Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разветвления при полимеризации радикально

    В отличие от линейной радикальной полимеризации, количественная теория аналогичных процессов образования разветвленных структур развита даже для малых конверсий далеко не полностью. Возникающие здесь при расчете сложности аналогичны тем, которые имеют место при количественном описании разветвленной поликонденсации. Главной из них является правильный учет в теории реакции циклизации, что пока еще сделать не удалось. Поэтому в разделе 8, посвященном разветвленной полимеризации, расчет процессов будет проводиться то.тько для систем, в которых этой реакцией можно пренебречь. [c.196]


    Существенным достоинством применяемого в данной работе метода расчета гель-точки является то, что он допускает единый математический подход к расчету разных процессов радикальной полимеризации независимо от специфики реакции, приводящей к разветвлению полимерных цепей. Последнее обстоятельство позволяет рассматривать параллельно обе задачи расчета гель-точки при разветвленной полимеризации. [c.223]

    Статистические сополимеры характеризуются нерегулярным, случайным чередованием звеньев различной структуры. Они получаются обычными методами радикальной или ионной полимеризации при совместном использовании двух или более мономеров. В зависимости от способа инициирования макромолекулы сополимеров могут быть почти строго линейными (при ионных процессах) или разветвленными (при радикальной сополимеризации). [c.216]

    Итогом обеих реакций является нарушение регулярности построения полимерной цепи и появление разветвленных макромолекул. Так как энергия активации вторичных реакций значительно выше энергии активации реакции роста, доля вторичных реакций падает с понижением температуры полимеризации. Применение окислительно-восстановительных систем для инициирования радикальной полимеризации бутадиена позволило снизить температуру полимеризации до 0°С и существенно уменьшить разветвленность образующегося полимера [2, с. 1—86]. [c.178]

    Полиэтилен, полученный последними двумя способами (полиэтилен низкого давления), имеет строго линейное строение, более высокую молекулярную массу до 70 000 и температуру плавления на 20° выше, чем полиэтилен высокого давления с разветвленной структурой. Зависимость основных механических свойств полиэтилена от молекулярной массы представлена на рис. 94. Полимеризация этилена при высоком давлении представляет собой цепную реакцию, протекающую по свободно-радикальному механизму с выделением большого количества теплоты  [c.216]

    Соотнощение присоединений в положениях 1,2 и 1,4 можно установить озонолизом, окислением гидроперекисью бензоила или при помощи инфракрасной спектроскопии. При радикально полимеризации около 75% основных структурных элементов присоединяется в положение 1,4 с повыщением степени конверсии разветвление макромолекулы увеличивается. Разветвление вызывается не только реакциями переноса растущих цепей, но и сополимеризацией винильных групп 1,2-присоединенных основных структурных элементов макромолекулы с бутадиеном. Для того чтобы предотвратить такое разветвление, применяются регуляторы , являющиеся переносчиками цепей, например  [c.938]


    Пример 239. Константа передачи цепи на полимер (Ср) при радикальной полимеризации бутадиена (70 °С) равна 0,87- 10 . Вычислите зависимость плотности ветвления, а также содержания (в %) разветвленных макромолекул от степени превра-щения мономера (25, 60, 80, 90, 95 и 99 %), если Х = 100. Допускается, что макромолекулы имеют не более одного ответвления. [c.84]

    Ионная полимеризация характеризуется также полным отсутствием или очень малыми разветвлениями основной цепи полимера, а также более высоким значением средней молекулярной массы и узким молекулярно массовым распределением полимеров по сравнению с радикальной. Этому способствует невозможность обрыва цепи путем соударения двух растущих частиц, имеющих одинаковый но знаку заряд. Обрыв цепи в ионной полимеризации происходит либо в результате реакции растущей цепи с низкомолекуляр-иыми добавками н примесями, либо путем передачи реакционной цепи на мономер или растворитель. [c.37]

    Это доказывается, во-первых, тем, что в процессе дегидрохлорирования полимера в нем возникают сопряженные двойные связи, во-вторых, тем, что ультрафиолетовый спектр поглощения полимера соответствует спектру поглощения 2,4-дихлорбутана, и, в-третьих, тем, что при дехлорировании полимера в нем возникают циклопропановые звенья. Макромолекулы полихлорвинила, получаемого радикальной полимеризацией, имеют разветвленную структуру. В среднем на 50—100 мономерных звеньев основной цепи приходится одно ответвление. [c.795]

    В зависимости от термостойкости используемого пероксида и реакционной способности образующихся радикальных продуктов их термолиза изменяются технологические параметры процесса полимеризации и качество получаемого полимера. С повышением температуры возрастает скорость конверсии этилена, которая сопровождается снижением средней молекулярной массы полиэтилена растет его разветвленность и повышается содержание двойных связей. При росте давления увеличиваются скорость процесса, молекулярная масса и плотность продукта. [c.214]

    Полимеризация этилена в присутствии радикальных инициаторов при высоких давлении и температуре приводит к получению ПЭВД с большим количеством боковых ответвлений, включая и длинноцепные разветвления [37,38]—разветвления, молекулярная масса которых сравнима с молекулярной массой основной полимерной цепи. ПЭНД имеет меньшее количество боковых ответвлений (главным образом метильных и этильных групп), т. е. макромолекулы его линейны. Это отличие обусловливает более высокую плотность, прочность и жесткость полимера, ограничивает применение ПЭНД в тех случаях, когда требуется повышенная гибкость и ударная вязкость. Повышение ударной вязкости и стойкости к растрескиванию достигается введением в макромолекулу боковых короткоцепных ответвлений, т. е. сополимери-зацией этилена с другими олефинами. [c.28]

    Получают сложные П.э. радикальной полимеризацией сложных виниловых эфиров в массе, р-ре, суспензии или эмульсии, переэтерификацией поливинилового спирта (особенно минер, к-тами). Для полимеризации характерен перенос цепи на мономер или р-ритель, скорость ее уменьшается с удлинением и разветвлением К. [c.618]

    Как было сказано выше, макромолекулы ПЭВД обладают характерной разветвленной структурой вследствие того, что условия радикальной полимеризации этилена благоприятны для передачи цепи на полимер. Эти же реакции оказываются определяющими для формирования ММР ПЭВД. [c.132]

    Попытки описать характер ММР и разветвленность ПЭВД, исходя из кинетических особенностей радикальной полимеризации этилена, предпринимались многими авторами. Обзор этих работ можно найти, например, в [38, 104, 112]. Остановимся на их основных чертах. [c.132]

    В соответствии с кинетикой реакций радикальной полимеризации этилена основными технологическими параметрами синтеза ПЭВД, определяющими структуру и массу макромолекулы, являются температура и давление полимеризации. Важную роль играют также конверсия мономера и время пребывания реакционной смеси в реакторе. С повышением температуры скорость роста цепи увеличивается меньше, чем скорость реакций передачи цепи и распада инициатора, что приводит соответственно к увеличению степени разветвленности (того и другого типа) и уменьшению молекулярной массы. Повышение давления преимущественно увеличивает скорость роста цепи и замедляет распад инициатора. Это вызывает увеличение молекулярной массы и уменьшение степени разветвленности. В то время, как на КЦР влияют только температура и давление, ДЦР сильно зависит от концентрации и времени пребывания полимера в реакторе, а именно, увеличивается с ростом этих параметров. Повышение ДЦР, в свою очередь, приводит к увеличению фракций полимера большой молекулярной массы, т.е. к росту ширины ММР и образованию высокомолекулярного хвоста ММР. [c.136]

    В результате возникают разветвленные макромолекулы. При радикальной полимеризации полиэтилена появляются в большом количестве разветвления, содержащие по четыре атома С. Предполагается, что это результат изомеризации растущего углеводородного макрорадикала  [c.361]


    По сравнению с радикальной цепной полимеризацией координационная полимеризация обладает двумя важными преимуществами. Во-первых, она приводит к сравнительно мало разветвленным макромолекулам. Так, в полиэтилене, полученном при использовании в качестве катализатора системы тетрахлорид титана — триэтилалюминий, одно разветвление приходится более чем на 200 атомов углерода основной цепи, тогда как при радикальной Полимеризации этилена под высоким давлением разветвления встречаются через каждые 30—50 атомов углерода основной цепи. Второе преимущество координационной полимеризации в том, что Она обеспечивает высокую стереоспецифичность процесса [16]. Например, полимеризация пропилена может приводить к трем стерео-Химическим ситуациям в изотактическом полимере (6) все метильные группы находятся по одну сторону плоскости, на которой расположены (или на которую спроектированы) атомы углерода основной цепи, в синдиотактическом полимере (7) они регулярно оказываются то по одну, то по другую сторону от этой плоскости, [c.307]

    Полиакриламид (ПАА) обычно получают радикальной полимеризацией в присутствии окислительно-восстановительных инициирующих систем при тем пературах не выще 50 °С. При более высоких температурах образуются сильно разветвленные или сшитые полимеры, а также может происходить гидролиз полиакриламида. Полимеризацию проводят преимущественно в водных растворах, которые затем используются по назначению. При необходимости ПАА выделяют из раствора выпариванием под вакуумом. Для получения ПАА может быть использована также гетерогенная полимеризация акриламида. [c.137]

    Исследование других природных высокомолекулярных соединений аналогичными методами показало, что чаще всего макромолекула этих веществ имеет форму неразветвленной цепи. Однако отсюда не следует, что цепи не могут обладать маленькими разветвлениями (боковая группа СНз у каучука) или небольшими кольцами (пирановые кольца целлюлозы). Макромолекулы многих синтетических высокомолекулярных соединений, особенно полученных методом радикальной полимеризации, имеют разветвленную структуру .  [c.15]

    Полимеризация органических окисей [8] может быть осуществлена по ионному или ионно-координационному механизму. Радикальная полимеризация, обычно приводящая к образованию короткоцепных, разветвленных полимеров (полимеры окиси стирола, фенилглицидилового эфира), не характерна и встречается редко. По анионному механизму полимеризуются лишь а-окиси, что обусловлено наличием сильно напряженного цикла. Также описан ряд случаев радиационной и фотохимической полимеризации. [c.216]

    В гл. 4 мы видели, что параметр длинноцепных ветвлений Р не может превосходить в противном случае М 1М - со. В данном случае разветвление (рано или поздно) обязательно должно произойти на каждом звене, т. е. р заведомо больше единицы (напомним, что р — среднее число ветвлений, приходящихся на одну среднечисленную исходную цепочку). Превращение М Мп в бесконечность отражает тот простой физический факт, что при неограниченных разветвлениях система стремится превратиться в одну гигантскую сверхмолекулу. Это обстоятельство усугубляется реакциями макромолекулярной конденсации, аналогичными многократным рекомбинациям при радикальном процессе. В гл. 4 мы отмечали, что рекомбинация при разветвленной полимеризации неминуемо должна приводить к образованию микрогеля. [c.252]

    Получение каучуков типа СКФ-26 основано на радикальной сополимеризации фторолефинов, которые в отличие от нефториро-ванных олефинов не вступают в полимеризацию по ионно-координационному механизму или по катионному механизму, но в то же время довольно легко полимеризуются по радикальному механизму (за исключением сильно разветвленных олефинов типа перфтор-изобутилена и др.). Сополимеризация фторированных олефинов с тетрафторэтиленом или винилиденфторидом обычно осуществляется в водноэмульсионной среде, но может проводиться также и в среде растворителя. [c.503]

    В процессе радикальной полимеризации можно воздействовать только на )еакцию инициирования, которая явл5[ется регулируемой. Однако строение полимера определяется реакцией роста, которая не зависит от свойств и1шциатора и способа hhj-i-циирования. Снижением температуры радикальной полимеризации до 015° мсжно добиться повышения степени регулярности строения макромолекул вследствие уменьшения их разветвленности, однако достигаемый при этом эффект сравнительно невелик. Более регулярные полимеры могут быть получены методом радикальной полимеризации при температуре от —30 до —80". Например, при температуре—40 был синтезирован кристаллический полиме-тилметакрилат .  [c.133]

    Кроме того, радиационный метод обеспечивает большую легкость и надежность в регулировании процесса полимеризации за счет варьирования мощности поглощенной дозы. Таким путем удается вводить в сополимеризацию мономеры, трудно сополи-меризующиеся традиционными методами, иапример МА и а-мeтил тиp(JЛ, аллильные мономерьс и 50г, олефины и СО. Радиационно-инициированный процесс может быть проведен при более низких температурах, когда удается избелоть (при радикальном механизме) побочных реакций, ведущих к разветвлению цепи или даже к образованию сшитых продуктов. Радиационная полимеризация достаточно хорошо осуществима как в газообразной, жидкой, так и в твердой фазе, и именно в последнем случае наиболее часто используется. Прн промышленной реализации требуются меньшие производственные площади для [c.16]

    В то же время полимеризация, индуцируемая радикалами, обладает рядом специфических особенностей. Так, например, как разветвленные, так и линейные полимерные молекулы могут быть образованы только в результате развития радикальной цепи за счет отрыва атома водорода от растущих или уже сформированных полимерных молекул, поскольку только такие отрывы могут служить точками роста цепи. Кроме того, твердые полимеры, образующиеся при радикальной полимеризации СН2 = СНХ, характеризуются стереохимически неупорядоченной ориентацией групп X относительно атомов углерода полимерной цепи. Как показывает опыт, такие полимеры, носящие название атактических, не получаются, как правило, в кристаллической форме, имеют низкую температуру плавления и обладают слабой механической прочностью. [c.295]

    Полимеризация хлористого винила, как и всех галоидпроизводных этилена, протекает по радикальному механизму. Скорость полимеризации хлористого винила в присутствии перекиспого инициатора постепенио нарастает до превращения 30—40% мономера в полимер, после чего становится постоянной. В конце процесса при степени превращения выше 75—80% скорость полимеризации заметно снижается. Это объясняется тем, что полихлорвинил не растворим в своем мономере. Осаждающиеся мельчайшие частицы полимера адсорбируют часть мономера, и дальнейшая полимеризация протекает в набухших частицах полимера. Прекращение роста макромолекул полихлорвинила происходит преимущественно передачей энергии возбуждения макромолекулы мономеру или полимеру. Во втором случае образуются разветвленные макромолекулы. Средний молекулярный вес полимера зависит от метода полимеризации, количества инициатора и температуры реакции. [c.800]

    Значительные успехи были достигнуты и в регулировании реакции роста цепи при полимеризащ-1и диенов [8] и различных полярных мономеров, В результате проведенных опытов было показано, что стереоспецифическая полимеризация олефинов может быть проведена также и в гомогенной системе. При анионной или катионной гомополимеризации с управляемой реакцией роста цепи несомненно важную роль играет промежуточный комплекс мономера с противоионом. При таком методе получения стереорегуляр-ных полимеров удается снизить свободную энергию активации реакции роста цепи, ведущую к образованию полимера с определенной степенью тактичности. К сожалению, этот метод трудноосуществим при полимеризации неполярных, высоколетучих мономеров, какими являются, в частности, этилен и пропилен. Реакцию полимеризации этилена в высокомолекулярный разветвленный продукт долгое время осуществляли только по радикальному механизму при высоких давлении и температуре. Аналогичные опыты по радикальной полимеризации пропилена не имели успеха, так как на третнчном атоме углерода легко происходит передача цепн, вследствие чего образуется полимер небольшого молекулярного веса, который не может быть использован для получения пластмасс. Высокомолекулярные линейные полимеры этилена и пропилена можно синтезировать при низком давлении только при наличии твердой фазы катализатора. Мономер и металлорганический компонент сорбируются на поверхности твердой фазы, чем достигается ориентация каждой молекулы мономера перед ее присоединением к растущей полимерной цепи. [c.10]

    БЛОЧНАЯ полимеризация (полимеризация в массе, полимеризация в блокеХ способ синтеза полимеров, при к-ром полимеризуются жидкие неразбавленные мономеры. Помимо моиомерш и возбудителя (инициатора, катализатора) реакционная система иногда содержит регуляторы мол. массы полимера, стабилизаторы, наполнители и др компоненты. Механизм Б. п. может быть радикальным, ионным или координационно-ионным. В конце процесса реакционная система м. б. гомогенной (расплав полимера, его р-р в мономере) или гетерогенной, в к-рой полимер образует отдельную жидкую или твердую фазу. Обычно в результате Б. п. получают продукты, макромолекулы к-рых имеют линейное или разветвленное строение. Особый случай Б. п. многофункциональных мономеров или олигомеров, приводящая к образованию трехмерных сетчатых полимеров. [c.298]

    Среди сложных р-ций широко распространены цепные р-ции, при к-рых образующийся в системе аггивный центр (своб. атом, радикал, ион, ион-радикал) вызьшает циклически повторяющуюся цепочку превращений реагентов в продукты. В сложном цепном процессе выделяют стадии зарождения, продолжения, разветвления и обрыва цеш . Различают р-ции неразветвлеиные, разветвленные, с энергетич. разветвлением и вырожденно-разветвленные. По цепному механизму протекает распад мн. молекул, в т. ч. крекинг углеводородов, окисление орг. соед. молекулярным кислвродом, радикальная и ионная полимеризации, хлорирование, бромирование, сульфохлорирование и т. п. [c.382]

    В пром-сти П. получают радикальной полимеризацией винилацетата в р-ре, эмульсии или суспензии. Наряду с линейным может образовываться и разветвленный П. Полимеризацией в р-ре (обычио в метаноле) при 60-65 °С в присут. инициатора получают П., перерабатываемый гл. обр. в поливиниловый спирт. В случае непрерывного процесса р-цию прекращают при степени превращ. винилацетата 50-65% образующийся П. имеет меньще разветвлений, его степень полимеризации достигает 1800-2000. [c.616]

    В 1940 г, методом ИК-спекроскопии было обнаружено [58, с. 433], что содержание метильных групп в ПЭВД значительно превосходит возможное содержание концевых групп. На основании этого был сделан вывод о разветвленности макромолекул полиэтилена, но вопрос о длине ветвей и механизме их образования оставался открытым. Изобилие метильных групп при сравнительно малом значении молекулярной массы, ошибочно найденном методом характеристической вязкости, дало основание считать ветви короткими. Лишь в 1953 г. были опубликованы данные [58, с. 32], убедительно показывающие, что условия радикальной полимеризации этилена благоприятны для реакций передачи цепи на полимер по двум механизмам (см. гл. 4) мономолекулярному (внутримолекулярному) и бимолекулярному (межмолекулярному), что приводит к образованию в ПЭВД соответственно двух типов разветвленности короткоцепной (КЦР) и длинноцепной (ДЦР). При этом возникновение КЦР предпочтительно в силу благоприятных стерических факторов и высокой концентрации групп СН2 в пределах пяти последних углеродных атомов растущего макрорадикала. [c.114]

    К расчету функций g(m) и к(т) для различных моделей разветвленной макромолекулы обращались многие авторы. В ранних работах [101, 102] использованы модели, предполагающие в среднем равномерное распределение узлов ветвления в макромолекуле (рис. 7.7, д). Практически это возможно лишь при одновременном возникновении всех ветвей в молекуле, что мало соответствует реакциям радикальной полимеризации. Однако простота аналитических выражений искомых функций, их проработка для разных типов разветвленных структур, а также хрестоматийность этих работ, позволяющая исследователям легко находить общий язык, до сих пор обеспечивает этим работам широкое применение при анализе экспериментальных данных. Результаты работ [101, 102], полученные для монодисперсного по молекулярной массе хаотически разветвленного полимера, были распространены [103] на полидис-персный полимер с ММР, описываемым функцией Шульца. Полученные результаты могут быть использованы при анализе ДЦР фракций ПЭВД, практически всегда обладающих некоторой полидисперсностью. [c.124]

    Главным критерием выбора уравнения для описания функции (т) для полимера с известным типом разветвленной структуры является правильность или правдоподобность результатов определения т. В случае ПЭВД для оценки результатов определения ДЦР можно использовать сведения о содержании в его мжромолекулах структурных элементов, возникающих в результате обрыва макрорадикала в процессе полимеризации и фиксирующих таким образом конец длинной ветви. В соответствии с существующими представлениями о радикальной полимеризации этилена (см. гл. 4) такими элементами являются в основном концевые метильные, винилиденовые и винильные группы. Поскольку нет возможности выделить из общего содержания СНз-групп концевые, а основной вклад здесь вносят группы - атрибуты КЦР, то очевщрю, что содержание узлов ДЦР должно быть значительно ниже общего содержания СНз-групп. В то же время оно должно быть выше суммарного содержания винилиденовых и винильных групп, так как не все ветви содержат эти группы. [c.129]

    Концепция определяющей роли кислотно-основных взаимодействий в катионной полимеризации базируется на том, что рассматриваемый процесс представляет разновидность широкого класса катионных реакций в неводных средах со всеми присущими им основными признаками. В рамках этой концепции и в качестве дополнения к ней следует рассмотреть и другие особенности катионной полимеризации изобутилена, отличающие ее от реакций низкомолекулярных соединений и других реакщ й образования полимеров. В обобщенной формулировке достижения в регулировании катионной полимеризации изобутилена и конструировании полимерных молекул получили название макромолекулярной (или молекулярной) инженерии [25, 247]. Становление этого многозначительного термина произошло вначале при рассмотрении радикальной и анионной полимеризации, а в период 1975-80 гг. и в катионной полимеризации. Макромоле-кулярная инженерия означает регулируемое конструирование головных и хвостовых групп, повторяющихся звеньев, микроструктуры, ММ и ММР, природы разветвлений, частоты сетки, блок-, графт- и звездообразных структур. Большинство из этих положений применимо и для ПИБ. Элементами макромолекулярной инженерии являются конролируемые элементарные акты (инициирование, обрыв, передача) и квазиживой механизм роста цепей. Так как этой теме посвящены известные обзоры [25, 247], можно ограничиться лишь кратким рассмотрением проблемы. Реализация элементов макромолекулярной инженерии связана с двумя исходными моментами направленным подбором комплексных каталитических систем, определяющих характер реакций инициирования, передачи и обрыва цепи, и близостью свойств исходного мономера и образующихся полимерных соединений из класса олефинов  [c.110]

    Аналогичным образом на кинетику радикальной полимеризации влияет изменение температуры. Обычно скорость полимеризации возрастает в 2—3 раза при повышении температуры на 10 °С. Повышение температуры облегчает р.аспад инициатора на радикалы, вместе с тем возрастает подвижность всех частиц системы — молекул и радикалов,— следовательно, увеличивается вероятность столкновения частш . Это приводит к тому, что возрастают скорости реакций роста и обрыва цепи. Таким образом, с повышением температуры всегда общая скорость полимеризации увеличивается, а молекулярная масса полимера уменьшается, возрастает доля низкомолекулярных фракций. Повышение температуры способствует одновременно образованию разветвленных макромолекул, нарушению химической регулярности построения полимерной цепи, так как увеличивается вероятность вхождения мономеров в цепь по принципу Г—Г или X—X (см. стр. 12). [c.48]

    Наличием реакций передачи цепи объясняется, например, обра-зование разветвленных продуктов при радикальной полимеризации этилена. [c.41]

    ПВФ, полученный в присутствии обычных свободно-радикальных инициаторов, имеет беспорядочно ориентированную (атактическую) молекулярную структуру и содержит до 32% звеньев, соединенных по типу голова к голове , т. е. в поли-.мерной цепи одно мономерное звено из каждых шести присоединяется обратно . Степень стереорегулярности образцов ПВФ, синтезированных на катализаторах Пиглера — Натта, а также при инициировании полимеризациич ооралкилами, существенно не улучшается. У образцов обнаружен одни и тот же тип спектров дифракции рентгеновских лучей полимеры отличаются лишь повыщенными степенью кристалличности и температурой плавления кристаллитов [121], что обусловлено более регулярным присоединением по типу голова к хвосту . С понижением те.мпературы полимеризации повышается регулярность ПВФ за счет уменьшения аномальных мономерных связей голова— голова , хвост—хвост и разветвлений цепи полимера. [c.74]


Смотреть страницы где упоминается термин Разветвления при полимеризации радикально: [c.196]    [c.149]    [c.410]    [c.128]    [c.60]    [c.121]    [c.41]    [c.153]    [c.108]   
Основы химии полимеров (1974) -- [ c.200 , c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Радикальная полимеризация

Разветвление

Разветвленность



© 2024 chem21.info Реклама на сайте