительной степени превращаются в водорастворимые, но нерастворимые в эфире вещества. Экстракция эфиром щелочной смеси, образующейся в результате омыления, дает неомыляемую липидную фракцию, содержащую холестерин (строение и конформацию — см. том I 5.12) и небольшое количество сопутствующих стероидов. Холестерин образуется при омылении всех тканей тела, включая и кровь, в 100 которой обычно содержится около 200 м.г холестерина. Около 27% холестерина в крови находится в свободном состоянии, остальное количество этерифици-ровано жирными кислотами ie и ie. Общее количество холестерина, содержащегося в организме человека весом 65 кг, составляет около 250 г. Он образуется в организме в результате биосинтеза, а также (у плотоядных животных) постушает с пищей. [c.639]

    Участие отдельных витаминов в регуляции обмена веществ рассмотрено в главе 7. В условиях мышечной деятельности витамины выполняют важную регуляторную роль, так как обеспечивают высокую скорость метаболических и окислительных процессов, связанных с механизмами энергообразования, биосинтеза белка и углеводов, процессами перекисного окисления липидов, обмена минеральных веществ и т. д. Поэтому недостаточное обеспечение организма спортсмена отдельными витаминами приводит к снижению физической работоспособности. При этом снижаются как анаэробные, так и аэробные энергетические возможности спортсменов. [c.456]

    Биосинтез жирных кислот и липидов играет важную роль в жизнедеятельности организмов. Именно в виде жирных кислот и триацилглицеринов сохраняется основное количество энергетических ресурсов организмов животных, в то время как энергоресурсы, откладываемые в форме углеводов, незначительны. [c.436]

    Соотношение между липофильной углеводородной частью и гидрофильной ионной группировкой в амидных солях типа I таково, что эти соли являются поверхностно-активными агентами, способными в водной среде переводить липиды в коллоидные дисперсии. Желчь, поступающая в кишечник, Эмульгирует нейтральные -жиры и липоидные витамины пищи и тем самым облегчает их проникновение через стенки кишечника в кровь. Исследования, проведенные с использованием изотопной метки, показали, что холестерин яв1яется предшественником в биосинтезе желчных кислот и стероидных гормонов, однако желчь в нормальном организме содержит лишь следы свободного холестерина. В организме человека, а также некоторых животных, запас желчи накапливается в желчном пузыре, связанном с печенью (человек, овцы, крупный рогатый скот) или расположенном внутри печени (акула). [c.639]

    БИОСИНТЕЗ (от греч Ьюз-жизнь и synthesis-соединение), образование в живых клетках необходимых организму в-в из простых низкомол. неорг и(или) орг соединений Б, в результате к-рого происходит превращение неорг соед, поступающих из окружающей среды, напр Oj при фотосинтезе, N2 при азотфиксации, в сравнительно простые в-ва, наз ассимиляцией Образующиеся в результате этого процесса в-ва используются для Б более сложных молекул, напр витаминов, гормонов, липидов, алкалоидов и биополимеров-белков, нуклеиновых к-т и полисахаридов Подавляющее большинство организмов синтезирует все необходимые для их жизнедеятельности продукты Исключение-нек-рые животные и человек, организм к-рых, напр, не синтезирует ряд витаминов и а-аминокислот Такие в-ва они должны потреблять из внешних источников [c.289]

    В круговороте веществ на земле углеводы занимают промежуточное место между неорганическими и органическими соединениями. Они являются первичными продуктами фотохимического восстановления двуокиси углерода — главного и, вероятно, единственного пути биосинтеза органических веществ в современных геологических условиях. Моносахариды в результате последующих превращений образуют полисахариды — необходимые компоненты любой живой клетки. С другой стороны, при распаде моносахаридов выделяется энергия, требуемая для синтетических процессов в организме, и образуются продукты, являющиеся исходными веществами для биосинтеза других полимеров живой клетки белков, нуклеиновых кислот и липидов. Все сказанное определяет большое разнообразие биохимических реакций моносахаридов и их центральное лоложение в метаболизме живой клеткк [c.363]

    Совершенно другая ситуация наблюдается у взрослого человека, организм которого практически не растет. Метаболизм многих частей такого организма может сильно меняться во времени и в зависимости от физиологического состояния. Организм может, например, резко переходить от нормального питания к голоду или от состояния покоя к тяжелой нагрузке. Метаболизм при сильных нагрузках отличается от ме таболизма при нормальной работе. Рацион, включающий жирную пищу, требует совсем другого метаболизма, чем диета, включающая большое количество углеводов. Необходимые механизмы регуляции должны в этих случаях быстро и легко реагировать на такие изменения. В следующих разделах мы рассмотрим некоторые из способов регулирования расщепления и биосинтеза углеводов и липидов в организме животных. [c.503]

    Аминокислоты как основные составные части белков участвуют во всех жизненных процессах наряду с нуклеиновыми кислотами, углеводами и липидами. Кроме аминокислот, входящих в состав белков, живые организмы обладают постоянным резервом свободных аминокислот, содержащихся в тканях и в клеточном соке. Они находятся в динамическом равновесии при многочисленных обменных реакциях. Аминокислоты используются в биосинтезе полипептидов и белков, а также в синтезе фосфатидов, порфи-ринов и нуклеотидов. [c.10]

    Все биологические процессы осуществляются при непременном участии белков. Они служат регуляторами генетической функции нуклеиновых кислот, в качестве ферментов участвуют во всех стадиях биосинтеза полипептидов, полинуклеотидов и других соединений, катализируют все метаболические процессы. Особые сократительные белки ответственны за клеточные и внутриклеточные движения. В комплексе с липидами белки вхбдят в состав мембран, обеспечивая активный транспорт метжолитов в клетку и из нее. Белки служат для запасания и перешса кислорода. Низкомолекулярные полипептиды, гормоны, Стимулируют функциональную активность в клетках других тканей и органов. Белки осуществляют иммунологическую функцию, защищая организм от чужеродных соединений. Они входят в состав кожи, волос, соединительных тканей, костей и т. д., выполняя динамическую опорную функцию, обеспечивая тем самым взаимосвязь органов, их механическую целостность н защиту. Это далеко не полный перечень осуществляемых белками функций. [c.5]

    СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает измеримой лактогенной активностью. Предполагают, что многие биологические эффекты этого гормона осуществляются через особый белковый фактор, образующийся в печени под влиянием гормона. Этот фактор был назван сульфирующим или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина—в ДНК, уридина—в РНК и пролина—в коллаген. По своей природе этот фактор оказался пептидом с мол. массой 8000. Учитывая его биологическую роль, ему дали наименование соматомедин , т.е. медиатор действия СТГ в организме. [c.259]

    Являясь первичными продуктами фотосинтеза, углеводы и вещества, образующиеся при их распаде, служат исходными соединениями при биосинтезе всех органических веществ живых организмов. Так, глицерин и пировиноградная кислота превращаются далее в аминокислоты, липиды, терпеноиды и другие природные соединения. Подробное рассмотрение таких превращений выходит за рамки настоящей книги. Мы ограничимся здесь лишь обсуждением тех биохимических ггроцессов, в которых участвуют недеградированные молекулы моносахаридов. [c.402]

    Это реакции цикла трикарбоновых кислот, процесса наглядно демонстрирующего единство метаболических превращений. Это основной амфиболический путь, обеспечивающий, с одной стороны, полное окисление ацетил-КоА, образовавшегося при распаде ве-ществ разных классов (аминокислоты, углеводы, липиды) до СО2 и Н2О и, с другой стороны, - предоставляющий исходные соединения для биосинтеза различных соединений. Цикл трикарбоновых кислот играет также центральную роль в энергетическом обмене, восстановительные эквиваленты окислительных реакций цикла депонируются в форме НАДН и ФАДН2, окисление которых в дыхательной цепи митохондрий сопровождается синтезом АТФ - универсальной энергетической валюты в организме. [c.457]

    Познакомимся теперь с тем, каким образом фотосинтезирующие организмы образуют глюкозу и прочие углеводы из СО2 и HjO, используя для этой цели энергию АТР и NADPH, образующихся в результате фотосинтетического переноса электронов. Здесь мы сталкиваемся с существенным различием между фотосинтезирующими организмами и гетеротрофами. Зеленым растениям и фотосинтезирующим бактериям двуокись углерода может служить единственным источником всех углеродных атомов, какие требуются им не только для биосинтеза целлюлозы или крахмала, но и для образования липидов, белков и многих других органических компонентов клетки. В отличие от них животные и вообще все гетеротрофные организмы не способны осуществлять реальное восстановление СО2 и образовывать таким образом новую глюкозу в сколько-нибудь заметных количествах. Мы, правда, видели, что СО2 может поглощаться животными тканями, например в ацетил-СоА-карбоксилаз-ной реакции во время синтеза жирных кислот [c.701]

    Биологическое действие. Витамин А (ретинол) влияет на зрение, так как входит в состав зрительного пигмента — родопсина, положительно воздействует на процессы роста, усиливая биосинтез белка (анаболическое действие), а также на созревание половых клеток и процессы размножения, состояние эпителия слизистых оболочек разных органов и его диф-ференцировку (рис. 42). Как антиоксидант он препятствует усилению перекисного окисления липидов в клетках, что обычно наблюдается при мышечной активности и вызывает неблагоприятные изменения в организме. [c.108]

    При изучении процессов обмена веществ обычно зстречаются с процес сами синтеза и разрушения органических молекул. Исходя из этого, прежде чем перейти к изучению превращения отде.чьных групп веществ в организме (углеводов, липидов, белков полезно будет познакомиться с пр(щессами биосинтеза органических веществ, а также с процессами окисления, приво- 1ящими к распаду органических веществ с образованием воды и углекислого газа. [c.228]

    Стероиды —соединения, относящиеся к классу липидов,— именуют по-разному терпеноидами, терпенами, изопреноидами, полиизопреноидами или изопентеноидами.-Эта обширная группа веществ объединена одним общим признаком все они, как полагают, биогенетически связаны с одним и тем же исходным соединением — изопреном (СбНв). В опытах с мечеными атомами было показано, что при биосинтезе терпеноидов в самых разных организмах и системах протекают одни и те же реакции. Эти реакции показаны на фиг. 1. [c.9]


Смотреть страницы где упоминается термин Биосинтез липидов организмами: [c.135]    [c.255]    [c.76]    [c.137]    [c.247]    [c.315]    [c.414]    [c.312]    [c.71]    [c.76]    [c.134]    [c.29]    [c.134]    [c.63]    [c.70]   
Смотреть главы в:

Теоретические основы биотехнологии -> Биосинтез липидов организмами




ПОИСК





Смотрите так же термины и статьи:

Липиды

Липиды биосинтез



© 2025 chem21.info Реклама на сайте