Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние изменения параметров процесса на кинетику реакции

    Влияние изменения параметров процесса на кинетику реакции [c.241]

    Состояние поверхности графитового анода оказывает существенное влияние на характер кинетических параметров. Как было показано выше, на поверхности углеродных материалов имеются кислородсодержащие соединения, количество и состав которых зависят от предыстории образца. Хотя систематических исследований влияния кислородсодержащих соединений на хлорную реакцию не проводилось, сам факт их воздействия на кинетику процесса описан в ряде работ [100, 102, 104]. Только на новых графитовых электродах удается получить достаточна четкие тафелевские прямые [100]. Напротив, согласно [102], хорошая воспроизводимость как по величине перенапряжения, так и по форме поляризационной кривой достигается после длительного окисления графита в мягких условиях — в слабокислом растворе хлорида, в котором несколько процентов от общего тока идет на образование СОг. При этом исходные прочные поверхностные оксиды постепенно удаляются и образуется новая поверхность в некотором стационарном состоянии окисления (рис. 44). Катодное восстановление электрода приводит к снижению перенапряжения и изменению формы поляризационной кривой. Описанные явления наблюдаются как в случае пористых, так и пропитанных хлоридами или полиэтиленом электродов, а также компактных пирографитовых анодов [104]. [c.122]


    Эти вопросы в большей или меньшей степени взаимосвязаны, и поэтому в некоторых местах обсуждение будет похоже на жонглирование пятью шарами. Тем не менее вполне можно рассмотреть влияние изменения одного из перечисленных факторов на кинетику процесса, сохраняя остальные факторы неизменными. Как правило, при обсуждении реакций, протекающих с захватом какого-либо конкретного реакционного центра, в первую очередь рассматриваются вопросы 1)—3). Среди полученных данных сведения о поведении комплексов Pt(П) имеют столь доминирующее значение, что широко распространенное заблуждение, будто бы замещение в таких комплексах является эталоном этой реакции для всех четырехкоординационных плоских комплексов, заслуживает снисходительного отношения. В том, что это не так, мы убедимся, рассмотрев вопрос 4). Факторы 1)—3) перечислены в порядке уменьшения их роли, и к ним применимо общее правило чем значительнее эффект, тем менее чувствителен он к изменениям других параметров. [c.78]

    Влияние этих факторов на разложение амальгамы в количественном выражении зависит от конструктивного оформления процесса, т. е. от межэлектродного расстояния, способа осуществления внешнего замыкания, глубины распространения разряда водорода. Например, если внешнее сопротивление достаточно велико и, следовательно, оно определяет скорость разложения амальгамы, то изменение остальных параметров процесса будет мало сказываться на общей кинетике реакции. Поэтому экспериментальные данные о зависимости силы тока при коротком замыкании элемента от различных факторов соответствуют лишь данной, модели разлагателя амальгамы. [c.85]

    Выше основное внимание уделялось величине относительного изменения концентрации и величине абсолютной разности температуры, так как именно эти параметры могут оказать наиболее существенную помощь при анализе различных влияний на процесс. Величина относительного изменения концентрации позволяет оценить влияние лимитирующих диффузионных процессов сначала по аналогии с реакциями, кинетика которых известна, а затем все с большей и большей точностью на основе результатов проведенного исследования. [c.163]

    Соотношение (2.16) представляет уравнение кинетической модели накопления биомассы. Это уравнение предполагает, что характеристики среды известным образом зависят от времени. Изменение характеристик среды будет зависеть от самого развития популяции (например, накопления метаболитов). Соотношения для оценки скоростей образования или расходования соответствующих субстанций формируются через скорость развития популяции / г. Задача составления выражения для скорости развития популяции 7 может быть решена на основе анализа механизма протекающих в клетке процессов, основу которых составляют последовательности ферментативных реакций. При этом полезный с практической точки зрения путь сводится к анализу лишь некоторого числа переменных, характеризующих развитие популяции, или конечного числа обобщенных ферментативных реакций, ответственных за эти переменные и характеризующих развитие популяции. Таким образом, разработка математической модели кинетики сводится к объединению групп процессов, протекающих в клетках, анализу влияния факторов среды на протекание и идентификации параметров модели. [c.55]


    Объектом исследования химической кинетики является химический процесс превращения реагентов в продукты. Можно возразить, что химическая реакция является предметом исследования и ряда других химических дисциплин, таких как синтетическая и аналитическая химия, химическая термодинамика и технология. Следует отметить, что каждая из этих дисциплин изучает химическую реакцию в своем определенном ракурсе. В синтетической химии реакция рассматривается как способ получения разнообразных химических соединений. Аналитическая химия использует реакции для идентификации химических соединений. Химическая термодинамика изучает химическое равновесие как источник работы и тепла и т. д. Свой специфический подход к химической реакции имеет и кинетика. Она изучает химическое превращение как процесс, протекающий во времени по определенному механизму с характерными для него закономерностями. Это определение нуждается в расшифровке. Что именно в химическом процессе изучает кинетика Во-первых, реакцию как процесс, протекающий во времени, ее скорость, изменение скорости по мере развития процесса, взаимосвязь скорости реакции с концентрациями реагентов - все это характеризуется кинетическими параметрами. Во-вторых, влияние на скорость и другие кинетические параметры реакции условий ее проведения, таких как температура, фазовое состояние реагентов, давление, среда (растворитель), присутствие нейтральных ионов и т. д. Конечный результат таких исследований - количественные эмпирические соотношения между кинетическими характеристиками и условиями проведения реакции. В-третьих, в кинетике изучают способы управления химическим процессом с помощью катализаторов, инициаторов, промоторов, ингибиторов. В-четвертых, кинетика стремится раскрыть механизм хи- [c.15]

    Таким образом, при рассмотрении оптимальных характеристик необходим учет влияния на них кинетики и механизма реакции, ее термодинамических условий, а также параметров осуществления процесса и изменений концентраций в ходе самой реакции. [c.111]

    Протекание реакции на неоднородных поверхностях катализаторов вносит свою специфику в отношении влияния параметров ведения процессов на их кинетику (кроме изменений, рассмотренных в главе IV). [c.241]

    Есть данные о том, что сольватация радикалов оказывает влияние не только на кинетические параметры реакции, но и приводит также к изменению направления цепной реакции, вследствие чего в системе появляются новые продукты [47], или к изменению так называемой селективности процесса [48]. Последнее фактически означает, что в результате сольватации радикала НОг соотнощение констант скорости реакций продолжения цепи и рекомбинации радикалов изменяется. Наиболее ценными поэтому являются те немногочисленные работы, в которых установили влияние сольватации радикалов не на эффективную скорость и состав продуктов цепной реакции, а на кинетику протекания той или иной стадии сложного процесса. Может, в частности, оказаться, что характер зависимости эффективной константы скорости от концентрации комплексообразующего растворителя не будет иметь ничего общего с характером зависимостей соответствующих элементарных констант. В качестве примера на рис. IX. 4 приведены данные по окислению метилэтилкетона в присутствии метанола [49]. [c.367]

    С) стали и вытеснение ее атомами защитного газа (аргона), которые гораздо тяжелее атомов серы, на периферию плазменной дуги с температурой 2000 — 1000 °С, где атомы серы соединяются с кислородом в ЗОг, 50 и удаляются из зоны реакции в атмосферу. Процесс протекает при высокой температуре и интенсивном перемешивании расплавленного металла. Значительный температурный градиент оказывает влияние на поверхностное натяжение и усадку и приводит к изменению топографии поверхности переплавленного слоя металла. Испарение серы зависит от температуры плазмы, размера частиц, времени пребывания в плазме, физических свойств частиц плазмообразующего газа и ряда других факторов и с термодинамической точки зрения представляет переход вещества из одной фазы в другую, проходящий при постоянной температуре и неизменном давлении. Процесс получения максимального выхода серы в виде 5, 50, 50г, 5гО при минимальном выгорании легирующих элементов оптимизировали расчетным путем по минимальной загрязненности поверхности примесями (сульфидами, оксисульфидами). При предъявлении требований к чистоте поверхности и переплавленному слою подбирали режимы переплава таким образом, чтобы, варьируя температуру, соотношение компонентов защитного газа (Аг, О2), время пребывания металла в расплавленном состоянии, переплавленный слой металла был мало загрязнен различными примесями и это согласовалось с кинетикой окислительновосстановительного процесса. Применение первого вариационного принципа химической термодинамики для определения равновесных параметров многокомпонентных гетерогенных систем показало, что интенсивное окисление серы кислородом в газовой фазе происходит при высоких температурах (2500 — 3000 °С), которые достигаются при нагреве металла низкотемпературной плазмой в защитной среде, содержащей 95 % Аг + 5 % О2 (рис. 165). Процесс десульфирования путем переплава поверхности металла может быть представлен как ступенчатый, заключающийся в последовательном переходе атомов через различные фазы металл —пар с последующим окислением в области низких температур и удалении в атмосферу в виде молекул и атомов. Наряду с удалением из расплава 5, 502, 50 путем выноса их на поверхность жидкого металла происходит частичное растворение и измельчение неметаллических включений, что приводит к снижению балла по сульфидным включениям. Экспе- [c.392]


    Таким образом, свойства растворителя определяющим образом влияют на кинетику образования кокса, так как химическому процессу конденсации асфальтенов до кокса предшествует физический процесс выделения фазы асфальтенов. Отличие хороших , высокоароматизованных растворителей от плохих заключается в том, что из первых асфальтены выделяются только при застудневании раствора. Так как концентрации, при которых растворы асфальтенов застудневают, очень высоки, в хороших растворителях образование кокса даже при очень значительных концентрациях асфальтенов не происходит. Снижение растворяющей способности растворителя приводит к выделению фазы асфальтенов из раствора и, в результате, к образованию кокса. Это представляет, конечно, весьма большой интерес, так как в реальных процессах термической переработки нефтяного сырья вместе с накоплением асфальтенов происходит изменение состава жидкой фазы, в которой они растворены. Состав жидкой в условиях процесса фазы при термической переработке заданного сырья определяется температурой, давлением и продолжительностью реакции, причем влияние, изменения этих параметров может быть разным. В результате можно компенсировать влияние изменения одного параметра соответствующим изменением двух других и, таким образом, управлять процессом коксообразования. [c.88]

    Теория теплового режима горения, берущая начало от известных работ Н, Н. Семенова [68] и развитая Я- Б. Зельдовичем, Д. А. Франк-Каменецким [79] и другими, рассматривает влияние выделения тепла при реакции и условий теплообмена с окружающей средой на характер протекания процесса. Состояние системы определяется интенсивностью тепловыделения и теплоотвода и зависимостью их от температуры, давления и других параметров. Существенно, что изменение параметров ведет не только к количественному различию результатов, но и к качественному изменению характера протекания процесса. В зависимости ог конкретных условий могут реализоваться непрерывные бескризисные режимы, характеризующиеся плавным изменением параметров, и критические — гистерезисные, отличающиеся резким, практически скачкообразным переходом от одного устойчивого состояния к другому. В газовых пламенах интенсивность тепловыделения и теплоотвода определяется структурой течения (диффузия реагентов, конвективный теплообмен) и кинетикой химических реакций. Тем самым тепловой режим факела отражает органическую связь гидродинамики течения и горения. [c.21]

    Развитие теоретических представлений в области радикальной олигомеризации и накопленный экспериментальный материал по реакциям передачи цепи позволили в настоящее время подойти к решению проблемы теоретического расчета молекулярных параметров РО при различных условиях их синтеза. В работе [1о1 теоретически исследована зависимость между кинетикой изменения ММР и скоростью реакции передачи цепи на полимер макрорадикалами в условиях разветвленной радикальной полимеризации. Были получены соотношения, позволяющие определить некоторые характеристики распределения центров ветвления по макромолекулам, исходя из экспериментальных кинетических данных и изменения средних молекулярных масс. В работе [150] описана математическая модель процесса радикальной олигомеризации, учитыйающая все побочные реакции, которые оказывают влияние на РТФ и ММР. [c.105]

    В зависимости от состава смешанного растворителя на кинетику сополимеризации может оказывать влияние изменение ионизующей способности последнего, а также переход гомофазного процесса (Н2О менее 40%) в гетерофазный (Н2О более 40%). Сравнение приведенных в табл. 1 кинетических параметров позволяет сделать вывод, что на кинетику сополимеризации АК и АН в большей степени влияет образование гетерофазности, чем увеличение ионизующей способности растворителя. Для гетерофазной сополимеризации эффективные порядки реакции по инициатору и концентрации мономеров оказываются более высокими, чем для гомофазной. [c.15]

    I Понятие простой кинетики является центральным в этой главе, и, прежде чем дать ему строгое определение, необходимо понять существо процессов, описываемых простой кинетикой. Первая задача физико-химического подхода (определение скорости элементарного акта как функции квантовомеханических параметров, характеризующих реагирующие частицы, строго ставится только тогда, когда другие частицы никак не влияют на элементарный акт (идеальный случай — реакция в вакууме). В реальной среде, однако, такое влияние постоянно имеет место — ассистирование других компонентов не обязательно связано с непосредственным участием в элементарном процессе, достаточно их простого упристствия в области соударения, влияющего на изменение сечения реакции. И это влияние будет тем сильнее, чем выше давление, температура и химическая активность системы в [c.112]

    На практике встречаются такие процессы, для которых при стационарных условиях подачи сырья и в условиях стабилизации управляемых параметров макрокинетика определяется не только концентрацией реагентов, но и временем, которое они провели в зоне реакции. Сюда относятся некоторые биохимические реакции с изменением свойств реагентов в зависимости от возраста [12]. Эти процессы будем называть процессами с нестационарной кинетикой. Знание характера нестационарной зависимости позволяет оценить ее влияние на технологические и конструктивные параметры и несет существенную информацию для составления математического описания процессов и рещения вопросов оптимизации [13]. Нестационарность процессов учитывается путем введения в кинетическое уравнение переменного зо времени коэффициента неста-ционарности реакции, который определяется по результатам экспериментов, поставленных в реакторах идеального перемешивания периодического или непрерывного действия. Предполагается, что предварительными исследованиями установлено существование для рассматриваемого процесса математического описания вида  [c.275]

    Эксперим. данные представляют в виде зависимости выхода продукта (степени превращения) от макс. степени сжатия. Кроме того, м. б. получена зависимость состава газовой смеси от времени иепосредетвенно в цикле сжатие — расширение. Поскольку хим. процесс происходит в условиях одновременного изменения т-ры, давления и объема, для определения кинетич. параметров р-ции решают совместно при помощи ЭВМ ур-ния движения поршня, хим. кинетики н состояния газа (приближенные методы ручного расчета возможны лишь в нек-рых простых случаях). Благодаря использованию А. с. м. достигается строгая однородность реакц. пространства по всем параметрам, исключается влияние стенок реактора на процесс и создается возможность исследования механизма мономолекулярных р-ций в таких условиях, когда константа скорости не зависит от давления. [c.34]

    Расчет адсорбционных параметров Во и Го возможен через параметр ро при известном значении константы скорости химической реакции к. Влияние кинетического фактора проявляется в изменении соотношения токов с ростом параметра к а (рис. 38). При низких значениях к 1а соотношение высот пиков становится меньше единицы. С увеличением параметра а, а следовательно, и о отношение токов убывает медленнее. Если отношение 1раНрк убывает от единицы и анодный пик уменьшается с ростом V, процесс лимитируется кинетикой ЭХ процесса. Экспериментальные значения /раА рк служат для определения константы скорости химической реакции. Константы скорости, вычисленные из экспериментальных данных при заданном значении V, экстраполируют до значения к =о при 0 = 0. [c.84]

    В 3000 А ДЛЯ у-лучей Со и 20 А — для протонов с энергией 1 Мэе. В последнем случае должно обсуждаться некоторое перекрывание отдельных шпор трека ионизации. Оно вызывает соответствующее локальное возрастание дозы для большой величины ЛПЭ перекрываются отдельные сферические области и образуется цилиндрический трек. Следует заметить, что диффузия из области с цилиндрической симметрией описывается другой временной зависимостью — в уравнении (3.7) а становится п 1А где п — число частиц на единицу длины трека ионизации. Гангули и Маги [96] сформулировали реакционную кинетику для процесса, при котором все радикалы трека образуются одновременно и находятся в подобных статистически распределенных сферических областях. Когда частицы таких шпор диффундируют, они могут взаимодействовать с частицами из соседних центров. Модель предполагает, что частицы всегда находятся в гауссовом распределении и что для половинного изменения концентрации частиц необходимо принять во внимание только их диффузию, но не реакции. При численном решении уравнения можно качественно оценить влияние ЛПЭ на образование продуктов. Бернс и Баркер дали решение для различных параметров и обсудили применение результатов к ароматическим растворителям (гл. 2, разд. 2.3). [c.78]


Смотреть страницы где упоминается термин Влияние изменения параметров процесса на кинетику реакции: [c.174]    [c.14]    [c.532]    [c.108]   
Смотреть главы в:

Введение в кинетику гетерогенных каталитических реакций -> Влияние изменения параметров процесса на кинетику реакции




ПОИСК





Смотрите так же термины и статьи:

Изменение параметров, влияние на кинетику реакции

Кинетика процессов

Параметры реакции

Реакция влияние на кинетику процессо



© 2024 chem21.info Реклама на сайте